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Abstract

Some classical and new inequalities of an approximate integration are obtained
with use of Hadamard type inequalities and delta–convex functions of higher
orders.
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1. Introduction
One of the most famous inequalities in analysis is the Hermite–Hadamard in-
equality

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
,

which holds for a convex functionf : [a, b] → R. Using this inequality and
some properties of delta–convex functions (cf. an exhaustive study of this class
of functions given by Veselý and Zajíček [8]; cf. also [2], where, indepen-
dently of [8], the authors introduced the concept of convex–dominated functions
which coincides with the notion of delta–convex functions) Dragomir, Pearce
and Pěcaríc proved recently the following result.

Theorem 1.1. [3, Remark 1] Letf be twice differentiable on[a, b] and suppose
thatM := sup

x∈[a,b]

∣∣f ′′(x)
∣∣ < ∞. Then

∣∣∣∣f (a + b

2

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ M

24
(b− a)2 and∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ M

12
(b− a)2.

By multiplying both sides of these inequalities byb−a the simplest cases of
the inequalities estimating the accuracy of the Midpoint and Trapezoidal Rules
of an approximate integration can be recognized.
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In this paper we give some results related to Theorem1.1. Some new in-
equalities are obtained and some known inequalities are reproved. To obtain
these results we make use of an important extension of convex functions, i.e.
convex functions of higher orders (studied among others by Popoviciu [6]). Let
us recall this notion. It is not difficult to notice that a functionf : I → R (where
I ⊂ R is an interval) is convex if and only if

(1.2)

∣∣∣∣∣∣
1 1 1
x y z

f(x) f(y) f(z)

∣∣∣∣∣∣ ≥ 0

for anyx, y, z ∈ I such thatx < y < z. Following this observation we define
the functionf : I → R to ben–convex(n ∈ N) if and only if

Dn+1(x0, x1, . . . , xn+1; f) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x0 x1 . . . xn+1
...

...
...

...
xn

0 xn
1 . . . xn

n+1

f(x0) f(x1) . . . f(xn+1)

∣∣∣∣∣∣∣∣∣∣∣
≥ 0

for anyx0, x1, . . . , xn+1 ∈ I such thatx0 < x1 < · · · < xn+1. Obviously1–
convex functions are convex in the classical sense. For more information about
the definition and the properties of convex functions of higher orders the reader
is referred to [5], [6], [7].

The following theorem (due to Popoviciu [6]) characterizesn–convexity of
n + 1 times differentiable functions (cf. also [5], [1, Theorem A]).
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Theorem 1.2. Assume thatf : (a, b) → R is an n + 1 times differentiable
function. Thenf is n–convex if and only iff (n+1)(x) ≥ 0, x ∈ (a, b).

The result similar to the if part of Theorem1.2is true forf : [a, b] → R. The
expression “f : [a, b] → R is continuous” means, as usual, thatf is continuous
on (a, b), continuous on the right ata and continuous on the left atb.

Theorem 1.3.Assume thatf : [a, b] → R is n + 1 times differentiable on(a, b)
and continuous on[a, b]. If f (n+1)(x) ≥ 0, x ∈ (a, b), thenf is n–convex.

Proof. The result follows by Theorem1.2 and by the fact that the functions
Dn+1(·, x1, . . . , xn+1; f) andDn+1(x0, . . . , xn, ·; f) are continuous on the right
ata and on the left atb, respectively.

In [1] Bessenyei and Páles recently obtained some extensions of Hadamard’s
inequality (1.1) for convex functions of higher orders ([1, Theorems 6 and 7]).
Since the notations of these results will be used very often in the present pa-
per, we quote these theorems in extenso. Let us remark that in [1] the name
n–monotone functionsis used for(n − 1)–convex functions. For reader’s con-
venience we consequently use this last name.

Theorem 1.4. [1, Theorem 6] Let, forn ≥ 0,

pn(x) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1
2

· · · 1
n+1

x 1
3

· · · 1
n+2

...
...

...
...

xn 1
n+2

· · · 1
2n+1

∣∣∣∣∣∣∣∣∣∣∣
,
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thenpn hasn pairwise distinct roots in(0, 1). Denote these roots byλ1, . . . , λn

and

α0 :=
1

p2
n(0)

∫ 1

0

p2
n(x)dx,

αk :=
1

λk

∫ 1

0

xpn(x)

(x− λk)p′n(λk)
dx (k = 1, . . . , n).

Then the following inequalities hold for any2n–convex functionf : [a, b] → R:

α0f(a) +
n∑

k=1

αkf
(
(1− λk)a + λkb

)
≤ 1

b− a

∫ b

a

f(x)dx and(1.3)

1

b− a

∫ b

a

f(x)dx ≤
n∑

k=1

αkf
(
λka + (1− λk)b

)
+ α0f(b).(1.4)

Theorem 1.5. [1, Theorem 7] Let, forn ≥ 1,

pn(x) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
n

x 1
2

· · · 1
n+1

...
...

...
...

xn 1
n+1

· · · 1
2n

∣∣∣∣∣∣∣∣∣∣∣
, qn(x) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1
2·3 · · · 1

n(n+1)

x 1
3·4 · · · 1

(n+1)(n+2)

...
...

...
...

xn−1 1
(n+1)(n+2)

· · · 1
(2n−1)2n

∣∣∣∣∣∣∣∣∣∣∣
,

thenpn hasn, andqn hasn − 1 pairwise distinct roots in(0, 1). Denote these
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roots byλ1, . . . , λn andµ1, . . . , µn−1, respectively. Let

αk :=

∫ 1

0

pn(x)

(x− λk)p′n(λk)
dx (k = 1, . . . , n) and

β0 :=
1

q2
n(0)

∫ 1

0

(1− x)q2
n(x)dx,

βk :=
1

(1− µk)µk

∫ 1

0

x(1− x)qn(x)

(x− µk)q′n(µk)
dx (k = 1, . . . , n− 1),

βn :=
1

q2
n(1)

∫ 1

0

xq2
n(x)dx.

Then the following inequalities hold for any(2n − 1)–convex functionf :
[a, b] → R:

n∑
k=1

αkf
(
(1− λk)a + λkb

)
≤ 1

b− a

∫ b

a

f(x)dx and(1.5)

1

b− a

∫ b

a

f(x)dx ≤ β0f(a) +
n−1∑
k=1

βkf
(
(1− µk)a + µkb

)
+ βnf(b).(1.6)

Remark 1. (cf. [1, Corollary 1]) For n = 1 we obtain by Theorem1.5 the
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classical Hadamard inequality. Indeed, it is easy to compute

p1(x) =
∣∣∣ 1 1

x 1
2

∣∣∣ =
1

2
− x,

q1(x) = 1, λ1 =
1

2
,

α1 =

∫ 1

0

1
2
− x(

x− 1
2

)
· (−1)

dx = 1,

β0 =

∫ 1

0

(1− x)dx =
1

2
,

β1 =

∫ 1

0

xdx =
1

2
.

Then using(1.5) and (1.6) for a 1–convex (i.e. convex) functionf : [a, b] → R
we get(1.1).

Now let us recall the notion of delta–convexity. Letg : I → R be a convex
function. It is well known (cf. e.g. [4], [8]) that f : I → R is delta–convex
with a control functiong (briefly g–delta–convex) if and only if the functions
g + f andg − f are convex. Combining this fact with (1.2) we obtain that
the functionf is g–delta–convex if and only if∣∣∣∣∣∣

∣∣∣∣∣∣
1 1 1
x y z

f(x) f(y) f(z)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
1 1 1
x y z

g(x) g(y) g(z)

∣∣∣∣∣∣
for anyx, y, z ∈ I such thatx < y < z.
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In the paper [4], Ger proposed to consider delta–convex functions of higher
orders. For a definition and a discussion of this notion the reader is referred
to [4]. In this paper we use the following definition. Letg : I → R be an
n–convex function. The functionf : I → R is said to ben–delta–convex with
a control functiong (n–g–delta–convex for short) if and only if the inequality∣∣Dn+1(x0, x1, . . . , xn+1; f)

∣∣ ≤ Dn+1(x0, x1, . . . , xn+1; g)

holds for anyx0, x1, . . . , xn+1 ∈ I such thatx0 < x1 < · · · < xn+1. Obviously
1–g–delta–convex functions areg–delta–convex.

Using the properties of determinants we obtain the following theorem (cf. [4,
Proposition 1]).

Theorem 1.6.Letg : I → R be ann–convex function. The functionf : I → R
is n–g–delta–convex if and only if the functionsg + f andg − f aren–convex.

The next result follows immediately from Theorems1.6and1.3.

Theorem 1.7. Assume that the functionsf, g : [a, b] → R are n + 1 times
differentiable on(a, b) and continuous on[a, b]. If the inequality

∣∣f (n+1)(x)
∣∣ ≤

g(n+1)(x) holds for anyx ∈ (a, b), thenf is n–g–delta–convex.

http://jipam.vu.edu.au/
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2. Main Results
Theorem 2.1.Let, forn ≥ 0, g : [a, b] → R be a2n–convex function and letf :
[a, b] → R be a2n–g–delta–convex. Then, under the notations of Theorem1.4,
the following inequalities hold:

(2.1)

∣∣∣∣∣α0f(a) +
n∑

k=1

αkf
(
(1− λk)a + λkb

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ 1

b− a

∫ b

a

g(x)dx− α0g(a)−
n∑

k=1

αkg
(
(1− λk)a + λkb

)
and

(2.2)

∣∣∣∣∣
n∑

k=1

αkf
(
λka + (1− λk)b

)
+ α0f(b)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤

n∑
k=1

αkg
(
λka + (1− λk)b

)
+ α0g(b)− 1

b− a

∫ b

a

g(x)dx.

Proof. Sincef is 2n–g–delta–convex, the functionsg + f andg − f are2n–
convex. Using (1.3) for g + f we obtain

α0g(a) + α0f(a)

+
n∑

k=1

αkg
(
(1− λk)a + λkb

)
+

n∑
k=1

αkf
(
(1− λk)a + λkb

)
≤ 1

b− a

∫ b

a

g(x)dx +
1

b− a

∫ b

a

f(x)dx.
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Then

(2.3) α0f(a) +
n∑

k=1

αkf
(
(1− λk)a + λkb

)
− 1

b− a

∫ b

a

f(x)dx

≤ 1

b− a

∫ b

a

g(x)dx− α0g(a)−
n∑

k=1

αkg
(
(1− λk)a + λkb

)
.

Using (1.3) for g − f we get

α0g(a)− α0f(a)

+
n∑

k=1

αkg
(
(1− λk)a + λkb

)
−

n∑
k=1

αkf
(
(1− λk)a + λkb

)
≤ 1

b− a

∫ b

a

g(x)dx− 1

b− a

∫ b

a

f(x)dx.

Then

(2.4) α0f(a) +
n∑

k=1

αkf
(
(1− λk)a + λkb

)
− 1

b− a

∫ b

a

f(x)dx

≥ −

(
1

b− a

∫ b

a

g(x)dx− α0g(a)−
n∑

k=1

αkg
(
(1− λk)a + λkb

))
and the inequality (2.1) follows by (2.3) and (2.4).

The proof of (2.2) is analogous: it is enough to use (1.4) for 2n–convex
functionsg + f andg − f .
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Theorem 2.2.Let, forn ≥ 1, g : [a, b] → R be a(2n− 1)–convex function and
let f : [a, b] → R be (2n − 1)–g–delta–convex. Then, under the notations of
Theorem1.5, the following inequalities hold:

(2.5)

∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dx−
n∑

k=1

αkf
(
(1− λk)a + λkb

)∣∣∣∣∣
≤ 1

b− a

∫ b

a

g(x)dx−
n∑

k=1

αkg
(
(1− λk)a + λkb

)
and

(2.6)

∣∣∣∣∣β0f(a) +
n−1∑
k=1

βkf
(
(1− µk)a + µkb

)
+ βnf(b)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ β0g(a) +

n−1∑
k=1

βkg
(
(1− µk)a + µkb

)
+ βng(b)− 1

b− a

∫ b

a

g(x)dx.

Proof. Our argument is similar to the one in the proof of Theorem2.1. Sincef
is (2n−1)–g–delta–convex, the functionsg+f andg−f are(2n−1)–convex.
Using (1.5) for g + f andg− f we obtain (2.5). Using (1.6) for g + f andg− f
we get (2.6).
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3. Applications
By an appropriate specification of the control functiong in Theorems2.1and2.2
we can obtain some inequalities which estimate the accuracy of some formulae
of an approximate integration. Both classical and new inequalities can be de-
rived. Let us start with the following remark.

Remark 2. Letf bek times differentiable on[a, b] and assume that

Mk(f) := sup
x∈[a,b]

∣∣f (k)(x)
∣∣ < ∞.

Then forg(x) = Mk(f)xk

k!
we haveg(k)(x) = Mk(f) and

∣∣f (k)(x)
∣∣ ≤ g(k)(x),

x ∈ [a, b]. By Theorem1.7f is (k − 1)–g–delta–convex.

Now we are going to discuss the accuracy of the Midpoint and Trapezoidal
rules in approximate integration. We recall these rules.

Midpoint Rule. Letf be twice differentiable on[a, b] and assume thatM2(f) <

∞. Let m ∈ N, xi = a + i
b− a

m
, i = 0, . . . ,m and letyi = f

(
xi−1 + xi

2

)
,

i = 1, . . . ,m. Then∣∣∣∣∫ b

a

f(x)dx− b− a

m
(y1 + · · ·+ ym)

∣∣∣∣ ≤ M2(f)(b− a)3

24m2
.

Observe that form = 1 we get

(3.1)

∣∣∣∣∫ b

a

f(x)dx− (b− a)f

(
a + b

2

)∣∣∣∣ ≤ M2(f)(b− a)3

24
.
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Trapezoidal Rule. Letf be twice differentiable on[a, b] and assume thatM2(f) <

∞. Letm ∈ N, xi = a + i
b− a

m
, yi = f(xi), i = 0, . . . ,m. Then∣∣∣∣∫ b

a

f(x)dx− b− a

2m

(
y0 + ym + 2(y1 + y2 + · · ·+ ym−1)

)∣∣∣∣ ≤ M2(f)(b− a)3

12m2
.

Form = 1 we get

(3.2)

∣∣∣∣∫ b

a

f(x)dx− b− a

2

(
f(a) + f(b)

)∣∣∣∣ ≤ M2(f)(b− a)3

12
.

Now we derive (3.1) and (3.2) from Theorem2.2(cf. [3, Remark 1] and Theo-
rem1.1).

Corollary 3.1. Letf be twice differentiable on[a, b] and assume thatM2(f) <
∞. Then the inequalities(3.1) and (3.2) hold.

Proof. Let n = 1. We use the notations of Theorem1.5. By Remark1 we have
p1(x) = 1

2
− x, q1(x) = 1, λ1 = 1

2
, α1 = 1, β0 = β1 = 1

2
. Let g(x) = M2(f)x2

2
.

Then by Remark2 f is g–delta–convex and by (2.5) we have∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f

(
a + b

2

)∣∣∣∣ ≤ 1

b− a

∫ b

a

M2(f)x2

2
dx−

M2(f)
(

a+b
2

)2
2

.

Multiplying both sides of this inequality byb− a we compute∣∣∣∣∫ b

a

f(x)dx− (b− a)f

(
a + b

2

)∣∣∣∣ ≤ M2(f)

2

(
b3 − a3

3
− (b− a)

(a + b)2

4

)
=

M2(f)(b− a)3

24
,
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which gives (3.1). By (2.6) we have∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ M2(f)

2

(
a2 + b2

2

)
− 1

b− a

∫ b

a

M2(f)x2

2
dx

Multiplying both sides of this inequality byb− a we obtain (3.2).

As an example of some new inequalities we give the following

Corollary 3.2. Let f be three times differentiable on[a, b] and assume that
M3(f) < ∞. Then

(3.3)

∣∣∣∣∫ b

a

f(x)dx− b− a

4

(
f(a) + 3f

(
a + 2b

3

))∣∣∣∣ ≤ M3(f)(b− a)4

216

and

(3.4)

∣∣∣∣∫ b

a

f(x)dx− b− a

4

(
f(b) + 3f

(
2a + b

3

))∣∣∣∣ ≤ M3(f)(b− a)4

216
.

Proof. Let n = 1. Under the notations of Theorem1.4we compute

p1(x) =
∣∣∣ 1 1

2

x 1
3

∣∣∣ =
1

3
− 1

2
x, λ1 =

2

3
,

α0 = 9

∫ 1

0

(
1

3
− 1

2
x

)2

dx =
1

4
,

α1 =
3

2

∫ 1

0

x(1
3
− 1

2
x)

(x− 2
3
) · (−1

2
)
dx =

3

2

∫ 1

0

xdx =
3

4
.
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Let g(x) = M3(f)x3

6
. By Remark2 f is 2–g–delta–convex. By the inequal-

ity (2.1) of Theorem2.1we infer∣∣∣∣14f(a) +
3

4
f

(
1

3
a +

2

3
b

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ 1

b− a

∫ b

a

M3(f)x3

6
− 1

4
· M3(f)a3

6
− 3

4
·
M3(f)

(
1
3
a + 2

3
b
)3

6
.

Multiplying both sides of this inequality byb− a and computing the right hand
side we get (3.3). The inequality (3.4) we obtain similarly using (2.2).

Let us now discuss the accuracy of Simpson’s Rule in approximate integra-
tion. Recall that this rule reads as follows.

Simpson’s Rule. Let f be four times differentiable on[a, b] and assume that
M4(f) < ∞. Letm ∈ N, xi = a + i b−a

2m
, yi = f(xi), i = 0, . . . , 2m. Then∣∣∣∣∫ b

a

f(x)dx− b− a

6m

(
y0 + y2m + 2(y2 + y4 + · · ·+ y2m−2)

+ 4(y1 + y3 + · · ·+ y2m−1)
)∣∣∣∣ ≤ M4(f)(b− a)5

2880m4
.

Form = 1 we obtain

(3.5)

∣∣∣∣∫ b

a

f(x)dx− b− a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)∣∣∣∣
≤ M4(f)(b− a)5

2880
.
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We can derive (3.5) from Theorem2.2.

Corollary 3.3. Let f be four times differentiable on[a, b] and assume that
M4(f) < ∞. Then the inequality(3.5) holds.

Proof. Let n = 2. Using the notations of Theorem1.5we compute

q2(x) =
∣∣∣ 1 1

6

x 1
12

∣∣∣ =
1

12
(1− 2x), µ1 =

1

2
,

β0 = 144

∫ 1

0

(1− x) · 1

144
(1− 2x)2dx =

1

6
,

β1 = 4

∫ 1

0

x(1− x) 1
12

(1− 2x)(
x− 1

2

)
·
(
−1

6

) dx = 4

∫ 1

0

x(1− x)dx =
2

3
,

β2 = 144

∫ 1

0

x · 1

144
(1− 2x)2dx =

1

6
.

Let g(x) = M4(f)x4

24
. By Remark2 f is 3–g–delta–convex. By the inequal-

ity (2.6) of Theorem2.2we obtain∣∣∣∣16f(a) +
2

3
f

(
a + b

2

)
+

1

6
f(b)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ 1

6
· M4(f)a4

24
+

2

3
· M4(f)

24

(
a + b

2

)4

+
1

6
· M4(f)b4

24
− 1

b− a

∫ b

a

M4(f)x4

24
dx,

from which the inequality (3.5) follows.
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Other examples of the roots of polynomials of Theorems1.4 and 1.5 are
given in [1]. Then the integral inequalities similar to (3.1), (3.2), (3.3), (3.4)
and (3.5) can be obtained by Theorems2.1and2.2.
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