

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 1, Article 7, 2005

ČEBYŠEV'S INEQUALITY ON TIME SCALES

CHEH-CHIH YEH, FU-HSIANG WONG, AND HORNG-JAAN LI

DEPARTMENT OF INFORMATION MANAGEMENT
LONG-HUA UNIVERSITY OF SCIENCE AND TECHNOLOGY
KUEISHAN TAOYUAN, 33306 TAIWAN
REPUBLIC OF CHINA.
CCYeh@mail.lhu.edu.tw

DEPARTMENT OF MATHEMATICS
NATIONAL TAIPEI TEACHER'S COLLEGE
134, HO-PING E. RD. SEC. 2
TAIPEI 10659, TAIWAN
REPUBLIC OF CHINA.
wong@tea.ntptc.edu.tw

GENERAL EDUCATION CENTER
CHIEN KUO INSTITUTE OF TECHNOLOGY
CHANG-HUA, 50050 TAIWAN
REPUBLIC OF CHINA.
hjli@ckit.edu.tw

Received 23 October, 2004; accepted 21 December, 2004 Communicated by D. Hinton

ABSTRACT. In this paper we establish some Čebyšev's inequalities on time scales under suitable conditions.

Key words and phrases: Time scales, Čebyšev's Inequality, Delta differentiable.

2000 Mathematics Subject Classification. Primary 26B25; Secondary 26D15.

1. Introduction

The purpose of this paper is to establish the well-known Čebyšev's inequality on time scales. To do this, we simply introduce the time scales calculus as follows:

In 1988, Hilger [7] introduced the time scales theory to unify continuous and discrete analysis. A time scale $\mathbb T$ is a closed subset of the set $\mathbb R$ of the real numbers. We assume that any time scale has the topology that it inherits from the standard topology on $\mathbb R$. Since a time scale may or may not be connected, we need the concept of jump operators.

ISSN (electronic): 1443-5756

© 2005 Victoria University. All rights reserved.

Definition 1.1. Let $t \in \mathbb{T}$, where \mathbb{T} is a time scale. Then the two mappings

$$\sigma, \rho: \mathbb{T} \to \mathbb{R}$$

satisfying

$$\sigma(t) = \inf\{\gamma > t | \gamma \in \mathbb{T}\},\$$

$$\rho(t) = \sup\{\gamma < t | \gamma \in \mathbb{T}\}\$$

are called the jump operators on \mathbb{T} .

These jump operators classify the points $\{t\}$ of a time scale \mathbb{T} as right-dense, right-scattered, left-dense and left-scattered according to whether $\sigma(t)=t,\,\sigma(t)>t,\,\rho(t)=t$ or $\rho(t)< t$, respectively, for $t\in\mathbb{T}$.

Let t be the maximum element of a time scale \mathbb{T} . If t is left-scattered, then t is called a generate point of \mathbb{T} . Let \mathbb{T}^{\neg} denote the set of all non-degenerate points of \mathbb{T} . Throughout this paper, we suppose that

- (a) \mathbb{T} is a time scale;
- (b) an interval means the intersection of a real interval with the given time scale;
- (c) $\mathbb{R} = (-\infty, \infty)$.

Definition 1.2. Let \mathbb{T} be a time scale. Then the mapping $f: \mathbb{T} \to \mathbb{R}$ is called rd-continuous if

- (a) f is continuous at each right-dense or maximal point of \mathbb{T} ;
- (b) $\lim_{s \to t^-} f(s) = f(t^-)$ exists for each left-dense point $t \in \mathbb{T}$.

Let $C_{rd}[\mathbb{T},\mathbb{R}]$ denote the set of all rd-continuous mappings from \mathbb{T} to \mathbb{R} .

Definition 1.3. Let $f: \mathbb{T} \to \mathbb{R}, \ t \in \mathbb{T}^{\mathbb{T}}$. Then we say that f has the (delta) derivative $f^{\Delta}(t) \in \mathbb{R}$ at t if for each $\epsilon > 0$ there exists a neighborhood U of t such that for all $s \in U$

$$|f(\sigma(t)) - f(s) - f^{\Delta}(t)[\sigma(t) - s]| \le \epsilon |\sigma(t) - s|.$$

In this case, we say that f is (delta) differentiable at t.

Clearly, f^{Δ} is the usual derivative if $\mathbb{T} = \mathbb{R}$, and is the usual forward difference operator if $\mathbb{T} = \mathbb{Z}$ (the set of all integers).

Definition 1.4. A function $F: \mathbb{T} \to \mathbb{R}$ is an antiderivative of $f: \mathbb{T} \to \mathbb{R}$ if $F^{\Delta}(t) = f(t)$ for each $t \in \mathbb{T}^{\neg}$. In this case, we define the (Cauchy) integral of f by

$$\int_{s}^{t} f(\gamma) \, \Delta \gamma \, = \, F(t) - F(s)$$

for all $s, t \in \mathbb{T}$.

It follows from Theorem 1.74 of Bohner and Peterson [3] that every rd-continuous function has an antiderivative. For further results on time scales calculus, we refer to [3, 9].

The purpose of this paper is to establish the well-known Čebyšev inequality [1, 5, 6, 8, 11] on time scales. For other related results, we refer to [4, 10, 12, 13].

2. MAIN RESULTS

We first establish some Čebyšev inequalities which generalize some results of Audréief [1], Beesack and Pečarić [2], Dunkel [4], Fujimara [5, 6], Isayama [8], and Winckler [13]. For other related results, we refer to the book of Mitrinovič [10].

Theorem 2.1. Suppose that $p \in C_{rd}([a,b];[0,\infty))$. Let $f_1, f_2, k_1, k_2 \in C_{rd}([a,b];\mathbb{R})$ satisfy the following two conditions:

 $(C_1) f_2(x)k_2(x) > 0 \text{ on } [a, b];$

 (C_2) $\frac{f_1(x)}{f_2(x)}$ and $\frac{k_1(x)}{k_2(x)}$ are similarly ordered (or oppositely ordered), that is, for all $x, y \in [a, b]$,

$$\left(\frac{f_1(x)}{f_2(x)} - \frac{f_1(y)}{f_2(y)}\right) \left(\frac{k_1(x)}{k_2(x)} - \frac{k_1(y)}{k_2(y)}\right) \ge 0 \quad (or \le 0),$$

then

$$(2.1) \quad \frac{1}{2!} \int_{a}^{b} \int_{a}^{b} p(x)p(y) \left| \begin{array}{ccc} f_{1}(x) & f_{1}(y) \\ f_{2}(x) & f_{2}(y) \end{array} \right| \left| \begin{array}{ccc} k_{1}(x) & k_{1}(y) \\ k_{2}(x) & k_{2}(y) \end{array} \right| \Delta x \Delta y$$

$$= \left| \begin{array}{ccc} \int_{a}^{b} p(x)f_{1}(x)k_{1}(x)\Delta x & \int_{a}^{b} p(x)f_{1}(x)k_{2}(x)\Delta x \\ \int_{a}^{b} p(x)f_{2}(x)k_{1}(x)\Delta x & \int_{a}^{b} p(x)f_{2}(x)k_{2}(x)\Delta x \end{array} \right| \geq 0 \ (or \leq 0)$$

Proof. Let $x, y \in [a, b]$. Then it follows from (C_1) , (C_2) and the identity

Remark 2.2. Suppose that $p, f, g \in C_{rd}([a, b]; \mathbb{R})$ with $p(x) \geq 0$ on [a, b]. Let f and g be similarly ordered (or oppositely ordered). Taking $f_1(x) = f(x)$, $k_1(x) = g(x)$ and $f_2(x) = k_2(x) = 1$, (2.1) is reduced to the generalized Čebyšev inequality:

(2.2)
$$\int_{a}^{b} p(x)f(x)g(x)\Delta x \int_{a}^{b} p(x)\Delta x \ge (\text{or } \le) \int_{a}^{b} p(x)f(x)\Delta x \int_{a}^{b} p(x)g(x)\Delta x,$$

which generalizes a Winckler's result in [13] if a=0 and b=x. Let $\mathbb{T}=\mathbb{Z}$, if $a=(a_1,a_2,\ldots,a_n)$ and $b=(b_1,b_2,\ldots,b_n)$ are similarly ordered (or oppositely ordered), and if $p=(p_1,p_2,\ldots,p_n)$ is a nonnegative sequence, then (2.2) is reduced to

$$\sum_{i=1}^{n} p_i \sum_{i=1}^{n} p_i a_i b_i \ge \text{ (or } \le \text{) } \sum_{i=1}^{n} p_i a_i \sum_{i=1}^{n} p_i b_i.$$

If $\mathbb{T} = \mathbb{R}$, then (2.2) is reduced to

$$\int_a^b p(x)f(x)g(x) dx \int_a^b p(x) dx \ge (\text{or } \le) \int_a^b p(x)f(x) dx \int_a^b p(x)g(x) dx.$$

Remark 2.3. Taking $f(x) = \frac{f_1(x)}{f_2(x)}$, $g(x) = \frac{g_1(x)}{g_2(x)}$ and $p(x) = f_2(x)g_2(x)$, inequality (2.2) is reduced to

(2.3)
$$\int_{a}^{b} f_{1}(x)g_{1}(x)\Delta x \int_{a}^{b} f_{2}(x)g_{2}(x)\Delta x \geq (\text{or } \leq) \int_{a}^{b} f_{1}(x)g_{2}\Delta x \int_{a}^{b} f_{2}(x)g_{1}\Delta x,$$

if $f_2(x)g_2(x) \geq 0$ on [a,b], $\frac{f_1(x)}{f_2(x)}$ and $\frac{g_1(x)}{g_2(x)}$ are both increasing or both decreasing (or one of the functions $\frac{f_1(x)}{f_2(x)}$ or $\frac{g_1(x)}{g_2(x)}$ is nonincreasing and the other nondecreasing). Here $f_1, f_2, g_1, g_2 \in C_{rd}([a,b],\mathbb{R})$ with $f_2(x)g_2(x) \neq 0$ on [a,b]. Conversely, if $f_1(x) = f(x)f_2(x)$, $g_1(x) = g(x)g_2(x)$ and $p(x) = f_2(x)g_2(x)$, then inequality (2.3) is reduced to inequality (2.2).

Theorem 2.4. Let $f \in C_{rd}([a,b],[0,\infty))$ be decreasing (or increasing) with $\int_a^b xp(x)f(x)\Delta x > 0$ and $\int_a^b p(x)f(x)\Delta x > 0$. Then

$$\frac{\int_a^b x p(x) f^2(x) \Delta x}{\int_a^b x p(x) f(x) \Delta x} \le (\ge) \frac{\int_a^b p(x) f^2(x) \Delta x}{\int_a^b p(x) f(x) \Delta x}.$$

Proof. Clearly, for any $x, y \in [a, b]$,

$$\int_a^b \int_a^b f(x)f(y)p(x)p(y)(y-x)(f(x)-f(y)\Delta x\Delta y \ge (\le)0,$$

which implies that the desired result holds.

Remark 2.5. Let $f \in C_{rd}([a,b],(0,\infty))$ and n be a positive integer. If p and g are replaced by $\frac{p}{f}$ and f^n respectively, then Čebyšev's inequality (2.2) is reduced to

$$\int_a^b p(x)f^n(x)\Delta x \int_a^b \frac{p(x)}{f(x)}\Delta x \ge \int_a^b p(x)\Delta x \int_a^b p(x)[f(x)]^{n-1}\Delta x,$$

which implies

$$\int_{a}^{b} p(x)f^{n}(x)\Delta x \left(\int_{a}^{b} \frac{p(x)}{f(x)}\Delta x\right)^{2} \ge \int_{a}^{b} p(x)\Delta x \int_{a}^{b} p(x)[f(x)]^{n-1}\Delta x \int_{a}^{b} \frac{p(x)}{f(x)}\Delta x$$
$$\ge \left(\int_{a}^{b} p(x)\Delta x\right)^{2} \int_{a}^{b} p(x)[f(x)]^{n-2}\Delta x.$$

provided f and f^n are similarly ordered. Continuing in this way, we get

$$\left(\int_a^b \frac{p(x)}{f(x)} \Delta x\right)^n \int_a^b p(x) [f(x)]^n \Delta x \ge \left(\int_a^b p(x) \Delta x\right)^{n+1},$$

which extends a result in Dunkel [4].

Remark 2.6. Let $\nu, p \in C_{rd}([a, b], [0, \infty))$. If f and g are similarly ordered (or oppositely ordered), then it follows from Remark 2.2 that

$$\int_{a}^{b} p(t)f(\nu(t))g(\nu(t))\Delta t \int_{a}^{b} p(t)\Delta t \ge \text{ (or } \le) \int_{a}^{b} p(t)f(\nu(t))\Delta t \int_{a}^{b} p(t)g(\nu(t))\Delta t,$$

which is a generalization of a result given in Stein [12].

Remark 2.7. Let $p, f_i \in C_{rd}([a, b], \mathbb{R})$ for each i = 1, 2, ..., n. Suppose that $f_1, f_2, ..., f_n$ are similarly ordered and $p(x) \geq 0$ on [a, b], then it follows from Remark 2.2 that

$$\left(\int_{a}^{b} p(x)\Delta x\right)^{n-1} \left(\int_{a}^{b} p(x)f_{1}(x)f_{2}(x)\cdots f_{n}(x)\Delta x\right)$$

$$= \left(\int_{a}^{b} p(x)\Delta x\right)^{n-2} \left(\int_{a}^{b} p(x)\Delta x\right) \left(\int_{a}^{b} p(x)f_{1}(x)f_{2}(x)\cdots f_{n}(x)\Delta x\right)$$

$$\geq \left(\int_{a}^{b} p(x)\Delta x\right)^{n-2} \left(\int_{a}^{b} p(x)f_{1}(x)\Delta x\right) \left(\int_{a}^{b} p(x)f_{2}(x)\cdots f_{n}(x)\Delta x\right)$$

$$\geq \left(\int_{a}^{b} p(x)f_{1}(x)\Delta x\right) \left(\int_{a}^{b} p(x)\Delta x\right)^{n-3}$$

$$\times \left(\int_{a}^{b} p(x)f_{2}(x)\Delta x\right) \left(\int_{a}^{b} p(x)f_{3}(x)\cdots f_{n}(x)\Delta x\right)$$

$$\geq \cdots$$

$$\geq \left(\int_{a}^{b} p(x)f_{1}(x)\Delta x\right) \left(\int_{a}^{b} p(x)f_{2}(x)\Delta x\right)\cdots \left(\int_{a}^{b} p(x)f_{n}(x)\Delta x\right),$$

which is a generalization of a result in Dunkel [4].

In particular, if $f_1(x) = f_2(x) = \cdots = f_n(x) = f(x)$, then

$$\left(\int_{a}^{b} p(x)\Delta x\right)^{n-1} \left(\int_{a}^{b} p(x)f^{n}(x)\Delta x\right) \ge \left(\int_{a}^{b} p(x)f(x)\Delta x\right)^{n}.$$

Theorem 2.8. If p(x), $f(x) \in C_{rd}([a,b],[0,\infty))$ with f(x) > 0 on [a,b] and n is a positive integer, then

$$\left(\int_a^b \frac{p(x)}{f(x)} \Delta x\right)^n \left(\int_a^b p(x) f^n(x) \Delta x\right) \geq \left(\int_a^b p(x) \Delta x\right)^n.$$

Proof. It follows from f(x) > 0 on [a, b] that $f^n(x)$ and $\frac{1}{f(x)}$ are oppositely ordered on [a, b]. Hence by (2.2),

$$\int_{a}^{b} p(x)f^{n}(x)\Delta x \left(\int_{a}^{b} \frac{p(x)}{f(x)} \Delta x\right)^{n}$$

$$\geq \int_{a}^{b} p(x)\Delta x \left(\int_{a}^{b} \frac{p(x)}{f(x)} \Delta x\right)^{n-1} \int_{a}^{b} p(x)f^{n-1}(x)\Delta x$$

$$\geq \left(\int_{a}^{b} p(x)\Delta x\right)^{2} \left(\int_{a}^{b} \frac{p(x)}{f(x)} \Delta x\right)^{n-2} \int_{a}^{b} p(x)f^{n-2}(x)\Delta x$$

$$\geq \cdots$$

$$\geq \left(\int_{a}^{b} p(x)\Delta x\right)^{n}.$$

Theorem 2.9. Let $g_1, g_2, \ldots, g_n \in C_{rd}([a, b], \Re)$ and $p, h_1, h_2, \ldots, h_{n-1} \in C_{rd}([a, b], (0, \infty))$ with $g_n(x) > 0$ on [a, b]. If

$$\frac{g_1(x)g_2(x)\cdots g_{n-1}(x)}{h_1(x)h_2(x)\cdots h_{n-1}(x)}\quad \textit{and} \quad \frac{h_{n-1}(x)}{g_n(x)}$$

are similarly ordered (or oppositely ordered), then

(2.4)
$$\int_{a}^{b} p(x)g_{n}(x)\Delta x \int_{a}^{b} \frac{p(x)g_{1}(x)g_{2}(x)\cdots g_{n-1}(x)}{h_{1}(x)h_{2}(x)\cdots h_{n-2}(x)} \Delta x$$

$$\geq (or \leq) \int_{a}^{b} p(x)h_{n-1}(x)\Delta x \int_{a}^{b} \frac{p(x)g_{1}(x)g_{2}(x)\cdots g_{n}(x)}{h_{1}(x)h_{2}(x)\cdots h_{n-1}(x)} \Delta x.$$

Proof. Taking

$$f_1(x) = \frac{g_1(x)g_2(x)\cdots g_{n-1}(x)}{h_1(x)h_2(x)\cdots h_{n-1}(x)}, \quad k_1(x) = h_{n-1}(x),$$
$$f_2(x) = 1 \quad \text{and} \quad k_2(x) = g_n(x)$$

in Theorem 2.1, (2.1) is reduced to our desired result (2.4).

The following theorem is a time scales version of Theorem 1 in Beesack and Pečarić [2].

Theorem 2.10. Let

$$f_1, f_2, \dots, f_n \in C_{rd}([a, b], [0, \infty) \text{ and } g_1, g_2, \dots, g_n \in C_{rd}([a, b], (0, \infty)).$$

If the functions $f_1, \frac{f_2}{g_1}, \dots, \frac{f_n}{g_{n-1}}$ are similarly ordered and for each pair $\frac{f_k}{g_{k-1}}, g_{k-1}$ is oppositely ordered for $k = 2, 3, \dots, n$, then

$$(2.5) \quad \int_{a}^{b} p(x)f_{1}(x) \frac{f_{2}(x)f_{3}(x) \cdots f_{n}(x)}{g_{1}(x)g_{2}(x) \cdots g_{n-1(x)}} \Delta x$$

$$\geq \frac{\int_{a}^{b} p(x)f_{1}(x)\Delta x \int_{a}^{b} p(x)f_{2}(x)\Delta x \cdots \int_{a}^{b} p(x)f_{n}(x)\Delta x}{\int_{a}^{b} p(x)g_{1}(x)\Delta x \int_{a}^{b} p(x)g_{2}(x)\Delta x \cdots \int_{a}^{b} p(x)g_{n-1}(x)\Delta x}.$$

Proof. Let f_1, f_2, \ldots, f_n be replaced by $f_1, \frac{f_2}{g_1}, \ldots, \frac{f_n}{g_{n-1}}$ in Remark 2.7, we obtain

(2.6)
$$\left(\int_{a}^{b} p(x) \Delta x \right)^{n-1} \int_{a}^{b} p(x) f_{1}(x) \frac{f_{2}(x) f_{3}(x) \cdots f_{n}(x)}{g_{1}(x) g_{2}(x) \cdots g_{n-1}(x)} \Delta x$$

$$\geq \int_{a}^{b} p(x) f_{1}(x) \Delta x \prod_{k=0}^{n} \int_{a}^{b} p(x) \frac{f_{k}(x)}{g_{k-1}(x)} \Delta x.$$

Also, since $\frac{f_k}{g_{k-1}}$ and g_{k-1} are oppositely ordered, it follows from Remark 2.2 that

$$\int_a^b p(x)\Delta x \int_a^b p(x)f_k(x)\Delta x \le \int_a^b p(x)g_{k-1}(x)\Delta x \int_a^b p(x)\frac{f_k(x)}{g_{k-1}(x)}\Delta x.$$

Thus

$$\int_a^b \frac{p(x)f_k(x)}{g_{k-1}(x)} \Delta x \ge \frac{\int_a^b p(x)\Delta x \int_a^b p(x)f_k(x)\Delta x}{\int_a^b p(x)g_{k-1}(x)\Delta x}.$$

This and (2.6) imply (2.5) holds.

3. More Results

In this section, we generalize some results in Isayama [8].

Theorem 3.1. Let $f_1, f_2, \ldots, f_n \in C_{rd}([a, b], (0, \infty)), k_1, k_2, \ldots, k_{n-1} \in C_{rd}([a, b], \mathbb{R})$ and $p(x) \in C_{rd}([a, b], [0, \infty))$. If

$$\frac{f_1(x)f_2(x)\cdots f_{i-1}(x)}{k_1(x)k_2(x)\cdots k_{i-1}(x)}$$
 and $\frac{k_{i-1}(x)}{f_i(x)}$

are similarly ordered (or oppositely ordered) for i = 2, ..., n, then

$$(3.1) \quad \int_{a}^{b} p(x)f_{1}(x)\Delta x \int_{a}^{b} p(x)f_{2}(x)\Delta x \cdots \int_{a}^{b} p(x)f_{n}(x)\Delta x$$

$$\geq (or \leq) \int_{a}^{b} p(x)k_{1}(x)\Delta x \int_{a}^{b} p(x)k_{2}(x)\Delta x \cdots$$

$$\cdots \int_{a}^{b} p(x)k_{n-1}(x)\Delta x \int_{a}^{b} p(x)\frac{f_{1}(x)f_{2}(x)\cdots f_{n}(x)}{k_{1}(x)k_{2}(x)\cdots k_{n-1}(x)}\Delta x.$$

Proof. If $f_1(x), k_1(x), f_2(x)$ and $k_2(x)$ are replaced by $f_1(x), 1, k_1(x)$ and $\frac{f_2(x)}{k_1(x)}$ in Theorem 2.1, then we obtain

$$\int_a^b p(x)f_1(x)\Delta x \int_a^b p(x)f_2(x)\Delta x \ge (\text{or } \le) \int_a^b p(x)k_1(x)\Delta x \int_a^b p(x)\frac{f_1(x)f_2(x)}{k_1(x)}\Delta x.$$

Thus the theorem holds for n=2.

Suppose that the theorem holds for n-1, that is

$$(3.2) \quad \int_{a}^{b} p(x)f_{1}(x)\Delta x \int_{a}^{b} p(x)f_{2}(x)\Delta x \cdots \int_{a}^{b} p(x)f_{n-1}(x)\Delta x$$

$$\geq (\text{or } \leq) \int_{a}^{b} p(x)k_{1}(x)\Delta x \int_{a}^{b} p(x)k_{2}(x)\Delta x$$

$$\cdots \int_{a}^{b} p(x)k_{n-2}(x)\Delta x \int_{a}^{b} p(x)\frac{f_{1}(x)f_{2}(x)\cdots f_{n-1}(x)}{k_{1}(x)k_{2}(x)\cdots k_{n-2}(x)}\Delta x$$

if

$$\frac{f_1(x)f_2(x)\cdots f_{i-1}(x)}{k_1(x)k_2(x)\cdots k_{i-1}(x)}$$
 and $\frac{k_{i-1}(x)}{f_i(x)}$

are similarly ordered (or oppositely ordered) for $i=2,3,\ldots,n-1$. Multiplying the both sides of (3.2) by $\int_a^b p(x)f_n(x)\Delta x$, we see that

$$(3.3) \quad \int_{a}^{b} p(x)f_{1}(x)\Delta x \int_{a}^{b} p(x)f_{2}(x)\Delta x \cdots \int_{a}^{b} p(x)f_{n-1}(x)\Delta x \int_{a}^{b} p(x)f_{n}(x)\Delta x$$

$$\geq (\text{or } \leq) \int_{a}^{b} p(x)k_{1}(x)\Delta x \int_{a}^{b} p(x)k_{2}(x)\Delta x$$

$$\cdots \int_{a}^{b} p(x)k_{n-2}(x)\Delta x \int_{a}^{b} p(x)\frac{f_{1}(x)f_{2}(x)\cdots f_{n-1}(x)}{k_{1}(x)k_{2}(x)\cdots k_{n-2}(x)}\Delta x \int_{a}^{b} p(x)f_{n}(x)\Delta x.$$

It follows from Theorem 2.10 that

$$\int_{a}^{b} p(x) \frac{f_{1}(x) f_{2}(x) \cdots f_{n-1}(x)}{k_{1}(x) k_{2}(x) \cdots k_{n-2}(x)} \Delta x \int_{a}^{b} p(x) f_{n}(x) \Delta x
\geq (\text{or } \leq) \int_{a}^{b} p(x) \frac{f_{1}(x) f_{2}(x) \cdots f_{n}(x)}{k_{1}(x) k_{2}(x) \cdots k_{n-1}(x)} \Delta x \int_{a}^{b} p(x) k_{n-1}(x) \Delta x.$$

This and (3.3) imply

$$\int_{a}^{b} p(x)f_{1}(x)\Delta x \int_{a}^{b} p(x)f_{2}(x)\Delta x \cdots \int_{a}^{b} p(x)f_{n}(x)\Delta x$$

$$\geq (\text{or } \leq) \int_{a}^{b} p(x)k_{1}(x)\Delta x \int_{a}^{b} p(x)k_{2}(x)\Delta x$$

$$\cdots \int_{a}^{b} p(x)k_{n-1}(x)\Delta x \int_{a}^{b} p(x)\frac{f_{1}(x)f_{2}(x)\cdots f_{n}(x)}{k_{1}(x)k_{2}(x)\cdots k_{n-1}(x)}\Delta x.$$

By induction, we complete the proof.

Remark 3.2. Let $k_n \in C_{rd}([a,b], \mathbb{R})$. If $f_1(x), f_2(x), \dots, f_n(x), k_1(x), k_2(x), \dots, k_{n-1}(x)$ are replaced by

$$f_1(x)f_2(x)\cdots f_n(x), k_1(x)k_2(x)\cdots k_n(x), \dots, k_1(x)k_2(x)\cdots k_n(x),$$

$$f_1(x)k_2(x)\cdots k_n(x), k_1(x)f_2(x)k_3(x)\cdots k_n(x), \dots, k_1(x)k_2(x)\cdots k_{n-2}(x)f_{n-1}(x)k_n(x)$$

in Theorem 3.1, respectively, then

$$(3.4) \quad \int_{a}^{b} p(x)f_{1}(x)f_{2}(x)\cdots f_{n}(x)\Delta x \left(\int_{a}^{b} p(x)k_{1}(x)k_{2}(x)\cdots k_{n}(x)\Delta x\right)^{n-1}$$

$$\geq \int_{a}^{b} p(x)f_{1}(x)k_{2}(x)\cdots k_{n}(x)\Delta x \int_{a}^{b} p(x)k_{1}(x)f_{2}(x)k_{3}(x)\cdots k_{n}(x)\Delta x$$

$$\cdots \int_{a}^{b} p(x)k_{1}(x)k_{2}(x)\cdots k_{n-1}(x)f_{n}(x)\Delta x$$

if $\frac{f_i(x)}{k_i(x)} > 0$ for $i = 1, 2, \dots, n$ and $k_1(x)k_2(x) \cdots k_n(x) > 0$ on [a, b].

Remark 3.3. Letting $f_1(x) = f_2(x) = \cdots = f_n(x) = f(x)$ and $k_1(x) = k_2(x) = \cdots = k_n(x) = k^{\frac{1}{n-1}}(x)$ in (3.4) with k(x) > 0 on [a, b], we obtain the Hölder inequality:

(3.5)
$$\int_a^b p(x)f^n(x)\Delta x \left(\int_a^b p(x)k^{\frac{n}{n-1}}(x)\Delta x \right)^{n-1} \ge \left(\int_a^b p(x)f(x)k(x)\Delta x \right)^n.$$

Remark 3.4. Let $p, f, g \in C_{rd}([a, b], [0, \infty))$. Taking

$$f_1(x) = f^n(x)g(x),$$

 $f_2(x) = f_3(x) = \dots = f_n(x) = g(x)$ and
 $k_1(x) = k_2(x) = \dots = k_{n-1}(x) = f(x)g(x),$

(3.1) is reduced to Jensen's inequality:

(3.6)
$$\int_a^b p(x)f^n(x)g(x)\Delta x \left(\int_a^b p(x)g(x)\Delta x\right)^{n-1} \ge \left(\int_a^b p(x)f(x)g(x)\Delta x\right)^n.$$

Remark 3.5. Taking $k_1(x) = k_2(x) = \cdots = k_{n-1}(x) = (f_1(x)f_2(x)\cdots f_n(x))^{\frac{1}{n}}$, (3.1) is reduced to

(3.7)
$$\int_{a}^{b} p(x)f_{1}(x)\Delta x \int_{a}^{b} p(x)f_{2}(x)\Delta x \cdots \int_{a}^{b} p(x)f_{n}(x)\Delta x$$

$$\geq \left[\int_{a}^{b} p(x)\left(f_{1}(x)f_{2}(x)\cdots f_{n}(x)\right)^{\frac{1}{n}}\Delta x\right]^{n}$$

if $f_i(x) > 0$ on [a,b] for each $i=1,2,\ldots,n$ and $\frac{1}{f_i(x)}[f_1(x)f_2(x)\cdots f_n(x)]^{\frac{1}{n}}$ $(i=1,2,\ldots,n)$ are similarly ordered.

Remark 3.6 (see also Remark 2.7). Taking $k_1(x) = k_2(x) = \cdots = k_{n-1}(x) = 1$, (3.1) is reduced to Čebyšev's inequality:

(3.8)
$$\int_{a}^{b} p(x)f_{1}(x)\Delta x \int_{a}^{b} p(x)f_{2}(x)\Delta x \cdots \int_{a}^{b} p(x)f_{n}(x)\Delta x$$

$$\leq \left(\int_{a}^{b} p(x)\Delta x\right)^{n-1} \int_{a}^{b} p(x)f_{1}(x)f_{2}(x) \cdots f_{n}(x)\Delta x$$

if $f_i(x)$ (i = 1, 2, ..., n) are similarly ordered and $f_i(x) \ge 0$ (i = 1, 2, ..., n).

Remark 3.7. Taking $f_1(x) = f_2(x) = \cdots = f_n(x) = 1$, then (3.1) is reduced to

$$\left(\int_{a}^{b} p(x)\Delta x\right)^{n} \leq \int_{a}^{b} p(x)k_{1}(x)\Delta x \int_{a}^{b} p(x)k_{2}(x)\Delta x$$

$$\cdots \int_{a}^{b} p(x)k_{n-1}(x)\Delta x \int_{a}^{b} \frac{p(x)}{k_{1}(x)k_{2}(x)\cdots k_{n-1}(x)}\Delta x$$

if $k_i(x) > 0$ are similarly ordered for i = 1, 2, ..., n-1. Thus, if $f_1(x), ..., f_n(x)$ are similarly ordered and $f_i(x) > 0$ on [a, b] (i = 1, 2, ..., n), then

(3.9)
$$\frac{\left(\int_{a}^{b} p(x)\Delta x\right)^{n+1}}{\int_{a}^{b} \frac{p(x)}{f_{1}(x)f_{2}(x)\cdots f_{n}(x)}\Delta x} \leq \int_{a}^{b} p(x)f_{1}(x)\Delta x \int_{a}^{b} p(x)f_{2}(x)\Delta x \cdots \int_{a}^{b} p(x)f_{n}(x)\Delta x.$$

It follows from (3.8) and (3.9) that

$$\frac{\left(\int_a^b p(x)\Delta x\right)^{n+1}}{\int_a^b \frac{p(x)}{f_1(x)f_2(x)\cdots f_n(x)}\Delta x} \le \left(\int_a^b p(x)\Delta x\right)^{n-1} \int_a^b p(x)f_1(x)f_2(x)\cdots f_n(x)\Delta x$$

if $f_1(x), \ldots, f_n(x)$ are similarly ordered.

Remark 3.8. Let $k_1(x) = k_2(x) = \cdots = k_n(x) = 1$. If $f_i(x)$ is replaced by

$$\frac{[f_1(x)f_2(x)\cdots f_n(x)]^{\frac{1}{n}}}{f_i(x)}, \quad n = 1, 2, \dots, n,$$

then (3.1) is reduced to

$$\prod_{i=1}^{n} \int_{a}^{b} p(x) \frac{\sqrt[n]{f_1(x)f_2(x)\cdots f_n(x)}}{f_i(x)} \Delta x \le \left(\int_{a}^{b} p(x)\Delta x\right)^{n}$$

if $\frac{\sqrt[n]{f_1(x)f_2(x)\cdots f_n(x)}}{f_i(x)}$ $(i=1,2,\ldots,n)$ are similarly ordered.

Remark 3.9. Let f_1, f_2, \ldots, f_n ; $k_1, k_2, \ldots, k_{n-1}$ be replaced by $f_1 f_2, f_3 f_4, \ldots, f_{2n-1} f_{2n}$; $f_2 f_3, f_4 f_5, \ldots, f_{2n-2} f_{2n-1}$, respectively. Then (3.1) is reduced to

$$\int_{a}^{b} p(x)f_{1}(x)f_{2}(x)\Delta x \int_{a}^{b} p(x)f_{3}(x)f_{4}(x)\Delta x \cdots \int_{a}^{b} p(x)f_{2n-1}(x)f_{2n}(x)\Delta x
\geq \int_{a}^{b} p(x)f_{2}(x)f_{3}(x)\Delta x \int_{a}^{b} p(x)f_{4}(x)f_{5}(x)\Delta x \cdots \int_{a}^{b} p(x)f_{2n-2}(x)f_{2n-1}(x)\Delta x$$

if $\frac{f_i(x)}{f_{i+1}(x)}$ $(i=1,2,\ldots,2n-1)$ are similarly ordered.

REFERENCES

- [1] K.A. ANDRÉIEF, N'skol'ko slov' po povodu teorem' P. L. Čebyševa i V. G. Imšeneckogo ob' opred'lennyh' integralah' ot' proizvedenyja funkcii, *Soobščeuija i Protokoly Zasedanii Matematičeskogo Obščestva Pri Imperatorskom Har'kovskom Universitete*, 1883, 110–123.
- [2] P.R. BEESACK AND J.E. PEČARIĆ, Integral inequalities of Čebyšev type, *J. Math. Anal. Appl.*, **111** (1985), 643–695.
- [3] M. BOHNER AND A. PETERSON, "Dynamic Equations on Time Scales", Birkhäuser, Boston/Basel/Berlin, 2001.
- [4] O. DUNKEL, Integral inequalities with applications to the calculus of variants, *Amer. Math. Monthly*, **31** (1924), 326–337.
- [5] M. FUJIWARA, Ein von Brunn vermuteter Satz über konvexe Flächen und eine Verallgemeinerung der Schwarzschen und der Tchebycheffschen Ungleichungen für bestimmte Integrale, *Tôhoku Math. J.*, **13** (1918), 228–235.
- [6] M. FUJIWARA, Über eine Ungleichung für bestimmte Integrale, *Tôhoku Math.* J., **15** (1919), 285–288.
- [7] S. HILGER, Analysis on measure chains a unified approach to continuous and discrete calculus, *Results Math.*, **18** (1900), 18–56.
- [8] S. ISAYAMA, Extension of the known integral inequalities, *Tôhoku Math. J.*, **26** (1925/26), 238–246.
- [9] V. LAKSHMIKANTHAM, S. SIVASUNDARAM AND B. KAYMAKCALAN, *Dynamic Systems on Measure Chains*, Klumer Academic Publishers, Dordrecht/Boston/London, 1996.
- [10] D.S. MITRINOVIĆ, Analysis Inequalities, Springer-Verlay, New York/Heidelberg/Berlin, 1970.
- [11] S. NARUMI, Note on an inequality for definite integrals, *Tôhoku Math. J.*, **27** (1926), 258–266.
- [12] S.K. STEIN, An inequality in two monotonic functions, *Amer. Math. Monthly*, **83** (1976), 469–471.
- [13] A. WINCKLER, Allgemeine Sätze zur Theorie der unregelmässigen Beobachtungsfehler, Sigzungsberichte der Wiener Akademie, **53** (1866), 6–41.