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1. INTRODUCTION

Let H(U) be the set of holomorfic functions defined on the unitdise {z € C : |z| < 1}.

In [2, pp. 38 Example 2.4. d] andl[3, pp. 192 Example 9.3.4] the authors have proved, as an
application of the developed theory, the implication:
If feHU), f(0)=1and

Re(f(2) + zf'(2) + 2°f"(2)) > 0, z € U thenRe f(z) > 0, z € U.
The aim of this paper is to generalise this inequality and to determine the biggesk for
which the implication
f(0) =1, Re(f(2) + 2f'(2) + 22f"(2)) >0, (V) 2€U = Re f(z) >a, (V)2z2€U

holds true.
In this paper each many-valued function is taken with the principal value.

2. PRELIMINARIES

In our study we need the following definitions and lemmas:

Let X be a locally convex linear topological space. For a subset X the closed convex
hull of U is defined as the intersection of all closed convex sets contaihamgd will be denoted
by co(U). If U ¢ V C X thenU is called an extremal subset bf provided that whenever
u=tx+ (1 —t)ywhereu e U, z,y € V andt € (0,1) thenz,y € U.

An extremal subset d¥ consisting of just one point is called an extreme point/of

The set of the extreme points &fwill be denoted by~ U.
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Lemma 2.1([1, pp. 45]) If J : H(U) — R is a real-valued, continuous convex functional and
F is a compact subset @f(U), then

max{J(f): f € co(F)} =max{J(f): f € F} =max{J(f): f € E(co(F))}.
In the particular case if/ is a linear map then we also have:
min{J(f) : f € co(F)} =min{J(f) : f € F} =min{J(f) : f € E(co(F))}.

Suppose thaf,g € H(U). The functionf is subordinate tg; if there exists a function
6 € H(U) suchthat(0) =0, |6(z)| < 1,z € Uandf(z) = g(8(z)), z € U.
The subordination will be denoted kfy< g.

Observation 1. Suppose that, g € H(U) andg is univalent. Iff(0) = ¢g(0) and f(U) C g(U)
thenf < g.
WhenF' € H(U) we use the notation

s(F)={feHU): f=<F}.

Lemma 2.2([1, pp. 51]) Suppose thak, is defined by the equality

= (FE) . ksnero
If o > 1thenco(s(F,)) consists of all functions it (U) represented by

2 (14 czem ™\
f(z) = /O (1——26”) du(t)

wherey is a positive measure df, 27| having the property.([0, 27]) = 1 and

E(co(s(F,))) = {—_ te [O,QW]}.

Observation 2. If L : H(U) — H(U) is an invertible linear map and™ C H(U) is a compact
subset, ther.(co(F)) = co(L(F)) and the sef(co(F)) is in one-to-one correspondence with
EL(co(F)).

1+ cz
1—2

3. THE MAIN RESULT
Theorem 3.1.1f f € H(U), f(0) =1;m,p e N*;a, € R, k=1,pand

(3.1) Re ”(/f(z) +arzf'(z)+ - +apzPf@(2) >0, z€U
then

. = ZZL:O C’rkncg;b—‘:i—k—l n
(3.2) 1+ inf Re <n21 o) z

Do CnComnit _n

<Ref(z)<1+§1€15Re Z Pn) 2", zelU
n=1

whereP(z) =1+ ax +asx(z — 1)+ - +apx(z —1)--- (x —p+1).

Proof. The condition of the theorem can be rewritten in the form

"\L/f(z) +arzf(2) 4+ a2 f®(2) < 11‘?
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which is equivalent to

f(2) +alzf’(z) 4. +ap2pf(p)(z) < (1 _|_Z>m‘

1—=2

According to the results of Lemnia 2.2,

F sl @+ a0 = [ (1) date) = b

_ Ze—zt

wherep([0, 27]) = 1.
If

z) = 1+anz”, zeU
then
F(2) +arzf'(2) + - + a2 fP(2 —1—|—Zb P(n
On the other hand

2 1+Ze—it 2 )
: _1 C«kcm 1 n/ 7mtd t
[T +; z motn ) [ e,

with C = 0if ¢ > p. The equalitie” = 0 if ¢ > p imply also that:
ZO’“CM b1 = ch% b1
k= k=

The above two developments in power series imply that:

1+§:an( )2" :1+Z <ZC7]%C$+1£ . 1) n/o%re_intdu(t)
n=0 n=1

and
by = — ijc’fcml / e,
n (n) £ m~"m+n—k—1 0
Consequently,
o) 1 m 2T
flz) =1+ —_— CT’;C;””’;_ B z"/ Rem
(=) me(Z i ) (t
If

B— {h e H(U) ‘h@) _ /0% Gf—zet)m du(t), = € U, u([0,27]) = 1},

Ze—n

{feH <\/f )+ arzf'(2) + ~+apzpf<p>(z)>>o,zeU}

then the correspondende: B — C, L(h) = f defines an invertible linear map and according
to Observatiof]2 the extreme points of the cldsse

=1+ Z (Z Ck OVWYZJriL k— 1) Zne_intv S U7 te [0727T)

This result and Lem@.l implies the assertion of The¢gremn 3.1. O
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4. PARTICULAR CASES

If we putp = 2,a; = ap = m = 1in Theoren 3.l then we get:

Corollary 4.1. If f € H(U), f(0) =1 and

4.1) Re(f(2) + 2f'(2) + 22f"(2)) >0, =z€U,
then
m(e*™ +1) 2me™
(42) 627T——1 >Ref(z) > 62#_1, zeU
and these results are sharp in the sense that
m(e*™ +1)
3161[1]) Re f(z) = o1 and
fec
inf Re f(2) = e
mfRef() = ot
fec
Proof. Theorenj 3.1 implies the following inequalities:
1+;2{1§Re (;rﬂ—i—lz ) <Ref(z) < 1—1—31615Re (;n2+1z > :

The minimum and maximum principle for harmonic functions imply that

2 = 2 .
sup Re "] = sup Re e
2€U (; n?+1 ) te[0,27] (; n?+1 )
= 2 =2
U Re (Z n2 + 1 > tel[g,zﬂ Re (Z n? 4+ 1° )

n=1
By considering the integral

/ _/ eizt
n — | \:nJr% <22 + 1)(627r'iz _ 1)

n=1

dz,

t €[0,2m),

using the equalityim,,_. . I,, = 0 and residue theory we deduce that

e 9 ) 7T(6t +627r7t)
1 ikt —
+ Re (; EERL ) T t €0,2m)

and so we get

m(e*™ 4+ 1) 2me”

W>R€(f(2))> o2 _ 1 zeU.

If we putm = 2, a; = 0, as = 4, Theorenj 3.JL implies
Corollary 4.2. If f € H(U), f(0) =1 and
(4.3) Re/f(2) +422f"(2) >0, =z€U,
then
(D k

(4.4) Ref(z)>1+4z<2k_1)2, zeU

k=1
and this result is sharp.

J. Inequal. Pure and Appl. Mat}8(1) (2007), Art. 27, 5 pp.

http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

INEQUALITIES IN THE COMPLEX PLANE 5

Proof. Theorenj 3.1 and the minimum principle imply that

o ekt | L.
R >1+4 inf R — .
e f(2) * tel[gl,%r] ¢ <; (2k — 1)2>
It is easy to observe that
k,ezkt e i

QZ (2k —1)2 ZQk—1+; 2k —1)?

/ k: 1 Zktd[[’—l-/ / k 1 zktdxdy
0 0

k=1 k=1
45 = d t € |0,2m).
( ) A 1 —1'26“ / / 1 —I2 elt x y? 6[ Y 7T)
Since ,
e — c0,1], t 0,2
R
el_x2€zt—1+$2’ € [0,1], t € [0,2m)
and .
et -1
Re — > z,y € [0,1], t € [0, 2m),

1 — :L’2y2€” 1422 y2’
by integrating we get that

1 e’it 1 1
Re/ — o dr > —/ dx
o 1 —x2et o 1+a?

1 eit 1 1
R ————dvdy > — | ————dxdy.
e/o 1_x2y2€ztxy— /0 1+x2y2$y
In the derived inequalities, equality occurs ¥ 7, this means that

ket = (—1)F -k
inf Re) —0 =% L "
relvan) L (2 — 1)2 ; (2k — 1)?

and the inequality] (4]4) holds true. O

and
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