# journal of inequalities in pure and applied mathematics

http://jipam.vu.edu.au

issn: 1443-5756

Volume 8 (2007), Issue 1, Article 27, 5 pp.



## INEQUALITIES IN THE COMPLEX PLANE

#### RÓBERT SZÁSZ

ROMANIA szasz\_robert2001@yahoo.com

Received 28 July, 2006; accepted 04 January, 2007 Communicated by H.M. Srivastava

ABSTRACT. A differential inequality is generalised and improved. Several other differential inequalities are considered.

Key words and phrases: Differential subordination, Extreme point, Locally convex linear topological space, Convex functional.

2000 Mathematics Subject Classification. 30C99.

## 1. Introduction

Let  $\mathcal{H}(U)$  be the set of holomorfic functions defined on the unit disc  $U = \{z \in \mathbb{C} : |z| < 1\}$ . In [2, pp. 38 Example 2.4. d] and [3, pp. 192 Example 9.3.4] the authors have proved, as an application of the developed theory, the implication:

If 
$$f \in \mathcal{H}(U)$$
,  $f(0) = 1$  and

$$Re(f(z) + zf'(z) + z^2f''(z)) > 0, z \in U$$
 then  $Re f(z) > 0, z \in U$ .

The aim of this paper is to generalise this inequality and to determine the biggest  $\alpha \in R$  for which the implication

$$f(0) = 1$$
,  $\text{Re}(f(z) + zf'(z) + z^2f''(z)) > 0$ ,  $(\forall) z \in U \Rightarrow \text{Re} f(z) > \alpha$ ,  $(\forall) z \in U$ 

holds true.

In this paper each many-valued function is taken with the principal value.

### 2. PRELIMINARIES

In our study we need the following definitions and lemmas:

Let X be a locally convex linear topological space. For a subset  $U \subset X$  the closed convex hull of U is defined as the intersection of all closed convex sets containing U and will be denoted by co(U). If  $U \subset V \subset X$  then U is called an extremal subset of V provided that whenever u = tx + (1-t)y where  $u \in U$ ,  $x, y \in V$  and  $t \in (0,1)$  then  $x, y \in U$ .

An extremal subset of U consisting of just one point is called an extreme point of U.

The set of the extreme points of U will be denoted by EU.

2 RÓBERT SZÁSZ

**Lemma 2.1** ([1, pp. 45]). *If*  $J : \mathcal{H}(U) \to \mathbb{R}$  *is a real-valued, continuous convex functional and*  $\mathcal{F}$  *is a compact subset of*  $\mathcal{H}(U)$ *, then* 

$$\max\{J(f): f \in co(\mathcal{F})\} = \max\{J(f): f \in \mathcal{F}\} = \max\{J(f): f \in E(co(\mathcal{F}))\}.$$

In the particular case if J is a linear map then we also have:

$$\min\{J(f): f \in co(\mathcal{F})\} = \min\{J(f): f \in \mathcal{F}\} = \min\{J(f): f \in E(co(\mathcal{F}))\}.$$

Suppose that  $f,g \in \mathcal{H}(U)$ . The function f is subordinate to g if there exists a function  $\theta \in \mathcal{H}(U)$  such that  $\theta(0) = 0$ ,  $|\theta(z)| < 1$ ,  $z \in U$  and  $f(z) = g(\theta(z))$ ,  $z \in U$ .

The subordination will be denoted by  $f \prec g$ .

**Observation 1.** Suppose that  $f, g \in \mathcal{H}(U)$  and g is univalent. If f(0) = g(0) and  $f(U) \subset g(U)$  then  $f \prec g$ .

When  $F \in \mathcal{H}(U)$  we use the notation

$$s(F) = \{ f \in \mathcal{H}(U) : f \prec F \}.$$

**Lemma 2.2** ([1, pp. 51]). Suppose that  $F_{\alpha}$  is defined by the equality

$$F_{\alpha}(z) = \left(\frac{1+cz}{1-z}\right)^{\alpha}, \quad |c| \le 1, \ c \ne -1.$$

If  $\alpha \geq 1$  then  $co(s(F_{\alpha}))$  consists of all functions in  $\mathcal{H}(U)$  represented by

$$f(z) = \int_0^{2\pi} \left(\frac{1 + cze^{-it}}{1 - ze^{-it}}\right)^{\alpha} d\mu(t)$$

where  $\mu$  is a positive measure on  $[0, 2\pi]$  having the property  $\mu([0, 2\pi]) = 1$  and

$$E(co(s(F_{\alpha}))) = \left\{ \frac{1 + cze^{-it}}{1 - ze^{-it}} \middle| t \in [0, 2\pi] \right\}.$$

**Observation 2.** If  $L: \mathcal{H}(U) \to \mathcal{H}(U)$  is an invertible linear map and  $\mathcal{F} \subset \mathcal{H}(U)$  is a compact subset, then  $L(co(\mathcal{F})) = co(L(\mathcal{F}))$  and the set  $E(co(\mathcal{F}))$  is in one-to-one correspondence with  $EL(co(\mathcal{F}))$ .

### 3. THE MAIN RESULT

**Theorem 3.1.** If  $f \in \mathcal{H}(U)$ , f(0) = 1;  $m, p \in \mathbb{N}^*$ ;  $a_k \in \mathbb{R}$ ,  $k = \overline{1, p}$  and

(3.1) Re 
$$\sqrt[m]{f(z) + a_1 z f'(z) + \dots + a_p z^p f^{(p)}(z)} > 0, \quad z \in U$$

then

(3.2) 
$$1 + \inf_{z \in U} \operatorname{Re} \left( \sum_{n=1}^{\infty} \frac{\sum_{k=0}^{m} C_{m}^{k} C_{m+n-k-1}^{m-1}}{P(n)} z^{n} \right)$$

$$< \operatorname{Re} f(z) < 1 + \sup_{z \in U} \operatorname{Re} \left( \sum_{n=1}^{\infty} \frac{\sum_{k=0}^{m} C_{m}^{k} C_{m+n-k-1}^{m-1}}{P(n)} z^{n} \right), \quad z \in U$$

where  $P(x) = 1 + a_1x + a_2x(x-1) + \cdots + a_px(x-1) \cdots (x-p+1)$ .

*Proof.* The condition of the theorem can be rewritten in the form

$$\sqrt[m]{f(z) + a_1 z f'(z) + \dots + a_p z^p f^{(p)}(z)} \prec \frac{1+z}{1-z},$$

which is equivalent to

$$f(z) + a_1 z f'(z) + \dots + a_p z^p f^{(p)}(z) \prec \left(\frac{1+z}{1-z}\right)^m$$
.

According to the results of Lemma 2.2,

$$f(z) + a_1 z f'(z) + \dots + a_p z^p f^{(p)}(z) = \int_0^{2\pi} \left( \frac{1 + z e^{-it}}{1 - z e^{-it}} \right)^m d\mu(t) = h(z),$$

where  $\mu([0, 2\pi]) = 1$ .

If

$$f(z) = 1 + \sum_{n=1}^{\infty} b_n z^n, \quad z \in U$$

then

$$f(z) + a_1 z f'(z) + \dots + a_p z^p f^{(p)}(z) = 1 + \sum_{n=1}^{\infty} b_n P(n) z^n.$$

On the other hand

$$\int_0^{2\pi} \left( \frac{1 + ze^{-it}}{1 - ze^{-it}} \right)^m d\mu(t) = 1 + \sum_{n=1}^{\infty} \left( \sum_{k=0}^n C_m^k C_{m+n-k-1}^{m-1} \right) z^n \int_0^{2\pi} e^{-int} d\mu(t),$$

with  $C_p^q = 0$  if q > p. The equalities  $C_p^q = 0$  if q > p imply also that:

$$\sum_{k=0}^{n} C_{m}^{k} C_{m+n-k-1}^{m-1} = \sum_{k=0}^{m} C_{m}^{k} C_{m+n-k-1}^{m-1}.$$

The above two developments in power series imply that:

$$1 + \sum_{n=0}^{\infty} b_n P(n) z^n = 1 + \sum_{n=1}^{\infty} \left( \sum_{k=0}^{m} C_m^k C_{m+n-k-1}^{m-1} \right) z^n \int_0^{2\pi} e^{-int} d\mu(t)$$

and

$$b_n = \frac{1}{P(n)} \left( \sum_{k=0}^m C_m^k C_{m+n-k-1}^{m-1} \right) \int_0^{2\pi} e^{-int} d\mu(t).$$

Consequently,

$$f(z) = 1 + \sum_{n=1}^{\infty} \frac{1}{P(n)} \left( \sum_{k=0}^{m} C_m^k C_{m+n-k-1}^{m-1} \right) z^n \int_0^{2\pi} e^{-int} d\mu(t).$$

If

$$\mathcal{B} = \left\{ h \in \mathcal{H}(U) \middle| h(z) = \int_0^{2\pi} \left( \frac{1 + ze^{-it}}{1 - ze^{-it}} \right)^m d\mu(t), \ z \in U, \ \mu([0, 2\pi]) = 1 \right\},$$

$$\mathcal{C} = \left\{ f \in \mathcal{H}(U) \middle| \text{Re} \left( \sqrt[m]{f(z) + a_1 z f'(z) + \dots + a_p z^p f^{(p)}(z)} \right) > 0, \ z \in U \right\}$$

then the correspondence  $L: \mathcal{B} \to \mathcal{C}$ , L(h) = f defines an invertible linear map and according to Observation 2 the extreme points of the class  $\mathcal{C}$  are

$$f_t(z) = 1 + \sum_{n=1}^{\infty} \frac{1}{P(n)} \left( \sum_{k=0}^{m} C_m^k C_{m+n-k-1}^{m-1} \right) z^n e^{-int}, \quad z \in U, \ t \in [0, 2\pi).$$

This result and Lemma 2.1 implies the assertion of Theorem 3.1.

4 RÓBERT SZÁSZ

# 4. PARTICULAR CASES

If we put  $p=2, a_1=a_2=m=1$  in Theorem 3.1 then we get:

Corollary 4.1. If  $f \in \mathcal{H}(U)$ , f(0) = 1 and

(4.1) 
$$\operatorname{Re}(f(z) + zf'(z) + z^2 f''(z)) > 0, \quad z \in U,$$

then

(4.2) 
$$\frac{\pi(e^{2\pi}+1)}{e^{2\pi}-1} > \operatorname{Re} f(z) > \frac{2\pi e^{\pi}}{e^{2\pi}-1}, \quad z \in U$$

and these results are sharp in the sense that

$$\sup_{\substack{z \in U \\ f \in \mathcal{C}}} \operatorname{Re} f(z) = \frac{\pi(e^{2\pi} + 1)}{e^{2\pi} - 1} \quad \text{and}$$

$$\inf_{\substack{z \in U \\ f \in \mathcal{C}}} \operatorname{Re} f(z) = \frac{2\pi e^{\pi}}{e^{2\pi} - 1}.$$

*Proof.* Theorem 3.1 implies the following inequalities:

$$1 + \inf_{z \in U} \operatorname{Re} \left( \sum_{n=1}^{\infty} \frac{2}{n^2 + 1} z^n \right) < \operatorname{Re} f(z) < 1 + \sup_{z \in U} \operatorname{Re} \left( \sum_{n=1}^{\infty} \frac{2}{n^2 + 1} z^n \right).$$

The minimum and maximum principle for harmonic functions imply that

$$\sup_{z \in U} \operatorname{Re} \left( \sum_{n=1}^{\infty} \frac{2}{n^2 + 1} z^n \right) = \sup_{t \in [0, 2\pi]} \operatorname{Re} \left( \sum_{n=1}^{\infty} \frac{2}{n^2 + 1} e^{int} \right)$$

$$\inf_{z \in U} \operatorname{Re} \left( \sum_{n=1}^{\infty} \frac{2}{n^2 + 1} z^n \right) = \inf_{t \in [0, 2\pi]} \operatorname{Re} \left( \sum_{n=1}^{\infty} \frac{2}{n^2 + 1} e^{int} \right).$$

By considering the integral

$$I_n = \int_{|z|=n+\frac{1}{2}} \frac{e^{izt}}{(z^2+1)(e^{2\pi iz}-1)} dz, \quad t \in [0,2\pi),$$

using the equality  $\lim_{n\to\infty} I_n = 0$  and residue theory we deduce that

$$1 + \operatorname{Re}\left(\sum_{k=1}^{\infty} \frac{2}{k^2 + 1} e^{ikt}\right) = \frac{\pi(e^t + e^{2\pi - t})}{e^{2\pi} - 1}, \quad t \in [0, 2\pi)$$

and so we get

$$\frac{\pi(e^{2\pi}+1)}{e^{2\pi}-1} > \text{Re}(f(z)) > \frac{2\pi e^{\pi}}{e^{2\pi}-1}, \quad z \in U.$$

If we put m = 2,  $a_1 = 0$ ,  $a_2 = 4$ , Theorem 3.1 implies

**Corollary 4.2.** If  $f \in \mathcal{H}(U)$ , f(0) = 1 and

(4.3) 
$$\operatorname{Re}\sqrt{f(z) + 4z^2 f''(z)} > 0, \quad z \in U,$$

then

(4.4) 
$$\operatorname{Re} f(z) > 1 + 4 \sum_{k=1}^{\infty} \frac{(-1)^k \cdot k}{(2k-1)^2}, \quad z \in U$$

and this result is sharp.

J. Inequal. Pure and Appl. Math., 8(1) (2007), Art. 27, 5 pp.

*Proof.* Theorem 3.1 and the minimum principle imply that

Re 
$$f(z) > 1 + 4 \inf_{t \in [0,2\pi]} \text{Re} \left( \sum_{k=1}^{\infty} \frac{e^{ikt} \cdot k}{(2k-1)^2} \right)$$
.

It is easy to observe that

$$2\sum_{k=1}^{\infty} \frac{ke^{ikt}}{(2k-1)^2} = \sum_{n=1}^{\infty} \frac{e^{ikt}}{2k-1} + \sum_{n=1}^{\infty} \frac{e^{ikt}}{(2k-1)^2}$$

$$= \int_0^1 \sum_{k=1}^{\infty} (x^2)^{k-1} e^{ikt} dx + \int_0^1 \int_0^1 \sum_{k=1}^{\infty} (x^2y^2)^{k-1} e^{ikt} dx dy$$

$$= \int_0^1 \frac{e^{it}}{1-x^2e^{it}} dx + \int_0^1 \int_0^1 \frac{e^{it}}{1-x^2y^2e^{it}} dx dy, \quad t \in [0, 2\pi).$$
(4.5)

Since

Re 
$$\frac{e^{it}}{1 - x^2 e^{it}} \ge \frac{-1}{1 + x^2}$$
,  $x \in [0, 1], t \in [0, 2\pi)$ 

and

$$\operatorname{Re} \frac{e^{it}}{1 - x^2 y^2 e^{it}} \ge \frac{-1}{1 + x^2 \cdot y^2}, \quad x, y \in [0, 1], \ t \in [0, 2\pi),$$

by integrating we get that

$$\operatorname{Re} \int_0^1 \frac{e^{it}}{1 - x^2 e^{it}} dx \ge - \int_0^1 \frac{1}{1 + x^2} dx$$

and

$$\operatorname{Re} \int_{0}^{1} \frac{e^{it}}{1 - x^{2}y^{2}e^{it}} dxdy \ge - \int_{0}^{1} \frac{1}{1 + x^{2}y^{2}} dxdy.$$

In the derived inequalities, equality occurs if  $t = \pi$ , this means that

$$\inf_{t \in [0,2\pi)} \operatorname{Re} \sum_{k=1}^{\infty} \frac{k e^{ikt}}{(2k-1)^2} = \sum_{k=1}^{\infty} \frac{(-1)^k \cdot k}{(2k-1)^2}$$

and the inequality (4.4) holds true.

#### REFERENCES

- [1] D.J. HALLENBECK AND T.H. MAC GREGOR, *Linear Problems and Convexity Techniques in Geometric Function Theory*, Pitman Advanced Publishing Program, 1984.
- [2] S.S. MILLER AND P.T. MOCANU, *Differential Subordinations*, Marcel Decker Inc. New York. Basel(2000).
- [3] P.T. MOCANU, TEODOR BULBOACĂ AND G. Şt. SĂLĂGEAN, *Toeria Geoemtrică a Funcțiilor Univalente*, Casa Cărții de Ştiință1, Cluj-Napoca, 1991.