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Abstract

We use a generalization of the Schwarz inequality to give a short proof of new
Turan-type inequalities for polygamma and Riemann zeta functions.
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P. Turan {] proved that the Legendre polynomialy (x) satisfy the determi-
nantal inequality

Pn(x) Pn-&-l(:f)
Poii(x) Poyo(w)

wheren = 0, 1,2, ... and equality occurs only if = +1. This classical result

(1.1)

‘go, —1<r<1

has been extended in several directions: ultraspherical polynomials, Laguerre Turan-type Inequalities for some

and Hermite polynomials, Bessel functions of the first kind, modified Bessel
functions, etc. In view of the interest in inequalities of the tyfpel), Karlin

and Szegd named determinants suchla$) (Turanians The proof given by
Turan is based on the recurrence relationg. 81],

(1.2) (n+1)Pi(x) = 2n+ DzP,(z) —nP,_1(z), n=1,2,...
' P(z) =0,  Py(x)=1.

and on the differential relation’[ p. 83],
(1.3) (1 —2°) Pi(z) =nP,_1(z) — nzP,(z).

L. Lorch [6] established Turan-type inequalities for the positive zetps
k=1,2,... of the general Bessel function

Cy(z) = J,(r)cosa —Y,(r)sina, 0<a<m,

whereJ,(z) andY, (z) denote the Bessel functions of the first and the second
kind respectively.
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Finally, the corresponding results for the positive zetgs v > 0, k =
1,2,... of the derivativeC) (z) = < C,(x) and for the zeros of ultraspherical,
Laguerre and Hermite polynomials have been established],ifj] and [],

respectively.

The aim of this paper is to prove new Turan-type inequalities for the polygamma
and Riemann zeta functions. The approach used in the present paper is different

from that used in the above mentioned papers and based, prevalently, on Sturm

theory. Here our main tool is the following generalization of the Schwarz in-
equality
2
+n
2 dt

m

b b b
(1.4) / o(t) ()" dt - / o(t) F(O]" dt > [ / o(t) [ (1)

where f and g are two nonnegative functions of a real variable an@dndn
belonging to a se$ of real numbers, such that the integrals i exist.
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Theorem 2.1.Forn = 1,2, ... we denote by, (z) = ¢ () the polygamma

functions defined as theth derivative of psi function

_ (x)
@/J(x)—r(x), x>0
with the usual notation for the gamma function. Then

where™ is an integer.

Proof. The polygamma functions have the following integral representation

——e "dt, x>0, n=1,2,...

22) (o) = (1) /0 )

We choose the integers andn both even or odd, in such a way that +n)/2
is an integer. By1.4) with g(t) = <, f(t) =t and a =0, b = +oo, we
get

oo et oo et ozt 2
2.3 t"dt - t"dt > t dt
(2:3) /0 1—et /0 1—et _{/0 I—et } ’

that is
(2.4) () Yy () = Phin (2),

2

m,n=1,3,5,... 0rm,n =2,4,6,....

The proof is complete. ]
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Remark 1. Whenm = n + 2 we find

wn(x) 7vZJn-i-l (33)
Do (@) = Yoga(@)’

Theorem 2.2. We denote by(s) the Riemann zeta function. Then

((s) C(s+1)
o1l =y 7

Proof. Fors > 1 the Riemann zeta function satisfies the integral relation

(2.5)

=1,2,..., >0.

(2.6) (s+1) s> 1.

(2.7) ((s) = F(ls) /0 ;s_ 1dt, s> 1.

By (1.4 with ¢(t) = 7, f(t) =t anda =0, b = +o0, we get

o8] ts—l [e'9) t5+1 00 y4s 2
2. . > )
LI Ry R

Further, usingZ.7) this inequality becomes

(2.9) C(8)T(s)C(s +2)T(s+2) > C(s+ DI(s+ 1)
or, by the functional relatiol(z + 1) = zI'(z),

(2.10) (s +1)¢(s)C(s +2) > s¢P(s+1)

which is equivalent to the conclusion of Theorérg. O
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Concluding remark. Many other Turan-type inequalities can be obtained for
the functions which admit integral representations of the typ® (For example
starting from the integral representation for the exponential integral function [
p. 228, 5.1.4],

En(x):/ e Tt dt, n=0,1,..., x>0,
1

and using inequalityX.4) we find

E,(x) Ep(2) > Enim ().

2
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