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ABSTRACT. Inthis paper we establish soréebyéev’s inequalities on time scales under suitable
conditions.
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1. INTRODUCTION

The purpose of this paper is to establish the well-kn@ehySev's inequality on time scales.
To do this, we simply introduce the time scales calculus as follows:

In 1988, Hilger 7] introduced the time scales theory to unify continuous and discrete analy-
sis. A time scal€l is a closed subset of the setof the real numbers. We assume that any time
scale has the topology that it inherits from the standard topolog¥.dsince a time scale may
or may not be connected, we need the concept of jump operators.
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Definition 1.1. Lett € T, whereT is a time scale. Then the two mappings
o,p: T —R
satisfying
o(t) = inf{y > t|y € T},
p(t) = sup{y < t|y € T}
are called the jump operators @n
These jump operators classify the poifit} of a time scal€l' as right-dense, right-scattered,
left-dense and left-scattered according to wheth@y = ¢, o(t) > ¢, p(t) = t or p(t) < t,
respectively, fort € T.
Let ¢ be the maximum element of a time scdle If ¢ is left-scattered, thehis called a

generate point off. Let T denote the set of all non-degenerate point¥ off hroughout this
paper, we suppose that

(a) T is atime scale;
(b) an interval means the intersection of a real interval with the given time scale;
() R = (—00,00).

Definition 1.2. Let T be a time scale. Then the mappifig T — R is called rd-continuous if
(a) f is continuous at each right-dense or maximal poirif pf

(b) lim f(s) = f(t™) exists for each left-dense point T.
s—t—
Let C,4[T, R] denote the set of all rd-continuous mappings fBrno R.

Definition 1.3. Let f : T — R, ¢t € T . Then we say thaf has the (delta) derivativé® (t) € R
att if for eache > 0 there exists a neighborhoadof ¢ such that for alk € U

|f(a(t)) = f(s) = FA)[o(t) = s]| < e lo(t) — s
In this case, we say thdtis (delta) differentiable at.

Clearly, f~ is the usual derivative i = R, and is the usual forward difference operator if
T = Z (the set of all integers).

Definition 1.4. A function F : T — R is an antiderivative of : T — R if F'2(t) = f(t) for
eacht € T In this case, we define the (Cauchy) integraf dfy

/ () Ay = F(t) - F(s)
forall s, t € T.

It follows from Theorem 1.74 of Bohner and Peterson [3] that every rd-continuous function
has an antiderivative. For further results on time scales calculus, we refef to [3, 9].

The purpose of this paper is to establish the well-kn@ebysev inequality |1,/5, 6, 8, 11]
on time scales. For other related results, we referito [4, 10, 12, 13].

2. MAIN RESULTS

We first establish soméebyéev inequalities which generalize some results of Audrédief [1],
Beesack and Raric [2], Dunkel [4], Fujimaral]5, 6], Isayamal[8], and Winckler [13]. For other
related results, we refer to the book of MitrindJLQ].
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Theorem 2.1. Suppose that € C,4([a, ]; [0,00)). Let fi, fa, k1, k2 € Cra([a, b]; R) satisfy the
following two conditions:

(Ch) fala ) 2(x) > 0 onla, b];
(Cg) f1 and '“ x) are similarly ordered (or oppositely ordered), that is, for ally € [a, b],

filz) Ay ki(z)  ki(y)

(fz(x) fg(y)) (@(x) k2<y>> 20 (or<0),

then
filz) fity) || k(z) Fa(y)

&) _/ / ‘ fr(z) fly 2< ) (y) Arly
fop@h@h @A f; p( (eka(m)d ) 0 (or <0)
fjp(l‘)fz(x x)Ax f p(@) o)k (x) A | B

Proof. Letz,y € [a, b]. Then it follows from Cl), (Cy) and the |dent|ty

filz) fily) || Fi(z) ku(y)
fo(z)  fa(y) ka(z) ka(y)

= P o) ey (153 SO () - S

that (2.1) holds. O

Remark 2.2. Suppose thap, f,g € Cra([a,b];R) with p(x) > 0 on[a,b]. Let f andg be
S|m|IarIy ordered (or oppositely ordered). Takiffigz) = f(z), ki1(x) = g(z) and fz(x) =
ka(z) = 1, (2.1) is reduced to the generalizE€ebysev inequality:

b b b b
(2.2) / p() f (2)g(x) A / p(e)Az > (or <) / pl(e)f(x)Az / p(2)g(z) Az,

which generalizes a Winckler’s result in [13]df = 0 andb = z. LetT =2, if a =
(ay,as,...,a,) andb = (b1, by, ..., b,) are similarly ordered (or oppositely ordered), and if
p = (p1,p2,--.,ps) IS @nonnegative sequence, th(2 2) is reduced to

szszazb > (or < szazsz i

If T =R, then[2.2) is reduced to
b b b b
/ p(e)f(2)g(x) da / p(e)dz > (or <) / pla)f () di / pl)g(x) da.
2 andp(z) = fo(x)go(x), inequality ) is

p(z)p(y)

Remark 2.3. Taking f(x) = %8, g(z) =
reduced to

(2.3) A@n@as [ p@e@an = o <) [ e [ Ao,

a

if f2(z)g2(x) 2 00na,b], 5 f1 ””) and > 9 ””) are both increasing or both decreasing (or one of the

functions§ Eg? or glg g is nonlncreasmg and the other nondecreasing). Hergs, g1, g2 €

Cra(la, 0], R) with fy(z)ga(z) # 0 on [a,b]. Conversely, iffi(z) = f(x)fa(x), g1(x) =
g(x)go(x) andp(z) = fo(x)gs(x), then inequality[(2]3) is reduced to inequal2.2).
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Theorem2.4.Letf € C,4([a, b], [0, 00)) be decreasing (or increasing) Wigfj’ zp(x) f(z)Azx >
0 andfabp(x)f(x)Ax > 0. Then

ffbxp(x)fQ(x)Ax . (z)f;’bpu)f?(xmg
[, ap(x) f(z) Az 12 p(a) f () A

Proof. Clearly, for anyz, y € [a, b],

/ / F(@) Fp(@)pu)(y — 2)(F(z) — Fy)AxAy > ()0,

which implies that the desired result holds. O

Remark 2.5. Let f € C,4([a, b], (0, 00)) andn be a positive integer. | andg are replaced by
% and f" respectively, the€ebySev’s inequalit2) is reduced to

/a @) (@) Aa / b %A > / ) / @) ()" A

which implies
/abp DA ( ab MM)Q - /abp (s | @@ A /ab %J:)Ax

f(z) )
> ( / bP(fEMﬂf)

2 b
[ p@ls@r-as.
providedf and f™ are similarly ordered. Continuing in this way, we get

(/“b %Awy /abp (@)[f (@)]" Az > ( / b p(x)Aa:) nﬂ,
which extends a result in Dunkel [4].

Remark 2.6. Let v,p € Cy4([a,b],[0,00)). If f andg are similarly ordered (or oppositely
ordered), then it follows from Remaik 2.2 that

b b b b
/ p(t) F (D) g (v(8) At / p(t)At > (or <) / p(t) F(v(t)) At / p(t)g(w(t)At,

which is a generalization of a result given in Steinl/[12].

Remark 2.7. Let p, f; € C.q([a, b], R) for eachi = 1,2,... n. Suppose thafi, f-, ..., f, are
similarly ordered ang(z) > 0 on[a, b], then it follows from Remark 22 that

([ o)

n—1

( / bp(x)fl (@) fo(@) - ful) m)
— (/abp(:c)Aﬂ?) . (/abp(:c)Ax) (/abp(:c)fl(m)ﬁ(x) . "fn(:c)Ax)
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> ([sonwar) ([ son@an) ([ sonwar).

which is a generalization of a result in Dunkel [4].
In particular, if fi(z) = fo(z) = --- = fu(z) = f(z), then

(/ bp(x)m)n_l (/ bp(x)f”(xmx) > (/ bp(x)f(xmm)n.

Theorem 2.8.1f p(z), f(z) € Cra([a,b], [0,00)) with f(z) > 0 on [a,b] andn is a positive

integer, then . .
([ 2o ([ snr@an) = ([ swar)

Proof. It follows from f(z) > 0 on [a, b] that f"(x) and 7 are oppositely ordered dpn, b].

Hence by[(Z.p),

/abp(:c)f”(x)m (/b pg; Ax)” |
= /abp(x)Ax </ab f((i)) Ax) - /abp(x)f"_l(x)Am
</abp(x)Ax 2 </ab %Ax) " /abp(x)f”_Q(x)Ax

</abp(x)Ax N
O

Theorem 2.9.Let g1, go,...,9n € Cra([a,b],R) @andp, by, ha, ... hyq1 € Cry([a,b], (0, 00))
with g, (z) > 0 ona, b]. If

91(x)ga() -+ - g1 () q hr—1(7)

hi(x)ha(x) - hpr () 9n ()
are similarly ordered (or oppositely ordered), then

b b p()g1(2)g2(T) - - g1 ()
(2.4) /ap(x)gn(:c)Ax/a h(2)ha(z) - hoa(2) Az

!

AV AV Y/
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Proof. Taking

_ q1(®@)g2(x) -~ - gn—1 () _
fi(x) = h(2)ha (@) - hn,l(m)’ ki(z) = hnoi(2),

fo(z) =1 and ke(z) = g.(z)
in Theorem 2.]1 [(Z2]1) is reduced to our desired refult (2.4). O

The following theorem is a time scales version of Theorem 1 in Beesack &adid2)].
Theorem 2.10.Let
f17 f27 R 7fn € Crd([a7 b]v [07 OO) and 91,92, ---59n € Crd([aa b]v (Oa OO))

If the functionsf:, g—f, ..., = are similarly ordered and for each paif—, g, is oppositely
ordered fork = 2,3, ..., n, then

; fol@) fy() -~ fa(2)
(2.5) / PN D 0a@) g 1<oc>A

o p@)fi(@)Az [ p() [ p(@) f
fp Awfp fpfv)gnl )Az
Proof. Let f1, f5, ..., f. be replaced by’l, EEEE gf:—: in Remar, we obtain

n—1

b fol@) fo(@) - - fu(a)
/ PR @) g )

/ z) fi(x AxH/ gklim.

Also, since_L:- andg;, are oppositely ordered, it follows from Rem2.2 that

/abp(x)Ax/abp(x)fk(x)Axg/abp(x)gk (z )Ax/a p() flz)

(2.6) ( / ’ p(x)Am)

9k—1( )
Thus
/bp(x Aq;_fp Axfbp )Ax.
a Gk 1( ) f p gk 1 AZL‘
This and[(2.p) imply[(2]5) holds. O

3. MORE RESULTS

In this section, we generalize some results in Isayama [8].

Theorem 3.1.Let fi, fo,..., fn € Cra(la,b],(0,00)), ki, ks,..., kn—1 € Cry([a,b],R) and
p(x) € CTd([a>b]7 [07 OO)) If

fi(@) fo@) - - - fia(z)
ki(x)ka(x) - - - kioa () fi(z)
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are similarly ordered (or oppositely ordered) foe= 2, ..., n, then

(3.1) / / p(@) () Az /abpm)fn(xmx

b b

- [ romtae [l o

Proof. If fi(x), ki(z), fo(x) andky(x) are replaced by, (), 1, k1 (z )and Eg in Theoren.
then we obtain

| ron@as [ pa)sasez o <) [ pah@as | p(@fl(ljl)(f)(x) Az,

Thus the theorem holds for = 2.
Suppose that the theorem holds for 1, that is

(3.2) / / p(@) fo() Az /abpmfn_l(x)m

fi(@) fa(zx) - - fima(x) ki—1(z)
b(@)ka(0) k@) 2 A

are similarly ordered (or oppositely ordered) for 2, 3, ..., n — 1. Multiplying the both sides
of ) byf:p(x)fn(x)Ax, we see that

(3.3) / / p(@) fo() A /abpu)fn_l(x)m /abpmfn(x)m

> (or §)/ p(x)kl(x)Ax/ p()kqo(z) Az

[ pba@ne [ o RN [ ) o)

It follows from Theoreni 210 that

[ gt .fn 0 0r [ s
/b : - fu(2) Ax/abp(x)kn1(36)Ax.
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This and|(3.B) imply

/abp(x)fl(x)Ax /abp(x)fZ(x)Al‘“'/abp(m)fn(x)A:c

b b
> (or <) / p(@)ki (z) Az / p(x)ka () Az
/ P(f)knﬂa:)A:v/ p(x) fil@) fo(@) - fulz) \

By induction, we complete the proof.

]{71 (QJ)k’Q(QE) cee kn,1($)

Remark 3.2. Let k,, € Cya([a, b],R). If fi(z), fo(z), ..., fo(x), k1(x), ka(), . . ., k,_1(x) are

replaced by

fi(z) fa(x) - fu(x), ki (2)ko(T) - - - kn(2), .. o Ry (@) k() - -
fr(@)ka(z) - k() kr (2) fo(2) Ra(2) - -

in Theorenj 3.1, respectively, then

a4y [ v f@de ([ sk @) k(@) )

a

)
S ) ki(x)ko(z) - kp_o(x) fr1(x)k,(2)

b
/ p(@) fr(w)ka(z) - --k‘n(w)Afr/ p(@)ky () fo () k3 () - - - k() A

.. / p(x)ky(x)ka(x) -+ - kpey (z) fr(x) Az

if % >0fori=1,2,..., n andk; (x)ka(x) - - - k,(z) > 0 0n|a,b).

Remark 3.3. Letting fi(z) = fo(z) = -

kn(z) = kﬁ(x) in ) withk(z) > 0 ona, b], we obtain the Holder inequality:

89 [ wwrwar ([ ertwar) = ([osermar)

Remark 3.4. Letp, f, g € C.q([a, b], [0,

n—1 n

o0)). Taking

fiz) = ()()

fa(z) = f3(x) =

k'1<.§C) = kg(x) =

(3.7) is reduced to Jensen'’s inequality:

@O [ s (/ bp<x>g<x>m) s (/ bp(x)f(x)g(x)Ax) |
oy

Remark 3.5. Taking ki (z) = kqo(z) = --- =

reduced to

(3.7) / / 2) fo(w) A
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if f(x) > 0onla,b] for eachi = 1,2,...,n and w1 [fi(x) folw) -+ fu(@)]7 (i = 1,2,...,n)
are similarly ordered.

Remark 3.6 (see also Remaik 2.7¥aking k() = ka(z) = --- = k,(z) = 1, 8.1) is
reduced tcCeby3ev’s inequality:

b b
(3.8) / p(2) fi() A / p(a) fol@) Az - - / p(a) fulz) Az

b n=1l  .p
<([oae) [ r@f@ho- s
if fi(x)(@=1,2,...,n)aresimilarly ordered andl(z) >0 (i =1,2,...,n).
Remark 3.7. Taking fi(z) = fo(z) = -+ = f,(z) = 1, then [3.1) is reduced to
b b
< [ poh@ae [ pako)as

( / bp(:v)m)n b ,
/a p(x)k’n—l(f)Ax/a kjl(m)k}Q(ﬁ)(x)kn—l(w)Al‘

if k;(x) > 0 are similarly ordered foir = 1,2,...,n—1. Thus, if fi(x), ..., f.(x) are similarly
ordered and;(xz) > 0onJa,b] (i =1,2,...,n), then

ag o) — < [n@a [ wp@an [ wnmar

b
fa fl (x)f2($)er($)
It follows from (3.8) and[(3.9) that

(1)) < ( / bp@m) / @) e oe) - fo(a) A

b p(z)
fa f1(@) fa () fn(z) A

if fi(z),..., f.(z)are similarly ordered.
Remark 3.8. Letky(z) = ko(z) = - - - = k,(z) = 1. If f;(x) is replaced by
Lfi(z) fo() - - - fn(x)]% _
() , n=12,...,n,

then [3.1) is reduced to

H/a Wl (x) ) Jnl@) o </abp(w)Ax)

f VAL @ Gy 9 ) are similarly ordered.

n

Remark 3.9. Let fi, fo,..., fu; ki,ke,... k,_1 be replaced byfifs, f3fs, ..., fon_1fon;
fofs, fafs, -, fon—2fon—1, respectively. Therj (3}1) is reduced to

/ p(a) f1(2) folz) A / p(2) fo() falw) A - / D) fonr (2) fan(2) A
b b b
> / ple) fala) fs(2) Az / p(a) fala) fo(x) Az - / (&) fan—z(2) fans (£) A

if L ( s (i=1,2,...,2n — 1) are similarly ordered.
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