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ABSTRACT. Inthe present paper we give some results concerning partial sums of certain mero-
morphic functions.We also consider the partial sums of certain integral operator.
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1. INTRODUCTION

Let X be the class consisting of functions of the form
1 oo
(1.1) f) =+ ad
k=1

which are regular in the punctured digc= {z : 0 < |z| < 1} with a simple pole at the origin
and residué there.

Let f,,(2) = 1 + >_,_, ax2" be thenth partial sum of the series expansion fti:) € .
Let ¥X*(A, B), ¥x(A, B), ¥.(A,B), -1 < A < B < 1 be the subclasses of functions3h
satisfying

z2f'(2) 1+ Az B
(1.2) _{f(z)}<1+Bz’ zeU =FEU{0}
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2 S. LATHA AND L. SHIVARUDRAPPA

z2f"(2) 1+ Az
(13) —{ f’(z) +1} %m, zEU.
(1.4) —22f(2) < %, zelU

respectively([5]. The classés (2« — 1,1) andX (2« — 1, 1) are respectively the well known
subclasses of consisting of functions meromorphic starlike of ordeand meromorphic con-
vex of ordera and meromorphically close to convex of ordedenoted by~*(«a), Xk («) and
Y..(«) respectively.

If f(z) = 2+ Y, a2 andg(z) = 1 + 3777 b2, then their Hadamard product (or
convolution), denoted by(z) * g(z) is the function defined by the power series

f(z)xg(2) = % + Zakbkzk.
k=1

In the present paper, we give sufficient conditions fot) to be inX*(A, B), X (A, B) and
further investigate the ratio of a function of the form (1.1) to its sequence of partial sums when
the coefficients are sufficiently small to satisfy conditions

ik{k(l + B)+ (14 A)}ax| < B - A,

i{’f(l + B) + (14 A)}ax| < B — A.

In(2) f(2) fh(2)
andﬂ%{ "(Z)} . Further, we give a property for the partial sums of certain integral operators in
connection with functions belonging to the clasg A, B).

More precisely, we will determine sharp lower bounds ot L2 } , %{f"(z)}, R { f'(z)}

2. SOME PRELIMINARY RESULTS
Theorem 2.1.Letf(z) =1+ > 77 apz*, ze€ E.If

(2.1) i K{k(1+ B)+ (1 + A)Yar| < B— A, then f(z) € Sx(A, B).

Proof. It suffices to show that

(1) +1
p(eg)val

’ 2f"(z) +21'(2)
Bzf"(2) + (A+ B)f'(2)

that is,

< 1.
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Consider

er [l

Bzf"(z) + (A+ B)f'(z)
k= 1k3(k7+ L)agz il
T B=A) + B2 k(k+ Dagz* T — (2B — A) 3. | ka2t
- Sk(k+1)|ag|
T (B—=A) =25 k(kB + A)lax|
(2.2) is bounded by if

o0

Zkk+ Nar| < (B —A) > k(kB + A)|al

k=1 k=1

which reduces td (2}1)
Similarly we can prove the following theorem.
Theorem 2.2.Let f(z) =1+ 3777 apz*, ze€ E.If

(2.3) i{k(l Y B)+ (1+ A)Yay] < B— A, then f(z) € (A, B).

3. MAIN RESULTS
Theorem 3.1.1f f(z) of the form[(1.]L) satisfie5 (2.3), then

m{f@)}> 2(n+1+A) seu

fn(2))] T 2n+2+ A+ B’
The result is sharp for eveny, with extremal function
1 B—-A
3.1 == ntl >0

Proof. Consider
2n+2+A+B | f(2) n+ A+ B
B—A fn() n+2+A+ B
I+ Zk 1 apz*t 4 w Zk =n+1 agz

1+ Zk:l akzk+1

1T+ w(z)
1 —w(z)
where
( ) B 2n+§i—12+3 Zzo - akzkH
249 Sr_ gkt — 2n+2+A+B S Azt
and
| ( )’ 2n+2+A+B Zk ) |ak’
T 2-2 Zk 1 la | 2n+2+A+B Zk =n+1 ’ak|
Now
jw(z)| <1
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if and only if

2n+2+A+B -
2( ) 3 |ak|<2_zz\ak\

k=n-+1
which is equivalent to

[e.e]

2n+ 2+ A+ B
(3.2) Z\aky > faxl <1

k=n+1

It suffices to show that the left hand side [of (3.2) bounded above by

i 2k+ A+ B a
s A Yk
2. (B A)
which is equivalent to

"L (2(k+ A) L (2(k—n—1)
S (%5 s 3 (M w20
k=1 k=n+1

To see that the functiofi(z) given by [3.1) gives the sharp result, we observe for

z = T@nﬂfﬁ?
that
fz) _,,  B-A o B-A 2(n+ 1+ A)
== < — — =
fn(2) n+2+A+B 2n+2+A+B 2(n+1)+A+B
whenr — 17.
Therefore we complete the proof of Theorem 3.1. O

Corollary 3.2. For A =2a — 1, B = 1, we get Theorem.1 in [3] which states as follows:
If f(z) of the form|[(1.1L) satisfies condition

[e.o]

d (k+a)a] <1-a,

1

then
- f(2) - n + 2« C.eu
fn(z) )] Tn+l+a
The result is sharp for everny, with extremal function
1 1—a 41
=—4+ —00" > 0.

Theorem 3.3.1f f(z) of the form[(1.]L) satisfie§ (2.1), then
{f(z)} (n+2)(2n+ A+ B)
R > :
fulz2)) — (n+1)2n+2+ A+ B)
The result is sharp for eveny, with extremal function
1 B—A

3.3) f<2):2+(n+1)(2n+2+A+B)ZnH’ n20.

z€EU.

J. Inequal. Pure and Appl. Math?(4) Art. 140, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

PARTIAL SuMS

Proof. Consider
(n+U@n+2+B+A){ﬂd (n+m@n+A+B)}

B—A fulz) (n+1)(2n+2+ A+ B)
1 F a4 (n+1)(2g:24+A+B) Zzozn—',-l s, _ 1+ w(z)
L+ agzktt Tl —w(z)
where (n+1)(2n+2+A+B)
w(z) = B—A D hent a2
2492 ZZ:1 ap2F 1 + (n+1)(2g+Z+B+A) Zzo:nH a2kt
Now (n+1)(2 +2+A+B)
‘w(z)‘ Zk n+1 ‘ak‘ <1
2-2 Zk 1 [ | nH 2n+2+A+B Zk =n+1 |a|
if
2n + 2 + A+ B) &
(3.4) Z |ay| + Z lay,| < 1.
k=n+1

The left hand side 0@4) is bounded above by

“ k(2k + A+ B)

Z B_— A ||

k=1
if

LIS 2kt A+ B)— (B—A)) oy
- - a
B—A |4 F

+ f:w@k+A+By4n+n@n+2+A+B»mm}2&

k=n+1
and the proof is completed.

Corollary 3.4. For A =2a — 1, B = 1, we get Theorem.2 in [3] which reads:
If f(z) of the form[(1.]1) satisfies condition

D k(k+a)lar] <1—a,
1

then

f(2) (n+2)(n+ «)
%{fn(z)}z(n—l—l)(n_’_l_'_a)a zeU.

The result is sharp for eveny, with extremal function

1 11—«
S e e I C RS )

2 >0,

Y

We next determine bounds fm‘r{ f”(z) }

Theorem 3.5.
(a) If f(z) of the form[(1.]) satisfies the conditi¢n (2.3), then

fu(2) 2n+24+A+B
%{M}Z e CEY
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(b) If f(z) of the form|(1.1) satisfies conditidn (R.1), then
§R{fn(,z)} - 2n+1)(2n+2+ A+ B)
f(2) 2(n+1)(n+2) —n(B—A)’
Equalities hold in(a) and (b) for the functions given by (3.1) and (B.3) respectively.

Proof. We prove(a). The proof of(b) is similar to(a) and will be omitted.
Consider

2(n+2) [falz) 2n+2+A+B
B—A | f(») 2(n + 2)
1 + > apz T+ w > hentt a2t 14+ w(z)

1+ Zk, akz’“Jrl Sl —w(z)

n+2 Zk n+1 |a| <1

jw(z)| < " <
1 - Zk 1 |ak| +A+B Zk n+1 |ag|
This last inequality is equivalent to

z€U.

where

n [e.9]

2n+24+ A+ B
(3.5) > Jax] + T > Jaxl <1

k=1 k=n+1

Since the left hand side df (3.5) is bounded above by

“2k+A+B
P

|ak|7
k=1

the proof is completed. O

Corollary 3.6. For A = 2a — 1, B = 1, we get Theorer.3 in [3] which reads:
(a) If f(z) of the form[(1.]L) satisfies condition

[e o]

D (k+a)|a <1-a,

1

fn(2) (n+1+a)
%{ﬂz)}z miz - oY

(b) If f(z) of the form|(1.]1) satisfies condition

then

D k(k+a)lar] <1-a,
1

then
z€eU.

%{f”(z)} - m+1(n+1+a)

f(z) ) —(n+1)(n+2)—n(l-a)

Equalities hold in (a) and (b) for the functions given by
1 1 -«

—— —n+1 >0
1(2) z+(n+1+a)z =5

1 1 -«
2) =~ + 2 >0
/) z (n+1)(n+1+a) -

respectively.
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We turn to ratios involving derivatives. The proof of Theorjen] 3.7 is similar to that in Theo-
rem[3.1 anda) of Theorenj 3.5 and so the details may be omitted.

Theorem 3.7.1f f(z) of form [1.]) satisfies conditioh (2.3) with= — B, then

ff) e e
(b) m{ﬁg{}z; ceu.

In both the cases, the extremal function is giver{ by (3.1) with —B.
Theorem 3.8.1f f(z) of form [1.]) satisfies conditioh (2.1) then,

f(2) 2(n+ A+ B)

@ %{m}22n+2+A+B7 zel,
fé(z)} 2n+2+A+B B

® i)z Ty e

In both the cases, the extremal function is giver] by (3.3)

Proof. Itis well known that f(z) € Xk (A, B) ifand only if —zf'(2) € ¥*(A, B). In particular,
f(z) satisfies condition(2.1) if and only if —zf'(z) satisfies condition(2.3). Thus(a) is an
immediate consequence of Theorlen] 3.1 @ndollows directly from(a) of Theorenj 3.6. O

For a functionf(z) € 3, we define the integral operatéi(z) as follows

o0

ze k.

T
~—~
&

I

Nwl,_.
\
NI»—A

Then' partial sumF, (z) of the integral operatoF'(z) is given by

1 & 1 .
=;+Zk+2akz , z€eF.
k=1
The following lemmas will be required for the proof of Theorem B.11 below.

Lemma3.9.For0 <0 <, + Yoy CO;H >0

Lemma 3.10. Let P be analytic ini/ with P(0) = 1 andR{P(z)} > L in . For any function
@ analytic inl{ the functionP x () takes values in the convex hull of the imagéouander(@).

Lemmd 3.9 is due to Rogosinski and Szego [4] and Lefnma 3.10 is a well known result ([2]
and [6]) that can be derived from the Herglotz representatiof&inally we derive

Theorem 3.11.1f f(z) € ¥.(A, B), thenF,(z) € ¥.(A, B).

Proof. Let f(z) be the form[(1.]1) and belong to the clasg A, B).
We have,

> 1
(3.6) { 3 } 3 zel.
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Applying the convolution properties of power seriedt z) we may write

"k
3.7 —2*F(z) =1— s
3.7) ZF,(2) E{;A:+_2akz
=|1- ! ikakzkﬂ * 1+(B—A)§: ! 2.
B_Akzl k=n+1k+1

Puttingz = e, 0<r <1, 0 <[] < and making use of the minimum principle for
harmonic functions along with Lemma B.9, we obtain

(3.8) R 1+(B—A)§ Lol _ gy S rtcostk)
' E+17 [ k+1
k=1 k=1
n+1
cos ko
1+(B-A
> 1 ); F+1
()
><1-— .
- 2
In view of (3.8), [3.7),[(3.8) and Lemnja 3]10 we deduce that
B-A
—R{F/(2)} > {1— (T)}, 0<A+B<2, z€U,
which completes the proof of Theor¢ém 3.11 O

Corollary 3.12. For A = 2o — 1, B = 1, we obtain Theorerd.8 in [3] which reads:
If f(2) € (), thenF,(z) € X.(a).
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