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ABSTRACT. In the present paper we give some results concerning partial sums of certain mero-
morphic functions.We also consider the partial sums of certain integral operator.
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1. I NTRODUCTION

Let Σ be the class consisting of functions of the form

(1.1) f(z) =
1

z
+

∞∑
k=1

akz
k

which are regular in the punctured discE = {z : 0 < |z| < 1} with a simple pole at the origin
and residue1 there.

Let fn(z) = 1
z

+
∑n

k=1 akz
k be thenth partial sum of the series expansion forf(z) ∈ Σ.

Let Σ∗(A, B), ΣK(A, B), Σc(A, B), −1 ≤ A < B ≤ 1 be the subclasses of functions inΣ
satisfying

(1.2) −
{

zf ′(z)

f(z)

}
≺ 1 + Az

1 + Bz
, z ∈ U = E ∪ {0}
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2 S. LATHA AND L. SHIVARUDRAPPA

(1.3) −
{

zf ′′(z)

f ′(z)
+ 1

}
≺ 1 + Az

1 + Bz
, z ∈ U .

(1.4) −z2f ′(z) ≺ 1 + Az

1 + Bz
, z ∈ U

respectively [5]. The classesΣ∗(2α− 1, 1) andΣK(2α− 1, 1) are respectively the well known
subclasses ofΣ consisting of functions meromorphic starlike of orderα and meromorphic con-
vex of orderα and meromorphically close to convex of orderα denoted byΣ∗(α), ΣK(α) and
Σc(α) respectively.

If f(z) = 1
z

+
∑∞

k=1 akz
k andg(z) = 1

z
+
∑∞

k=1 bkz
k, then their Hadamard product (or

convolution), denoted byf(z) ∗ g(z) is the function defined by the power series

f(z) ∗ g(z) =
1

z
+

∞∑
k=1

akbkz
k.

In the present paper, we give sufficient conditions forf(z) to be inΣ∗(A, B), ΣK(A, B) and
further investigate the ratio of a function of the form (1.1) to its sequence of partial sums when
the coefficients are sufficiently small to satisfy conditions

∞∑
k=1

k{k(1 + B) + (1 + A)}|ak| ≤ B − A,

∞∑
k=1

{k(1 + B) + (1 + A)}|ak| ≤ B − A.

More precisely, we will determine sharp lower bounds for<
{

f(z)
fn(z)

}
, <
{

fn(z)
f(z)

}
, <
{

f ′(z)
f ′

n(z)

}
and<

{
f ′

n(z)
f ′(z)

}
. Further, we give a property for the partial sums of certain integral operators in

connection with functions belonging to the classΣc(A, B).

2. SOME PRELIMINARY RESULTS

Theorem 2.1.Letf(z) = 1
z

+
∑∞

k=1 akz
k, z ∈ E. If

(2.1)
∞∑

k=1

k{k(1 + B) + (1 + A)}|ak| ≤ B − A, then f(z) ∈ ΣK(A, B).

Proof. It suffices to show that ∣∣∣∣∣∣
(
1 + zf ′′(z)

f(z)

)
+ 1

B
(
1 + zf ′′(z)

f ′(z)

)
+ A

∣∣∣∣∣∣ < 1,

that is, ∣∣∣∣ zf ′′(z) + 2f ′(z)

Bzf ′′(z) + (A + B)f ′(z)

∣∣∣∣ < 1.
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Consider ∣∣∣∣ zf ′′(z) + 2f ′(z)

Bzf ′′(z) + (A + B)f ′(z)

∣∣∣∣(2.2)

=

∣∣∣∣ ∑∞
k=1 k(k + 1)akz

k+1

(B − A) + B
∑∞

k=1 k(k + 1)akzk+1 − (2B − A)
∑∞

k=1 kakzk+1

∣∣∣∣
≤ Σk(k + 1)|ak|

(B − A)−
∑∞

k=1 k(kB + A)|ak|
.

(2.2) is bounded by1 if
∞∑

k=1

k(k + 1)|ak| ≤ (B − A)
∞∑

k=1

k(kB + A)|ak|

which reduces to (2.1) �

Similarly we can prove the following theorem.

Theorem 2.2.Letf(z) = 1
z

+
∑∞

k=1 akz
k, z ∈ E. If

(2.3)
∞∑

k=1

{k(1 + B) + (1 + A)}|ak| ≤ B − A, then f(z) ∈ Σ∗(A, B).

3. M AIN RESULTS

Theorem 3.1. If f(z) of the form (1.1) satisfies (2.3), then

<
{

f(z)

fn(z)

}
≥ 2(n + 1 + A)

2n + 2 + A + B
, z ∈ U .

The result is sharp for everyn, with extremal function

(3.1) f(z) =
1

z
+

B − A

2n + 2 + A + B
zn+1, n ≥ 0.

Proof. Consider

2n + 2 + A + B

B − A

{
f(z)

fn(z)
− 2n + A + B

2n + 2 + A + B

}
=

1 +
∑n

k=1 akz
k+1 + 2n+2+A+B

B−A

∑∞
k=n+1 akz

k+1

1 +
∑n

k=1 akzk+1

=
1 + w(z)

1− w(z)
,

where

w(z) =
2n+2+A+B

B−A

∑∞
k=n+1 akz

k+1

2 + 2
∑n

k=1 akzk+1 − 2n+2+A+B
B−A

∑∞
k=n+1 akzk+1

and

|w(z)| ≤
2n+2+A+B

B−A

∑∞
k=1 |ak|

2− 2
∑n

k=1 |ak| − 2n+2+A+B
B−A

∑∞
k=n+1 |ak|

.

Now
|w(z)| ≤ 1
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4 S. LATHA AND L. SHIVARUDRAPPA

if and only if

2

(
2n + 2 + A + B

B − A

) ∞∑
k=n+1

|ak| ≤ 2− 2
n∑

k=1

|ak|,

which is equivalent to

(3.2)
n∑

k=1

|ak|+
2n + 2 + A + B

B − A

∞∑
k=n+1

|ak| ≤ 1.

It suffices to show that the left hand side of (3.2) bounded above by
∞∑

k=1

2k + A + B

(B − A)
|ak|,

which is equivalent to
n∑

k=1

(
2(k + A)

B − A

)
|ak|+

∞∑
k=n+1

(
2(k − n− 1)

B − A

)
|ak| ≥ 0.

To see that the functionf(z) given by (3.1) gives the sharp result, we observe for

z = re
πi

n+2

that

f(z)

fn(z)
= 1 +

B − A

2n + 2 + A + B
zn+2 → 1− B − A

2n + 2 + A + B
=

2(n + 1 + A)

2(n + 1) + A + B

whenr → 1−.
Therefore we complete the proof of Theorem 3.1. �

Corollary 3.2. For A = 2α− 1, B = 1, we get Theorem2.1 in [3] which states as follows:
If f(z) of the form (1.1) satisfies condition

∞∑
1

(k + α)|ak| ≤ 1− α,

then

<
{

f(z)

fn(z)

}
≥ n + 2α

n + 1 + α
, z ∈ U .

The result is sharp for everyn, with extremal function

f(z) =
1

z
+

1− α

n + 1 + α
zn+1, n ≥ 0.

Theorem 3.3. If f(z) of the form (1.1) satisfies (2.1), then

<
{

f(z)

fn(z)

}
≥ (n + 2)(2n + A + B)

(n + 1)(2n + 2 + A + B)
, z ∈ U .

The result is sharp for everyn, with extremal function

(3.3) f(z) =
1

z
+

B − A

(n + 1)(2n + 2 + A + B)
zn+1, n ≥ 0.
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Proof. Consider

(n + 1)(2n + 2 + B + A)

B − A

{
f(z)

fn(z)
− (n + 2)(2n + A + B)

(n + 1)(2n + 2 + A + B)

}
=

1 +
∑n

k=1 akz
k+1 + (n+1)(2n+2+A+B)

B−A

∑∞
k=n+1 akz

k+1

1 +
∑n

k=1 akzk+1
:=

1 + w(z)

1− w(z)
,

where

w(z) =

(n+1)(2n+2+A+B)
B−A

∑∞
k=n+1 akz

k+1

2 + 2
∑n

k=1 akzk+1 + (n+1)(2n+2+B+A)
B−A

∑∞
k=n+1 akzk+1

.

Now

|w(z)| ≤
(n+1)(2n+2+A+B)

B−A

∑∞
k=n+1 |ak|

2− 2
∑n

k=1 |ak| − (n+1)(2n+2+A+B)
B−A

∑∞
k=n+1 |ak|

≤ 1

if

(3.4)
n∑

k=1

|ak|+
(n + 1)(2n + 2 + A + B)

B − A

∞∑
k=n+1

|ak| ≤ 1.

The left hand side of (3.4) is bounded above by
∞∑

k=1

k(2k + A + B)

B − A
|ak|

if

1

B − A

{
n∑

k=1

(k(2k + A + B)− (B − A)) |ak|

+
∞∑

k=n+1

(k(2k + A + B)− (n + 1)(2n + 2 + A + B)) |ak|

}
≥ 0,

and the proof is completed. �

Corollary 3.4. For A = 2α− 1, B = 1, we get Theorem2.2 in [3] which reads:
If f(z) of the form (1.1) satisfies condition

∞∑
1

k(k + α)|ak| ≤ 1− α,

then

<
{

f(z)

fn(z)

}
≥ (n + 2)(n + α)

(n + 1)(n + 1 + α)
, z ∈ U .

The result is sharp for everyn, with extremal function

f(z) =
1

z
+

1− α

(n + 1)(n + 1 + α)
zn+1, n ≥ 0.

We next determine bounds for<
{

fn(z)
f(z)

}
.

Theorem 3.5.
(a) If f(z) of the form (1.1) satisfies the condition (2.3), then

<
{

fn(z)

f(z)

}
≥ 2n + 2 + A + B

n + 2
, z ∈ U .
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(b) If f(z) of the form (1.1) satisfies condition (2.1), then

<
{

fn(z)

f(z)

}
≥ 2(n + 1)(2n + 2 + A + B)

2(n + 1)(n + 2)− n(B − A)
, z ∈ U .

Equalities hold in(a) and(b) for the functions given by (3.1) and (3.3) respectively.

Proof. We prove(a). The proof of(b) is similar to(a) and will be omitted.
Consider

2(n + 2)

B − A

{
fn(z)

f(z)
− 2n + 2 + A + B

2(n + 2)

}
=

1 +
∑n

k=1 akz
k+1 + 2n+2+A+B

B−A

∑∞
k=n+1 akz

k+1

1 +
∑n

k=1 akzk+1
:=

1 + w(z)

1− w(z)
,

where

|w(z)| ≤
n+2
B−A

∑∞
k=n+1 |ak|

1−
∑n

k=1 |ak| − n+A+B
B−A

∑∞
k=n+1 |ak|

≤ 1.

This last inequality is equivalent to

(3.5)
n∑

k=1

|ak|+
2n + 2 + A + B

B − A

∞∑
k=n+1

|ak| ≤ 1.

Since the left hand side of (3.5) is bounded above by
∞∑

k=1

2k + A + B

B − A
|ak|,

the proof is completed. �

Corollary 3.6. For A = 2α− 1, B = 1, we get Theorem2.3 in [3] which reads:

(a) If f(z) of the form (1.1) satisfies condition
∞∑
1

(k + α)|ak| ≤ 1− α,

then

<
{

fn(z)

f(z)

}
≥ (n + 1 + α)

(n + 2)
, z ∈ U .

(b) If f(z) of the form (1.1) satisfies condition
∞∑
1

k(k + α)|ak| ≤ 1− α,

then

<
{

fn(z)

f(z)

}
≥ (n + 1)(n + 1 + α)

(n + 1)(n + 2)− n(1− α)
, z ∈ U .

Equalities hold in (a) and (b) for the functions given by

f(z) =
1

z
+

1− α

(n + 1 + α)
zn+1, n ≥ 0,

f(z) =
1

z
+

1− α

(n + 1)(n + 1 + α)
zn+1, n ≥ 0

respectively.
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We turn to ratios involving derivatives. The proof of Theorem 3.7 is similar to that in Theo-
rem 3.1 and(a) of Theorem 3.5 and so the details may be omitted.

Theorem 3.7. If f(z) of form (1.1) satisfies condition (2.3) withA = −B, then

<
{

f ′(z)

f ′n(z)

}
≥ 0, z ∈ U ,(a)

<
{

f ′n(z)

f ′(z)

}
≥ 1

2
, z ∈ U .(b)

In both the cases, the extremal function is given by (3.1) withA = −B.

Theorem 3.8. If f(z) of form (1.1) satisfies condition (2.1) then,

<
{

f ′(z)

f ′n(z)

}
≥ 2(n + A + B)

2n + 2 + A + B
, z ∈ U ,(a)

<
{

f ′n(z)

f ′(z)

}
≥ 2n + 2 + A + B

2(n + 2)
, z ∈ U .(b)

In both the cases, the extremal function is given by (3.3)

Proof. It is well known thatf(z) ∈ ΣK(A, B) if and only if−zf ′(z) ∈ Σ∗(A, B). In particular,
f(z) satisfies condition(2.1) if and only if −zf ′(z) satisfies condition(2.3). Thus(a) is an
immediate consequence of Theorem 3.1 and(b) follows directly from(a) of Theorem 3.5. �

For a functionf(z) ∈ Σ, we define the integral operatorF (z) as follows

F (z) =
1

z2

∫ z

0

tf(t)dt =
1

z
+

∞∑
k=1

1

k + 2
akz

k, z ∈ E.

Thenth partial sumFn(z) of the integral operatorF (z) is given by

Fn(z) =
1

z
+

n∑
k=1

1

k + 2
akz

k, z ∈ E.

The following lemmas will be required for the proof of Theorem 3.11 below.

Lemma 3.9. For 0 ≤ θ ≤ π, 1
2

+
∑m

k=1
cos(kθ)

k+1
≥ 0

Lemma 3.10. LetP be analytic inU with P (0) = 1 and<{P (z)} > 1
2

in U . For any function
Q analytic inU the functionP ∗Q takes values in the convex hull of the image onU underQ.

Lemma 3.9 is due to Rogosinski and Szego [4] and Lemma 3.10 is a well known result ([2]
and [6]) that can be derived from the Herglotz representation forP. Finally we derive

Theorem 3.11.If f(z) ∈ Σc(A, B), thenFn(z) ∈ Σc(A, B).

Proof. Let f(z) be the form (1.1) and belong to the classΣc(A, B).
We have,

(3.6) <

{
1− 1

B − A

∞∑
k=1

kakz
k+1

}
>

1

2
, z ∈ U .
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Applying the convolution properties of power series toF ′
n(z) we may write

−z2F ′
n(z) = 1−

n∑
k=1

k

k + 2
akz

k+1(3.7)

=

(
1− 1

B − A

∞∑
k=1

kakz
k+1

)
∗

(
1 + (B − A)

∞∑
k=n+1

1

k + 1
zk

)
.

Puttingz = reiθ, 0 ≤ r < 1, 0 ≤ |θ| ≤ π, and making use of the minimum principle for
harmonic functions along with Lemma 3.9, we obtain

<

{
1 + (B − A)

n+1∑
k=1

1

k + 1
zk

}
= 1 + (B − A)

n+1∑
k=1

rk cos(kθ)

k + 1
(3.8)

> 1 + (B − A)
n+1∑
k=1

cos kθ

k + 1

≥
{

1−
(

B − A

2

)}
.

In view of (3.6), (3.7), (3.8) and Lemma 3.10 we deduce that

−<{z2F ′
n(z)} >

{
1−

(
B − A

2

)}
, 0 ≤ A + B < 2, z ∈ U ,

which completes the proof of Theorem 3.11 �

Corollary 3.12. For A = 2α− 1, B = 1, we obtain Theorem2.8 in [3] which reads:
If f(z) ∈ Σc(α), thenFn(z) ∈ Σc(α).
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