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The aim of this article is the construction of a spanning set for the spgod’)

of super cusp forms on a complex bounded symmetric super dafhafrrank

1 with respect to a lattic&. The main ingredients are a generalization of the
ANoOSsoV closing lemma for partially hyperbolic diffeomorphisms and an un-
bounded realizatioft{ of B, in particular URIER decomposition at the cusps

of the quotientl™\ B mapped toco via a partial QYLEY transformation. The
elements of the spanning set are in finite-to-one correspondence with closed
geodesics of the body\ B of I"\ B, the number of elements corresponding to

a geodesic growing linearly with its length.
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1. Introduction

Automorphic and cusp forms on a complex bounded symmetric dofare al-
ready a well established field of research in mathematics. They play a fundamental
role in representation theory of semisimple&Elgroups of Hermitian type, and they
have applications to number theory, especially in the simplest case \whisréhe

unit disc inC, biholomorphic to the upper half plané via a CayLEY transform, A Spanning Set for the
G = SL(2,R) acting onH via MoBIUs transformations antl — SL(2, Z) of finite Siges G Sgar e Faims
index. The aim of the present paper is to generalize an approach used by Tatyana Rl e
FoTH and Svetlana KTOK in [4] and [8] for the construction of spanning sets for the el L0 s 4 G 2, 2L

space of cusp forms on a complex bounded symmetric dofahrank 1, which
then by classification is (biholomorphic to) the unit ball of soBie n € N, and a
latticeI’ = G' = Auty(B) for sufficiently high weightt. This is done in Theorem
4.3, which is the main theorem of this article, again for sufficiently large weight Contents
The new idea in4] and [3] is to use the concept of a hyperbolic (0NASOV)

diffeomorphism resp. flow on a Riemannian manifold and an appropriate version
of the ANosov closing lemma. This concept originally comes from the theory of < >
dynamical systems, see for example . [ Roughly speaking a flowy;),., on

a Riemannian manifold/ is called hyperbolic if there exists an orthogonal and
(¢1),cr-Stable splittingl' M = T+ @T~ @ T° of the tangent bundI&)M such that the Go Back
differential of the flow(¢, ), is uniformly expanding ofi'*, uniformly contracting
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on T~ and isometric orf™, and finallyT® is one-dimensional, generated Byp;. Full Screen

In this situation the Aosov closing lemma says that given an 'almost’ closed orbit Close

of the flow (¢¢),. there exists a closed orbit 'nearby’. Indeed given a complex

bounded symmetric domaiBi of rank1, G = Aut,(B) is a semisimple LE group journal of inequalities
of real rankl, and the root space decomposition of itg algebrag with respect to a in pure and applied
CARTAN subalgebra C g shows that the geodesic floi;), on the unit tangent mathematics

bundleS(B), which is at the same time the left-invariant flow 8(3) generated by 13S0 ds o
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a ~ R, is hyperbolic. The final result in this direction is Theorera (i).

For the super case, first it is necessary to develop the theory of super automor-
phic resp. cusp forms, while the general theoryZf-J graded structures and super
manifolds is already well established, see for exam@jlelf was first developed by
F. A. BEREZIN as a mathematical method for describing super symmetry in physics
of elementary particles. However, even for mathematicians the elegance within the
theory of super manifolds is really amazing and satisfying. Here | deal with a simple
case of super manifolds, namely complex super domains. Roughly speaking a com-
plex super domaii is an object which has a super dimensjanr) € N? and the
characteristics:

(i) it has a bodyB = B* being an ordinary domain i6",

(i) the complex unital graded commutative algetite3) of holomorphic super
functions onB is (isomorphic to)0(B) ® A (C"), where (C") denotes the
exterior algebra of©”. Furthermore?(B) naturally embeds into the first two
factors of the complex unital graded commutative algeb(&) ~ C*(B)* @
A(C") K A(C) ~ C=(B)* @ A (C?) of 'smooth’ super functions oif,
whereC*>(B)® = C*°(B, C) denotes the algebra of ordinary smooth functions
with values inC, which is at the same time the complexificatiorCéf(B), and
"X’ denotes the graded tensor product.

We see that for each pdiB, r) whereB C C" is an ordinary domain ande N
there exists exactly one:, r)-dimensional complex super domathof super di-
mension(n, r) with body B, and we denote it by3'". Now let(;,...,(, € C"
denote the standard basis vectorst6f Then they are the standard generators of
A\ (C"), and so we get the standard even (commuting) holomorphic coordinate func-
tionszy,...,z, € O(B) — O (B‘T) and odd (anticommuting) coordinate functions

Gy G € N(CT) — O (B"). So omitting the tensor products, as there is no
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danger of confusion, we can decompose eveey O (B"') uniquely as
f=> fc
Tep(r)

where p(r) denotes the power set ¢fl,....r}, all f; € O(B), I € p(r), and
CI = C“Czé forall I = {ily...,is} € @(T),il < e <
D (BI") is a graded-algebra, and the graded involution

“:D(B") - D(B")
is uniquely defined by the rules
{i}y 7= fandfh="nfforall f,heD(B"),
{i} ~ is C-antilinear, and restricted 1 (B) it is just the identity,

{iiy ¢ is thei-th standard generator ¢f (C") — D (BI") embedded as ththird
factor, where(; denotes thé-th odd holomorphic standard coordinate B,

which is thei-th standard generator ¢f (C") — D (BI") embedded as the
secondfactor,i = 1,...,r.

With the help of this graded involution we are able to decompose efegy
D (B'") uniquely as
—=J
f= > fud'c,

I1,Jep(r)

wheref;; € C*(B)C, 1,7 € p(r), and¢’ =G, ... G, forall J = {ji, ... j;} €
o(r), 71 <+ < Js.

For a discussion of super automorphic and super cusp forms we restrict ourselves
to the case of the IE groupG := sS (U(n,1) x U(r)),n € N\ {0}, r € N, acting
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on the complexn, r)-dimensional super unit balB'". So far there seems to be no
classification of super complex bounded symmetric domains although we know the
basic examples, see for example Chapter I\2hfwhich we follow here. The group
G is the body of the superlE group SU(n, 1|r) studied in P] acting onB/". The
fact that an ordinary discrete subgroup (which means a sub supgraup of super
dimension(0, 0)) of a super LE group is just an ordinary discrete subgroup of the
body justifies our restriction to an ordinarye_group acting orB!" since purpose of
this article is to study automorphic and cusp forms with respect to a lattice. In any
case one can see the odd directions of the complex super dd@fiagtready inG
since it is an almost direct product of the semisimpie groupSU (n, 1) acting on
the bodyB andU (r) acting on/\ (C"). Observe that if > 0 the full automorphism
group of BI", without any isometry condition, is never a supe Igroup since one
can show that otherwise its supereLalgebra would be the supend.algebra of
integrable super vector fields @”, which has unfortunately infinite dimension.

Let us remark on two striking facts:

(i) the construction of our spanning set usesJRIERdecomposition exactly three
times, which is not really surprising, since this corresponds to the three factors
in the IWASAWA decompositiorG = K AN.

(i) super automorphic resp. cusp forms introduced this way are equivalent (but
not one-to-one) to the notion of 'twisted’ vector-valued automorphic resp. cusp
forms.

Acknowledgement: Since the research presented in this article is partially based
on my PhD thesis | would like to thank my doctoral advisor HarakM#IER for
mentoring during my PhD but also Martirc8LICHENMAIER and Martin Q. BRICH

for their helpful comments.
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2. The Space of Super Cusp Forms
Letn € N\ {0}, € Nand
G:=sS(U(n,1) xU(r))
A Spanning Set for the

/
;:{(% g) € Uln, 1) x U(r)
Space of Super Cusp Forms

which is areal (n + 1)? + r? — 1)-dimensional LE group. LetB := BI", where Roland Knevel
vol. 10, iss. 1, art. 2, 2009

det ¢’ = detE},

B:={zecC'z'z<1} CC"

denotes the usual unit ball, with even coordinate functmns. ., z,, and odd coor-

) . ’ " . Title Page
dinate functions, ..., (.. Then we have a holomorphic action@fon B given by
super fractional linear (MB1US) transformations Contents
(z) o ( (Az+b) (cz +d)~" ) K _
g ¢ ) E¢(cz+d) " 7 < >
where we split Page 7 of 66
Alb 0 tn Go Back
g = c|d —n+1. o =ac
0 E }r Full Screen
The stabilizer oD — B is Close
K =55 ((U(n) x U(1)) x U(r)) journal of inequalities
0 in pure and applied

A
0]

2

eU(n)xU(1) xU(r)|ddet A=det E ;. mathematics

0
0 B issn: 1443-575k
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OnG x B we define the cocyclg € C>(G)*®O(B) asj(g,z) = (cz +d)~" for
all g € G andz € B. Observe thaj(w) := j(w,z) € U(1) is independent of € B
for all w € K and therefore defines a character on the griup

Let k € Z be fixed. Then we have a right-representatiod-of

2 D(8) — DB - 1l = £ (o (£ ) ) a2

for all g € GG, which fixesO(B). Finally letT" be a discrete subgroup 6f.

Definition 2.1 (Super Automorphic Forms). Let f € O(B). Thenf is called a
super automorphic form far of weightk if and only if f|, = f forall v € I'. We
denote the space of super automorphic formdfof weightk by s M (T').

Let us define a lift:
TiD(B) = (G @D (C) ~c2(G) e A\ (C) R A (C),
[

where

flg) = fly (2)

(2

forall f € D(B) andg € G and we use the odd coordinate functions. . . , 1)y ON
Co. Let f € O(B). Thenclearlyf € C*(G) @ O (C) andf € sMy(T) < f €
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C® (I\G)" ® O (C°") since for allg € G

C*(G)C®D(C) % ¢=(G)° & D (o)
- I-
D(B) — D(B)

g

commutes, wherg, : C*(G) — C*>(G) denotes the left translation with € G,
ly(f)(x) == f(gz) forall z € G. Let( , ) be the canonical scalar product on
D (C") ~ A (C?') (semilinear in the second entry). Then forake D (C°") we

write |a| :== +/(a,a), and( , ) induces a 'scalar product’

e [ ()

forall f,h € D(B) such that<ﬁ, ﬁ € L}(T'\G), and for alls €]0, oc] a 'norm’
1185 = || 17

forall f € D(B) such that‘ﬂ € C* (I'\G). OnG we always use the (left and right)
HAAR measure. Let us define

s, I'\G

LO\B) = {1 € DIB)| Tecn\6) e D ()17 <o }.

Definition 2.2 (Super Cusp Forms).Let f € sM;(I"). f is called a super cusp
form forT" of weightk if and only if f € LZ(T'\B). TheC- vector space of all super
cusp forms fotl" of weightk is denoted by.Sy (). Itis a HILBERT space with inner
product( , )p.
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Observe thal, respects the splitting
OB) = P o¥(B)
p=0
forall g € G, whereO'”)(B) is the space of alf = 3=, ) 1=, f1, @ll f1 € O(B),
Ieo),|Il =p p=0,...r and maps the spac® (B) into C>*(G)¢ ®
O (CO). Therefore we have splittings

T T

sMi(T) = @ sMP (1) and sS,(I) = P sSP(D),

p=0 p=0

wheres M\ (T) := sM,(T)NO®)(B), sSY(T) := sS,(T)NOW(B),p=0,...,r,
and the last sum is orthogonal.

As shown in [LO] and in Section 3.2 of]1] there is an analogon tOASAKE’S
theorem in the super case:

Theorem 2.3.Letp € {0,...,r}. Assumd'\G is compact om > 2 andI' C G
is a lattice (discrete such thatol I'\G' < oo, I'\G not necessarily compact).
k > 2n — pthen

f

sSy (1) = sM” () 1 L (T\B)
forall s € [1, o0.

As in the classical case this theorem implies thdt\it+ is compact om > 2,

I C G is a lattice andk > 2n — p, then the HLBERT spacesS” (I') is finite
dimensional.
We will use the dRDAN triple determinant\ : C* x C™ — C given by

A(z,w):=1—w"z
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for all z, w € C". Let us recall the basic properties:
(i) 15 (9,0)| = A (0, 90)* forall g € G,

(i) A (gz,gw) =A(z,w)j(g,2)j(g,w)forall g € Gandz,w € B, and

(i) [zA ) dViep < oo if and only if A > —1.

We have theG-invariant volume element (z, z)~ "+ dV;, on B, Spate ot Suner G Forms
Foralll € p(r),h € O(B),z € B and

Roland Knevel

* O vol. 10, iss. 1, art. 2, 2009
g = ( 0T E > ed
we have Title Page
hC | = h(gz) (En)lj (gaz)kHI' ) Contents
whereE € U(r). So for alls G]O,oo], [ =2 rcom fichandh =57, hi¢l € < >
O(B) we have
< >
e =], > 774 ()™ itk
Tep(r) T\ B,A(z,2)~ "D Vi, Go Back
if ]?E COO(G) ® O (Com and Full Screen
Close
(fhr= > TrhiA (2, 2) 10 g1,
Teg(r) /T\B journal of inequalities
in pure and applied
if <h, f> € LY(I'\G), where =" means equality up to a constagt0 depending on mathematics
F issn: 1443-575k
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For the explicit computation of the elements of our spanning set in Thedrém
we need the following lemmas:

Lemma 2.4 (Convergence of relativdOINCARE series).Letl'y C I" be a subgroup
and

f c SMk (Fo) N L]lc (Fo\B) .
Then ~
P = Z fl,and®’ := Z f(rQ)

~v€T\T yelo\T'

converge absolutely and uniformly on compact subseis refsp. G,
® e sMy(T')N Li (T\B),
® = @, and for allp € sM(I') N L® (I'\B) we have

(@, 0)p = (f, ‘P)ro :

The symbol &’ here and also later simply stands for the argument of the function.

So f(v<$) € C(G)* @ A (Cr) is a short notation for the smooth map

G— N\(C), g f(rg).

Proof. Standard, on using the mean value property of holomorphic functions for all
k € Z without any further assumption dn O

Lemma 2.5. Let] € p(r) andk > 2n+ 1 — |I|. Then for allw € B

A (O, w) ¢ e O1(B) N Ly(B),
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and forall f =37, ) f,¢7 € O(B) N Li*(B) we have

(20w f) = i (w).

where( )= (. )qy.
Since the proof is also standard, we will omit it here. It can be foundih [
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3. The Structure of the Group G

We have a canonical embedding
/ / 910
G':=5U(p,q) = G,g' — ( 5 1),

and the canonical projection
910
G—U(r),g:= ( 0 E)HEQ::E
induces a group isomorphism
G /G ~U(r).

Obviously K" = K NG = S(U(n) x U(1)) is the stabilizer o0 in G'. Let A
denote the common standard maximal split abelian subgrotpafdG’ given by
the image of the LE group embedding

cosht |0 | sinht;
R— Gt a := 0 1 0
sinh ¢ |0 ‘ cosh t

Then the centralize#/ of A in K is the group of all

el 0

oTa | o
0 € ’
0 'E

A Spanning Set for the
Space of Super Cusp Forms

Roland Knevel

vol. 10, iss. 1, art. 2, 2009

Title Page
Contents
44 44
< >
Page 14 of 66
Go Back
Full Screen

Close

journal of inequalities

in pure and applied
mathematics
issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au

wheree € U (1), w € U(p—1) andE € U(r) such that?det u = det E. Let
M =K' N M = G' N M be the centralizer ofl in K’. The centralizer o’ in G
is precisely

e {(4f2)

andG’' N Zs (G') = Z (G'). An easy calculation shows that = G'Z; (G'). So

ecU),EcU(r),ett = detE} C M,

K =K'Zg(G")andM = M'Z (G'). Therefore if we decompose the adjoint repre-

sentation of4 as
s=Pe
acd
where for alla € R
g* = {¢ € g|Ad, (&) = e}
is the corresponding root space and
¢ :={aeR|g*#0}

is the root system, then we see tldais at the same time the root system@f so
¢ = {0,+2} if n = 1 and® = {0,+1,+2} if n > 2. Furthermore, ifo # 0
theng® C ¢ is at the same time the corresponding root spacg ,oénd finally
gd=adm=adm' ®j,(g).

Lemma 3.1.
N(A) = ANg(A) = N(AM) = N(M).

Proof. Simple calculation. O

In particular we have the @kL group

W := M \Ng(A) ~ M'"\Ng/(A) ~ {+1}
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acting onA ~ R via sign change. For the main result, Theorés of this article
the following definition is crucial:

Definition 3.2. Letg, € G.
(i) go is called loxodromic if and only if there exisjsc G such thaty, € gAMg~!.

(ii) If go is loxodromic, itis called regular if and only if, = ga;wg~* witht € R\ {0}
andw € M.

(i) If v € I is regular loxodromic then it is called primitive ifv if and only if
v =~" impliesv € {£1} for all loxodromicy’ € T" andv € Z.

Clearly for ally € I' regular loxodromic there existg € I" primitive regular
loxodromic and» € N\ {0} such thaty = ~".

Lemma 3.3. Let gy € G be regular loxodromicg € G, w € M andt € R\ {0}
such thatg, = ga,wg~'. Theng is uniquely determined up to right translation by
elements ofA N (A), andt is uniquely determined up to sign.

Proof. By straight forward computation or using the following strategy: et G,
w’ € M andt’ € Rsuchthay, = ¢'ayw’g’~* also. Thenyw = (g71¢') apw’ (971g")
Sincet € R\ {0} and because of the root space decompositicAm must be the
largest subspace @f on which Ad,,,, is orthogonal with respect to an appropiate
scalar product. S&.d,-1, mapsa + m into itself. This impliesy™'¢’ € N(AM) =
ANk (A) by Lemma3s. L O

-1
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4. The Main Result

Letp € {0,...,r}. Assume\G compacbr n > 2, vol I'\G < oo andk > 2n — p.
Let C > 0 be given. Let us consider a regular loxodromice I'. Letg € G,
wy € M andt, > 0 such thaty, = ga;,wog™.

There exists a toru¥ := (y0)\ gAM belonging toy,. From Lemma3.3 it
follows thatT is independent ofy up to right translation with an element of the
WEYL groupW = M\ Ng(A).

Let f € sS,,(I"). Thenf € € (I'\G)“ @ O (C°1). Defineh € C> (R x M)® @
O (C") as

h(t,w) := f (gaw)
for all (¢,w) € R x M 'screening’ the values of onT. Then clearlyh (t,w) =
h(t, 1, Eynj(w))j(w)¥, and soh(t,w) = h(t, 1, E,n)j(w)** if f e sSP(T), for
all (t,w) € Rx M. Clearly Ey := E,, € U(r). So we can choosg € G
such thatFj is diagonal without changin@. ChooseD < R™ " diagonal such
thatexp(27iD) = Ey andy € R such thatj (wy) = €*™X. D andy are uniquely
determined byu, up toZ. If

dy 0
D= :
0 d,
with dy, ..., d, € Rand! € p(r), then we definer;D := 3, d;.
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Theorem 4.1 FOURIER expansion ofh ).

(i) h(t+ to,w) = h(t,w; w) forall (t,w) € R x M, and there exist unique ,,,
C,I€p(r),me % (Z — (k + |I]) x — tr;D), such that

htw)= 3wy 3 b1 (Eyn)’

Tep(r) me%(Z—(k—Hﬂ)x—tr[D)

A Spanning Set for the
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h=0,H, Contents
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and < »

H (L +tg,w) = H (t, wo_lw) Page 18 of 66
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and so

Tep(r)
e~ 2milHIDX+e DY gy (g )l

Iep(r)

Thereforeh; (t +ty, 1) = e 2m(k+lIxt+tiD)p (¢ 1) for all I € p(r), and the rest
follows by a standard #URIER expansion. O

To prove (ii) we need the following lemma:

Lemma 4.2 (Generalization of the revers8ERNSTEINinequality). Letty € R\
{0}, v e RandC > 0. LetS be the space of all convergeRbURIER series

- ¥

mG%(ZfV)JmQC

52T ¢ 0% (R)(C ,

forall s, € C. Then

-~. S —5S. 5= s 627mm<> — T = Sm 627r72m<>
: , E m : E —_—

1 L 2mim
me g5 (Z—v),|m|>C me - (Z—v),|m|>C

is a well-defined linear map, ar¢k|| forall s € S.

o < 76 I8l

Proof. This can be deduced from the ordinary rever&RBSTEIN inequality, see
for example Theorem 8.4 in Chapter | & [
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Now we prove Theoreth1(ii). Fix somel € p(r) suchthat!/| = pandb;,, = 0 for
allm € & (Z — (k+ p) x —tr;D)N] — C,C[. Then if we defines := (k + p) x +
tr;D € R we have

hi(O )= Y brme™™™,

mG%(qu),|m|ZC

and so we can apply the generalized reverse®sTEINinequality, Lemmat.2, to
h;. Therefore we can define

bI m  2mimd C
) Trm e COO R .
omim (R)

Hy=hi (0, )= Y

me L (Z—v),lm|>C

m € L>*(G) by SATAKE’s theorem, Theoreri.3, and so there exists a constant

C" > 0 independent of, and/ such that|k,||, < C’, and now Lemma.2tells us

that
6C"

wC

6
H < —1lh 1 <
| IIIOO_FCH (¢ Do <

Clearlyh; ($, 1) = 0.H;.
Since; is smooth on the compact sg&f, j**° (Ewn)l is uniformly LIPSCHITZ

continuous onV/ with a common LPSCHITZ constaniC” independent ofy, and /.
So we see thall € C*(R, M)® @ A (C") defined as

H(t,w):= Y jlw)" H(t) (Eun)'

Tep(r)
forall (¢,w) € Rx M is uniformly LIPSCHITZcontinuous with LPSCHITZconstant
Cy == (%< + 1) C" independent ofjy, and the rest is trivial. ]
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Let] € p(r) andm € - (Z — (k + |I|) x — tr; D). SincesS,(T) is a HLBERT
space andS,(I') — C, f — by, is linear and continuous, there exists exactly
one ., 1m € sSp(I') such thath; ., = (pqo.1.m, f) for all f € sS,(I"). Clearly
Prorm € sSH(D).

For the remainder of the article for simplicity we write €] — C, C| instead of

1

m € ;- (Z—(k+|I])x —trrD)N] — C,C[. In the last section we will compute

©~.1,m @S arelative BINCARE series. One can check that the family

{SO’YOuIJn}IEW(T),‘I‘:p,mE]*C,C[

is independent of the choice gf D andy up to multiplication with a unitary matrix
with entries inC and invariant under conjugating with elements of".

Now we can state our main theorem: Kebe a fundamental set for all primitive
regular loxodromiey, € I' modulo conjugation by elements Bfand

7= {mEZG(G’) EIg’EG’:mg’GF} C 2 (G).

Then clearlyl’ C ('Z. Recall that we still assume

e I'\G compactor

e n>2,vol'\G < coandk > 2n — p.

TheoLem 4.3 (Spanning set fos S, (") ). Assume that the right translation d@fon
['\G'Z is topologically transitive. Then

{SO’YO,IJTL',YO € Q7[ € @(T), |I| =p,m G] - 070[}

is a spanning set fosS\”(I").
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For proving this result we need anNndsov type theorem forG and the un-
bounded realization d8, which we will discuss in the following two sections.

Remarkl.

(i) Ifthereis some subgrouM C Z¢ (G') suchthal' C G'M and the right trans-

(ii)

(iii)

lation of A on F\G’M is topologlcally transitive then necessarMZ(G’)
and there existgy € G’ suchNthaG’Z = T'goA. The latter statement is atr|V|aI
consequence of the fact that— M.

In the case wher€ N G’ C T is of finite index or equivalentlf is finite then
we know that the right translation of on I'\G'Z is topologically transitive
because of MORES ergodicity theorem, seel§] Theorem 2.2.6, and since
thenI' N G’ C G’ is a lattice.

There is afinite-to-one correspondence betwieand the set of closed geodesics
of I'\ B assigning to each primitive loxodromic element

Y = gag,wogt €T, g € G, to > 0 andw, € M, the image of the unique
geodesig A0 of B normalized byy, under the canonical projectids — I'\ B.

It is of lengtht, if there is no irregular point of \ B on g AO.
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5. An ANosov Type Result for the Group GG

On the LE groupG we have a smooth flowy, ), given by the right translation by
elements of4:
o G — G, g— gay.

This turns out to be partially hyperbolic, and so we can apply a partia0ov clos-
ing lemma. Let me mention that the flaw, ), . descends to the ordinary geodesic
flow on the unit tangent bundi€B ~ G//M. Let us first have a look at the general
theory of partial hyperbolicity: LetV be, for the moment, a smooth Riemannian
manifold.

Definition 5.1 (Partially Hyperbolic Diffeomorphism and Flow). LetC > 1.

(i) Lety be acC°-diffeomorphism of¥/. Theny is called partially hyperbolic with
constantC' if and only if there exists an orthogondly (and thereforeDyp— ) -
invariant C>-splitting

(5.1) T™W=T"aTtoT"

of the tangent bundI&W such thatr® @ 7+, 7° ® T, T°, T* andT~ are closed
under the commutatof)y| o is an isometry||Do|r-|| < & and|[De~r+|| < 4.

(ii) Let(pr),cr be aC>-flow onWW. Then(y,),.y is called partially hyperbolic with
constant”' if and only if all o, t > 0 are partially hyperbolic diffeomorphisms with
a common splitting.1) and constants®? resp. andl™® contains the generator of
the flow.

A partially hyperbolic diffeomorphismp gives rise ta’>°-foliations on\W corre-
sponding to the splittingW = T° @ T+ @ T~. Let us denote the distances along
theT® @ T+-, T°-, T*- respectivelyl'~-leaves by®*, d°, d* andd~.
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Definition 5.2. Let TW = T° @ T+ @ T~ be an orthogonaC>-splitting of the
tangent bundlg' W of W such thatr® @ 7+, T°, T+ and T~ are closed under the
commutatorC’ > 1 andU c W. U is calledC’-rectangular (with respect to the
splittingTW =T @ T+ @ T~ )ifand only if for ally, » € U

{i} there exists a unique intersection point U of theT? ¢ T *-leaf containing
y and theT~-leaf containingz and a unique intersection pointe U of the
T° @ T+-leaf containingz and theT'~-leaf containingy,
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Space of Super Cusp Forms

At (y,a),d” (y.b),d" (z,a),d" (2,b) < C'd (y, 2), Roland neve

vol. 10, iss. 1, art. 2, 2009

and
1 Title Page
" (2,0) <& (y.0) < TP (2,0),
1 Contents
5d_ (Z’ CL) S d_ (y7 b) S C,d_ (27 a) . 44 >
{i} if y andz belong to the sam&® & T"-leaf there exists a unique intersection S 2
pointc € U of theT’-leaf containingy and theT*-leaf containingz and a Page 24 of 66
unique intersection poind € U of theT-leaf containingz and theT*-leaf
containingy, Go Back
d (y, ), d* (y,d),d" (z,0),d (2,d) < C'd"* (y,2), rul Sereen
d Close
an
1 0 o journal of inequalities
ad (z,d) < d’ (y,c) < C'd" (2,d), in pure and applied
1 mathematics
5d+ (z,¢) <d" (y,d) < C'd* (z,¢). issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au

A Spanning Set for the
Space of Super Cusp Forms

Roland Knevel

vol. 10, iss. 1, art. 2, 2009

Title Page
Contents

Figure 1: Intersection points in {i}. A "

< »

Since the splitting’W = T° @ T+ @ T~ is orthogonal and smooth we see that Page 25 of 66
for all x € W andC’ > 1 there exists &"-rectangular neighbourhood of o Back

Theorem 5.3 (Partial ANOSoOV closing lemma). Let ¢ be a partially hyperbolic
diffeomorphism with constant, letz € W, ¢’ €]1,C[ and§ > 0 such thatls(x) Full Screen
is contained in a’-rectangular subsel/ C V.

If d(x,p(z)) < 5(‘},_2—%1 then there exisy, = € U such that
() = andy belong to the samé&~-leaf and

Close

journal of inequalities
in pure and applied

o mathematics
d” (z,y) < ﬁd (x,p(x)), issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au

(i) v andp(y) belong to the sam&® & 7'+ -leaf and
d** (y, ¢(y)) < C*d(z, p(2))

(i) y andz belong to the samé&*-leaf and

(iv) z andy(z) belong to the sam&’-leaf and
d (z,(2)) < C"d (, p(2)).

The proof, which will not be given here, uses a standard argument obtaining the
pointsy andy(z) as limits of certain @GuCHY sequences. The interested reader will
find itin [11].

Now let us return to the floWy; ),., onG and choose a left invariant metric 6h
suchthay®, a € ¢\ {0}, a andm are pairwise orthogonal and the isomorphiRm-

A C G isisometric. Then since the flopy,), ., commutes with left translations it
is indeed partially hyperbolic with constahiand the unique left invariant splitting
of TG given by

IG=g= adm © @ g @ g“.

—— acd,a>0 aed,a<0
0 ~ ~\~ - ~ ~"
TY:=
L T, = TfL::

For all L C G compactl, e > 0 define

Mpr:={gag'|ge L, te|-T,T|}
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and
Npre:={g € G|dist (g, Mpr) <e}.

Lemma 5.4. For all L C G compact there exisky, o > 0 such thatl’ N Ny, 1, o, =
{1}.

Proof. Let L C G be compact and’ > 0. ThenM 1 is compact, and so there

existse > 0 such thatV;, ;. is again compact. Sinck is discrete,I' N Ny, 7. is A Spanning Set for the
finite. Clearly for alll’, 7", ands’ > 0if 7' < T" ande < &' thenNp r. C Np 1o, Space of Super Cusp Forms
and flnally Roland Knevel
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e:=d(yx,zar) < g Page 27 of 66
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Full Screen
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Proof. (i) Let 7} > 0 and define

2T
C = max —T1,€2T1 > 1.
1—e72

DefineC’ := e%, let U be aC’-rectangular neighbourhood dfe GG and lety > 0
such thatUs(1) C U. Then by the left invariance of the splitting and the metricbn
we see thayU is aC’-rectangular neighbourhood gfandUs(g) = gUs(1) C gU

forall ¢ € G. Define
l—e % T
— i —¢ 4
€1 := min ((5 T ’C1> > 0.

Now assume, € I' andT" > T; such that

e:=d(yx,zary) < 1.

Theny : G — G,g — 7 'gar is a partially hyperbolic diffeomorphism with
constant’t > 1 and the corresponding splittingG = 7° & T & T~. Then since
1—e 7 1-Ce ™

<4 =4
£ el +1 C?+1

the partial ANOsov closing lemma, Theorer.3, tells us that there exisgt = € G
such that

(i) = andy belong to the samé&~-leaf and

d”(z,y) S eq
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(i) y andz belong to the sam&™-leaf and

d* (yary, zary) < €

(iv) vz andzar, belong to the samé®-leaf and

d° (yz, zapy) < eC™.

In (iii) and (iv) we already used that the metric and the flow are left invariant. So
by (iv) and since th@™ -leaf containingzar is zAM, there existv € M andt, € R
such thatyz = za;,w. So

d° (ay,_rw,1) < eC™,
and so, sincelM ~ R x M isometrically, we see that
d((to,w),(T,1)) < eC" =™t < eC).

In particular,|ty — T'| < Ty, and sat > 0.
Now let € [0,7]. Then sincer andy belong to the sam@~-leaf, the same is
true forza, andya,, and

!/

C
d” (zar,ya,) <d (z,y)e " < €17 e <eCie.

c

Sincey andz belong to the sam&™-leaf, the same is true far, andza,, and

d* (ya,, za,) < d* (yar, zap)e” @7

0/3
<e ;

=S¢

e~ I-7) < &?Cle_(T_T).

Q
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Combining these two inequalities we obtain

d(za;, za;) < eCy (e’T + e’(T’T)) )

(i) Let L C G be compact and let > 1 be given such thatAd,||,
and therefore

Adg'|| < e

1
—d(ag,bg) < d(a,b) < cd(ag, bg)
C

forall g € L anda,b € G. Letey > 0 be given by Lemm&.4 and define

Letz € L,y € I"andT € [0, Tp] such that
e:=d(yr,zrar) < es.
Then sincer € L, we get
d(v,zarz™) < ce < g

and soy € I' N N g, This impliesy = 1 and sod (1,ar) = ¢ and therefore
T <e. L]
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6. The Unbounded Realization

Letn C ¢’ be the standard maximal nilpotent sutelalgebra, which is at the same
time the direct sum of all root spaces gfof positive roots with respect to. Let
N := expn. Then we have arMlASAWA decomposition

G = NAK,

N is 2-step nilpotent, and sy’ := [NV, N] is at the same time the center gt

Now we transform the whole problem to the unbounded realization via the partial

CAYLEY transformation

1 1
V2 a2\ <1
R:= 0 [1]o0 In—1 €G©=SLn+1,0C)
1 1

mappingB biholomorphically onto the unbounded domain

L . w1 <—]_ n
H.—{W—(W2) -1 eC

We see that

1
Rew; > §W§W2} )

RG'R'C G*=SL(n+1,C)— GL(n+1,C) x GL(r,C)

acts holomorphically and transitively di via fractional linear transformations, and
explicit calculations show that

€t 0 0 — 1
a,:=Rau;R'=1| 0[1] 0 n—1
0[0e? —n+1
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forallt € R, andRN R~! is the image of

1lu*|tA+ %u*u
RxC"'— RGR ', (\u)—n),:=| 0] 1 u
00 1

which is aC*>-diffeomorphism onto its image, with the multiplication rule

/ P
n)\,unu,v - n)\—l—u—s—hn (u*v),u+v

forall \, x € Randu,v € C" !, soN is exactly the HISENBERGgroupH,, acting
on H as pseudo translations
( w1 + u'wy + 1A + %u*u )
W — .
Wo +u

Define j (R,z) = 1% € O(B), j (R, w) == j(R,R"'w)" = 2= ¢

1—21 14w,
O(H), and for all
Alb 1,
g€ RGR™! = cld € RGR™!
0 E
define
1
' =j(R,R! i (R 'gR, R 'w)j (R = .
jlg,w)=j (R, R 'gw)j (R '"gR,R'w)j (R w) p—ny
Let H := HI" with even coordinate functions,, ..., w, and odd coordinate func-

tionsd,, ..., v,.. Rcommutes with aly € Z (G’), and we have a right-representation
of the groupRG R~ onD(H) given by

-0 = 200,11 (5 (5) ) 0.0
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forall g € RGR. If we define

D(B), [~ f <R( ))j(R,<>>’“

D(H), f— f (Rl (g)) i (R70)",

then we see that we get a commuting diagram

J\‘<>

|z D(H) —

and
|R—1 N D(B) —

D) =5 D)

Now define the sesqui polynomidl’ on H x H, holomorphic in the first and
antiholomorphic in the second variable, as
A (z,w):=A (R 'z, R 'w) j (Rfl,z)_lj (]%*1,W)_1 = 21 + Wy — W5Zy

for all z,w € H. Clearly|det (z — Rz)'| = |j (R,z)|""" forallz € B. So

|det (w = gw)'| = |j (g, w)|"""

Y

. 1
|j (g7e1)| = A (gelagel)2

forall g € RGR™' and A’ (w,w)_(”“) dVie, is the RGR™! -invariant volume
elementond. If f =3, fi¢' € O(B), all fr € O(B)%, I € p(r), then

fler= > fi(R

Iep(r)

-1 <>)k+|1| 19[ c O(H)
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andif f = 37, fr0' € O(H), all fr € C=(H)%, I € p(r), andg € RGR™,

then
flo=">" Fr(g0)i g, 0)" (Ew)' € OH).
Tep(r)
Let 9H = {w € C"|Re w; = iwjw } be the boundary off in C". ThenA’
andoH are RN R~ !-invariant, and? N R~ acts transitively o®H and on each
{we H|A (w,w)=¢€*} = RNa,0,

teR.
All geodesics inH can be written in the form

R — H,t+— w, := Rga,0 = RgR ‘aje,

with someg € G, and conversely all these curves are geodesids.inWe have
to distinguish two cases: Either the geodesic connecisith a point inoH, or it
connects two points inH. In the second case we have

. / o
i, & (wi wo) =0,

so we may assume without loss of generality thatw,, w,) is maximal fort = 0,
otherwise we have to reparametrize the geodesic uging7 € R appropriately
chosen, instead af.
Lemma 6.1.
() Let
R — H,t+— w; := Rga,0 = RgR_lagel
be a geodesic ilf such thatim;_,,, w; = oo andlim;_._., w; € JH with respect
to the euclidian metric of£?. Then for allt € R

A (wy, wy) = et A (Wo, Wo) ,
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and if insteadim;_,_ ., w; = oo andlim,_.., w; € 0H, then
A (wy, wy) = e A (wo, wo) .
(i) Let
R — H,t+— w, := Rga,0 = RgR 'dje;
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be a geodesic ifif connecting two points iBH such thatA’ (w,, w;) is maximal
fort = 0. Then
R — Rog, t — A (wy, wy)

is strictly increasing orR<, and strictly decreasing oR -, and for allt € R

A/ (W_t, W_t) = A/ (Wt, Wt)

A Spanning Set for the
and Space of Super Cusp Forms

672|t|A/ (W07 WO) S A/ (Wt7 Wt) S 4672|t|A/ (W07 WO) 3 Roland Knevel
. . . . . . vol. 10, iss. 1, art. 2, 2009
Proof. (i) Since RN R~! acts transitively o@H andA’ is RN R~!-invariant we can

assume without loss of generality that the geodesic conf@eatgloco. But in H a
geodesic is uniquely determined up to reparametrization by its endpoints. So we see Title Page
that in the first case

/ 2t Contents
Wy = aq;r€1 = €€
and in the second case b 44
w; = a’_,we; = e *re < >
both with an appropriately chosen> 0. Page 36 of 66
(ii) Let u,y € R ands € C~! such that? + s*s = 1. Then Go Back
u U a2 2 .
R — H,t— Wt(u,y,s) - e i e (1 y~ tanh” ¢ —|— 21y tanh t) Full Screen
1+ y2tanh?t v2tanht (1 + iy tanht)s Close

is a geodesic througit“e, in H since it is the image of the standard geodesic , . ”
journal of inequalities
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in B under the transformation

a, R
~—— ~~
€RAR-!CRG'R™1 EK'TG!
So we see that Ly
(u v.s) [ Z2ie™y
6,5 0 = (\/ﬁeus c Te2“e1H

IS a unit vector with respect to thléGR*l-invariant metric onHd coming fromB
via R. Now sinceRN R~! acts transitively on each

{we H|A (w,w)=¢*} = RNa,0,

t € R, andA’ is invariant unde N R~ we may assume without loss of generality
thatw, = ¢?“e, with an appropriate. € R. SinceA’ (w;, w;) is maximal fort = 0
we know thatd,w,|,_, is a unit vector inR & C*~' C T, H, and therefore there
existy € R ands € CP~! such that)? + s*s = 1 and

2ie*uy
OWilio = | ~5amg |-

Since the geodesic is uniquely determinedviay and 0,w,|,_, we see thatv, =

Wt “¥S) forall ¢ € R, and so a straight forward calculation shows that

A’ (w0y. wy) = gL tanb”
’ 1+ y2tanh?t
862u

- (14 y?) (e? +e72) + 2s*s
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The rest is an easy exercise usiig s*s = 1. ]

For allt € R defineA.; := {a.|7 >t} C A.

Theorem 6.2 (A 'fundamental domain’ for I'\G ). There existy C N open and
relatively compacti, € R and= C G’ finite such that if we define

Q:= U gnAsi K

geEE

then

() g7'TgNNZe(G') € NZg (G')andg™'Tg N N'Zg (G') © N'Zg (G') are lat-
tices, and

NZg(G') = (97 TgN NZg (G") nZa (G')
forall g € =,
(i) G =TQ,
(iii) the set{y € Ty N Q # 0} is finite.

Proof. The theorem is a direct consequence of Theorem 0.6 (i) - (iii), Theorem 0.7,

Lemma 3.16 and Lemma 3.18 d][ For a detailed derivation se&(] or Section
3.2 of [11]. O

Now clearly the set of cusps ®f\ B in I"\0B is contained in the set

{tEerooFgatO‘ g < :} ,
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Corollar%/ 6.3. Letty € R,n C N and= C G be given by Theore.2. Leth €
C (T\G) ands €]0,00]. Thenh € L* (T\G) ifand only ifh (g) € L* (nAs, K)
forall g € =.

Let f € sM;(I') andg € =. Then we can decompogl|, + = >~ ) V' €
O(H), all g; € O(H), I € p(r), and by Theorens.2 (i) we know thatg~'T'g N
'"Za (G ¢ Ze: (G'). Soletn € g7 'Tg N N'Z (G') \ Ze: (G'),

A Spanning Set for the
el 0 ) Space of Super Cusp Forms
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Mo €R\{0},e € U(1), By € U(r),e"™ = det E.

J(RnR™") := j(RnR™',w) = ¢! € U(1) is independent ofv € H. So
there existsy € R such thatj (RnR™1) = e*™X. Without loss of generality we can e e
assume that), is diagonal, otherwise conjugatewith an appropriate element of

RnR™" =n) 4 (

vol. 10, iss. 1, art. 2, 2009

Contents
Za (G"). So there exist® € R™*" diagonal such thak, = exp (21iD).
. <« >
Theorem 6.4 FOURIER expansion of f|,|._, ).
(i) There exist unique;,, € O (C* 1), I € p(r),m € Aio (Z — tryD — (k+|1]) x), N X
such that ) Page 39 of 66
qr (w) = Z C1m (W) 7™
1 Go Back
me 5 (Z—trr D—(k+[I])x)
forall w € H and] € p(r), and so Full Screen
Tmw Cl
f|g|R—1 (W) = Z Z Crm (W2) e? i ose
Iep(r)  mex-(Z—tey D—(k+[1])x) journal of inequalities
) in pure and applied
— . ;
for all w = (wl) | €H. where the convergence is absolute and com- mathematics
pn — issn: 1443-575k

pact.
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(i) ¢r = 0forall I € p(r) andm > 0 (this is a super analogon fdK OECHERS

principle, see for example Section 11.5 df), and if tr; D + (k + |I]) x € Z, then
cr IS a constant.

(iii) Letl € p(r)ands € [1,00] . If tr;D + (k + |I|) x & Z, then

x

+11]

q A (w,w) 2

€ LS (R??A>t00)

with respect to theRGR™! -invariant measureA’ (w,w)_("“) dVier, ON H. |If
tryD + (k+ |I|) x € Zandk > 2n — |I| then

k|1

q A (w,w) 2

\
€ L° (RnAs.,0)
with respect to theRG R~ -invariant measure o/ if and only ifc; o = 0.
A proof can be found inJ0] or [11] Section 3.2.
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7. Proof of the Main Result

We have a LE algebra embedding

p:sl(2,C) — g© =sl(n+1,C), (CCL b ) —

cl|0

Obviously the preimage af underp is su(1, 1), the preimage of’ underp is
s (u(1) @ u(1)) ~ u(1) andp lifts to a LIE group homomorphism

all b
5:SL2,C) = GC=SLin+1,0),( ¢ ° )= | 00 |0
¢ d |0 | d

such thap (SU(1,1)) C G'.
Let us now identify the elements gfwith the corresponding left invariant differ-
ential operators. They are defined on a dense subgdet(@\G), and define

o 01 . 0 1 ,
D.—p(lo)éa,D.—p(_iO)Eg and
0
(b:—p(o _Z,)GE’.

TheR-linear span oD, D’ and¢ is the3-dimensional sub L algebrao (su(1, 1))
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Now define

Dt = % (D—4D"), D™ := % (D +4D') andV¥ := —i¢

as left invariant differential operators ¢h Then we get the commutation relations

[V, D7) =2D", [V, D] = —2D" and [D", D" | =V,

. . . A Spanning Set for the
and sinc&? is unimodular Space of Super Cusp Forms

(D) =-D, (D) =-D'and¥* =¥

Roland Knevel
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So by standard GURIER analysis

F\G @ o, Title Page
veZ Contents
as an orthogonal sum, where <« >
H,:={F e L*(I'\G)N domain¥| VF = vF} < N
for all v € Z. By a simple calculation we obtain Page 42 of 66
D* (H, n domainD*) C H,4,andD~ (H, N domainD~) C H,_, Go Back
forall v € Z. Full Screen
Lemma7.1.D-h =0forall h € O(B). Close
Proof. Letg € G. Then agaim|, € O(B), andh (g¢) = h|,- SO journal of inequalities
~ o~ _ in pure and applied
D h(g) = D~ (R (g0)) (1) = Bkl (0) = 0. mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au

Lemma7.2.Letf € sS,Ef)(F). Thenf is uniformlyL IPSCHITZ continuous.

Proof. Since onG we use a left invariant metric it suffices to show that there exists
a constant > 0 such that for alp € G and¢ € g with |[£]|, <1

cflg)| <e
~ A Spanning Set for the
Thenc is a LipscHITZ constant forf. So choose an orthonormal bagis, . . ., ¢n) Space of Super Cusp Forms
of g and a compact neighbourhod@df 0 in B. Then by QuucHY’s integral formula Roland Knevel
there existC’, C” > 0 such that for alh € O(B) N Ly*(B) andn € {1,..., N} vol. 10, iss. 1, art. 2, 2009
‘(gnh) (1)) < C’/L [h < C'vol LJh]|,, < C"vol L HhHw e page
and sincgy — C, £ — (5%) (1) is linear we obtain Contents
<« »
(&) ] < Ne™vol L[ p R
for general € g with ||¢]|, < 1. Now letg € G. Then againf|, € O(B), Page 43 of 66
F(g0) = fl,» and by STAKE's theorem, Theorerfi.3, f and sof|, € L°(B). So Go Back
€7 ()| = | (67 90)) (W] < Ne™voL L | Fg0)|| < vervol L[| Full Screen
Close

and we can define:= NC"vol L Hﬂ‘ . O
00 journal of inequalities
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Now let f € sS,g”)(F) such tha(y,,7.m, f)r = 0forall . 1.m, 0 € I primitive
loxodromic,I € p(r), |I| = p, m €] — C,C|. We will show thatf = 0 in several
steps.
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Lemma 7.3. There exists” € C (I'\G)“® A (C") uniformlyLIPSCHITZ continuous
on compact sets and differentiable along the flgvsuch that

f = 0,F(0a,)|,_, = DF.

Proof. Here we use that the right translatiog wihon F\G’Z is topologically tran-
sitive. So letg, € G’ such thafgoA = G’Z and defines € €= (R)® @ A (C")
by

t
s(t) ::/ f (goa,) dr
0
forallt € R.
Step | Show that for all L C G'Z compact there exist constants”; > 0 and
g3 > 0suchthatforallt e R, T > 0and~ € I' if gpa; € L and
g = d (vgoas, goarir) < €3

then|[s(t) — s(t +T)| < Cse.

Let L ¢ G'Z be compact], > 0 be given by Lemm&.4andC; > 1 ande; be
given by Theorens.5(i) with T} := 7). DefineCy := max (01 (Cy + 2¢), ]ﬂ ‘OO) >
0, whereCy > 0 is the LPSCHITZ constant from Theorer. 1 (i) and ¢ > 0 is the
LIPSCHITZ constant off. Definee; := min <51,52,2%01> > 0, whereey, > 0 is
given by Theoren®.5 (ii).

Lett € R, T > 0 andy € I' such thayyya;, € L ande := d (ygoay, goarir) < €3.
First assuméd’ > T;. Then by Theorens.5 (i) sinces < ¢, there exisy € G,
wy € M andt, > 0 such thatyg = ga, wo, d ((to, wo),(T,1)) < Cie, and for all
T7€0,T]
d (goat+r, g9a,) < Cie (6_7 + e_(T_T)) )

A Spanning Set for the
Space of Super Cusp Forms

Roland Knevel

vol. 10, iss. 1, art. 2, 2009

Title Page
Contents
44 44
< >
Page 44 of 66
Go Back
Full Screen

Close

journal of inequalities

in pure and applied
mathematics
issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au

and

T ~
Bl < [ |Flanaesr) = Ftgan)|ar

T
S C/ d (gOat—i—Ty QGT) dr
0

T

< cC’la/ (e_T + 6_(T_T)) dt
0

S 20015.

Sincey € T is regular loxodromic, there existg € I' primitive loxodromic
andr € N\ {0} such thaty = 4. 7o € gAW g~ ! since Lemma3.3 tells us that
g € G is already determined by up to right translation with elements @fNx (A).
Choosew’ € Ng(M), t; > 0 andw, € M such thatt,, is diagonal andy =

guw'ag wy (guw')~", and lety’ := gw'. We defineh € € (R x M) @ A (C") as

h(r,w) = f (g'a;w) = [ (ga-w'w)

forall T €¢ Randw € M. Then

T
I, = / h(r,w'™")dr.
0
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We can apply Theorer. 1 (i) and, sincef is perpendicular to alp., ;.,, I € p(r),
m €] — C, (|, also Theorend. 1 (ii) with ¢’ := gw' instead ofg, and so
|| = |H (T,w'™") — H (0,w'™")]
= ’H (T,w'™)—H (to,w’_lwo)’
S C'2d ((T7 1) ) (to, wO))

A Spanning Set for the
S C(1 0257 Space of Super Cusp Forms

Roland Knevel

where we used that (0, w'™!') = H (¢, wyw'~'), choosing the left invariant metric
on M, and the claim follows.
Now assumd’ < T;. Then by Theorens.5 (i), sincee < ¢, we getT < ¢ and

vol. 10, iss. 1, art. 2, 2009

SO . Title Page
s+ 1) =50 = | [ Flovaear| <7 - Contents

i <« "

Step Il Show that there exists a uniquef; € C (F\G’Z ; ® A (C") uniformly < S

LiPSCHITZ continuous on compact sets such that for alt € R
Page 46 of 66

s(t) = Fi (goar) - Go Back
_ Full Screen
By Step | for allL ¢ T'\G'Z compact withL° dc L there exists a uniquéy, € o
ense ose

~\ C
C (F\G’Z) uniformly LIPSCHITZ continuous such that for alle R if I'gqa; € L : . "
journal of inequalities

~\ C . c
thens(t) = F, (I'goa:). SO we see that there exists a uniquec C <F\G’Z) ® L[l Chl Clz ol o
N mathematics
A (C7) such thatF, |, = Fy, forall L ¢ I'\G’'Z compact withL° S L. issn: 1443-575k
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Step Il Show that F7 is differentiable along the flow and that for all g € G'Z
0-F1 (9a;) [r=0 = f(g)
Letg € G'Z. It suffices to show that for all’ € R
T ~
| Flgan)ar = Fi(gar) - Fi(o)
0
If g = goa; for somet € R then it is clear by construction. For genegak G'Z,
sincelgoA = G'Z there existgy,,, t,),. oy € (I' x R)" such that
Tim ngoas, = g,

and so _
lim v,90ar4+, = ga,
n—oo

compact inr € R. Finally fis uniformly LIPSCHITZ continuous. Therefore we can
interchange integration and taking the limit~ oo:

T T
| Flaaar=tm [ Flngiars,)dr
0 n— Jo
= nlggO (1 (Yngoar+t,) — Fi (vngoar,))
= I (gar) — Fi(g).

Step IV Conclusion.
DefineF € C(G)“ @ A (C") as

/ Fi (gu™, Euun) G (uw)*Pdu
Z
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forall g € G’Z andw € Zg (G'), where we normalize the AhR measure on the

compact LE groupZ such thatvol Z = 1. Then we see thaf is well defined and
fulfills all the desired properties. O

Lemma 7.4.

(i) Forall L ¢ G compact there exists, > 0 such that for allg, h € L if g andh
belong to the sam&~-leaf andd— (g, ) < ¢4 then

A Spanning Set for the
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and if g and h belong to the sam&*-leaf andd™ (g, h) < ¢, then

thEH (F (ga;) — F (ha;)) = 0. Title Page
Contents
(i) F is continuously differentiable alon@—- and 7" -leafs, more precisely ib :
I — G is a continuously differentiable curve infa -leaf, then 4 44
< »
Oy (Fop)(t / o
Page 48 of 66
and ifp : I — G is a continuously differentiable curve infa"-leaf then Go Back
9 (Fop)( / 8 Full Screen
t
Close
Proof. (i) Let L. C G be compact, and let’ C G be a compact neighbourhood of _ s .
L. LetT, > 0 be given by Lemm&.4 ande, > 0 by Theorem5.5 (i) both with journat ot Inequatiiies
respect ta./. Define IngdieltelCle e
' 1 T mathematics
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wheres; > 0 andC; > 1 are given by Theorer.5 (i) with T := Tq. Letdy > 0
such that/s,(L) C L' and let

o€ ]O, min ((50, 84)[ .

Let g,h € L be in the sam@ ~-leaf such that := d (g,h) < £4. Since the
splitting of T'G is left invariant andl; (G) C g’ we see that there exigt, i’ € G’
andu € Zg (G') such thaty = ¢'u andh = h'u. Fix someT” > 0. Again by

assumption there existg € G’ such thati'gyA = G'Z, and sog, h € T'gouA. So
there existy,, v, € I' andt,, ¢, € R such that

d (gat, ”Yggouatg+t) ,d (hag, yhgouay, +1) < 6

forall ¢ € [0,77], and so in particulat,gouay, , Yngouay, € L'. We will show that
forall t € [0,7"]

F o — F g )] < i o429

with the same constant, > 0 as in Step | of the proof of Lemma 3 with respect
to L.

Without loss of generality we may assurfie:= ¢, — t, > 0. Define
v :=7,7," €T. Then forallt € [0, 7]

d (Y/hgouar, 1, YgoUay, 1) < ce' 4 20.

First assumé’ > T; and fixt € [0,7']. Then by Theorens.5 (i), since
ge”t +25 < e+ 20 < min <61, %) there exist: € G, t, € R and
w € M such thatyz = za;,w,

d((to,w),(T,1)) < Cy (2(5 + Ee_t) ,
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and for allr € [0, T
d (Vggouas, 147, 2a7) < Cy (e +26) (€77 +e”T77).

And so by the same calculations as in the proof of Lemindave obtain
the estimate

‘F (vggouathrt) - F (vhgouath+t)| < Cj (5e_t + 25) )

A Spanning Set for the

Now assumd’ < T. Then by Theoren.5 (i) since~,goma;, € L' and Space of Super Cusp Forms
e+ 26 < g5 we obtainy = 1 and so by the left invariance of the metric on Roland Knevel
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d(1,a7) < ee” T + 20,
thereforel’ < ce~™" + 24. So as in the proof of Lemma3, Title Page
’F (7ggouatg+t) — F(thouath+t)| < HJ?H <6€_T/ + 25) Contents
< 4 (ee™" 4 20) . « "
Now let us take the limis ~~ 0. Theny,gouas, ~> g andy,gouay, ~ h, S0 since < 4
F'is continuous Page 50 of 66
|F (gas) — F (ha,)| < Cyee™
for all ¢ € [0,7"], and sincel” > 0 has been arbitrary, we obtain this estimate for Go Back
all t > 0 and solim;_., F'(ga;) — F (ha;) = 0. By similar calculations we can Full Screen
prove thatlim; ., F'(ga;) — F (ha;) = 0 if g andh belong to the sam&*-leaf
andd* (g, h) < ey. Close
(i) Let p : I — G be a continuously differentiable curve in7a -leaf, and let journal of inequalities
to, t1 € I, t; > tg. It suffices to show that in pure and applied
t1 poo mathematics
Flpt) = F o)== [ [ af(plo)er)drit.
to 0
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LetC’ > 0 such that|d,p(t)|| < C' forall t € [to, t,]. Then since lies in a7~ -leaf
we havel|0; (p(t)a,)|| < C'e”" and so

atf (p<t>a7')

<cC'e T

for all 7 > 0 andt € [to, ;] wherec > 0 is the LPSCHITZ constant off. So the
double integral on the right side is absolutely convergent and so we can interchange A Spanning Set for the
the order of integration: Space of Super Cusp Forms

Roland Knevel

vol. 10, iss. 1, art. 2, 2009
/ / at ClT det / / 8t CLT dth

B /0 (f (o (t) ar) = f(ﬂ (to) a7)> dr Title Page
— Tlim (F (p(t1)ar) — F (p(to) ar)) Corianie
- A >

— F(p(t)) + F(p(to)) -

Now let L. C G be compact such that([¢;,t5]) C L and lete; > 0 as in (i).
Without loss of generality we may assume thiat(p (o) , p (t1)) < 4. Then

< >

Page 51 of 66

. Go Back
lim (F(p (t1) ar) — F (p(to) ar)) = 0
T—o0
Full Screen
by (i). By similar calculations one can also prove .
O (Fop)( / at -)dr journal of inequalities
in pure and applied

in the case whep : I — G is a continuously differentiable curve infa -leaf. [ MelETeles
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Lemma 7.5.
(i) Fel?(T\G)@ A\ (C),
(i) EFel?T\G)@ A\ (C)forall E e RD®gN (TT B T™).

Proof. (i) If I'\G is compact then the assertion is trivial. So assumeltRétis not
compact, then we use the unbounded realizatioof B introduced in Sectior.
Sincevol (I'\G) < oo, it suffices to prove thak" is bounded, and by Corollary.3 A Spanning Set for the

it is even enough to show thét(¢<$) is bounded onVA., K for all g € =, where Space of Super Cusp Forms
to € Randz c G are given by Theoreri.2. So letg € =.

Step | Show that F' (¢<>) is bounded onNa;, K.
Letn C N also be given by Theorem2. ThenF' (¢<) is clearly bounded on the

Roland Knevel

vol. 10, iss. 1, art. 2, 2009

compact sefja,, K. On the other hand’ (¢<) is left-g'T'g -invariant, so it is also Title Page
bounded on Contents
Na,K = (gL' N NZg (G')) nay, K
« >
by Theorens.2 (i).
< >

Step Il Show that there existsC’ > 0 such thatforall ¢/ € NA.;, K
Page 52 of 66

~ C’
/
‘f (gg> < A/ (Rg’O, Rg/())' Go Back
Full Screen
As in Section, letq; € O(H) such thatf|y|,+ = >/, a9’ Then since g
~ ose

f(g0) € L? (nA~,K) @ A\ (C"), by Theorent.4we have BURIER expansions

journal of inequalities
(7.1) qr (w) = Z Crm (W) €571 in pure and applied
me 5= (Z—tr D—(k+[I))x)"R <0 mathematics
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© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au

forall I € p(I) andw = (w1> =l ¢ 1, wherec,, € O(C), 1€
Wo }TL —1 ’
o(r),m e /\io (z —trrD — (k+ |I|) x) N R<o. Define
1
M = max U —(Z—tr/D — (k+[I]) x) "R < 0.
rep(r)

Rna.;,0 C H is compact, and so since the convergence of thefHER series (.1)
is absolute and compact we can define

17 _ 2t0
C — e 2w Moe

o > eram (wa) 2|
w\r
me 5 (Z—try D—(k+I))x)NR<o

0. Rifary 0 < 00.

Then we have
|q[ (W)l < C//eﬂMoA (w,w)

forall I € p(r) andw € RnA-,,0. Now let

, (] 0
g = <T‘?) € nAso K,
E' € U(r). Then

fN(gg/) = f’g’Rfl‘RgR—l (el)

! HO— e . ! >— k
= flglg (RQR ! (7;))] (RgR ", e1)
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Rg'0 . P k
= f’g’Rfl ( ET}J (Rg/R—l) )] (RgR 1,61)

= Y @ (Rg0) (En) j (RgR ", er) M.

Iep(r)

Therefore sincej (Rg'R~!, e1)| = /A’ (Rg'0, Rg'0) we get

A Spanning Set for the

~ ’ r o~ M, A’(Rg’O,Rg/O) Space of Super Cusp Forms
‘f (gg) S 2 C € ’ Roland Knevel
k k+r .
% (A/ (Rg/O, Rg/0)§ 4 A/ (Rg/()’ Rg/O)%> ' vol. 10, iss. 1, art. 2, 2009
So we see that there exigt$ > 0 such that Title Page
~ C’
N < Contents
‘f 99 = & (Rg'0, Rg'0)
B 4 44
forall ¢’ € nA.;, K. However, on the one hand(¢<) is left- g~ 'T'g -invariant, and p >

on the other hand\’ is RN Z (G') R™! -invariant. Therefore the estimate is correct
even for all Page 54 of 66
g € NALwK = (g ' N NZa (G)) nAs, K

Go Back
by Theorenms.2 (i).
Full Screen
Step Il Conclusion: Prove that
Close

1F (g0) < IF (90| oo, rvag, i +2C" €
journal of inequalities
on NA, K. in pure and applied
Let¢’ € G be arbitrary. We will show the estimate gt N NA-; K. mathematics
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is a geodesic ind, and for allf € R we haveg'a; € NA., K if and only if
A’ (wy, wy) > 2e?o. Now we have to distinguish two cases.

In the first case the geodesic connestswith a point in0H. First assume
that lim; .., w;, = oo andlim,_,_w; € 0H. Thenlim; .. A’ (w;,w;) = o0

andlim;_, ., A’ (wy, w;) = 0. So we may assume without loss of generality that

A’ (wg, wg) = 2¢*°, and thereforg/ = ¢'ap € Na, K andg’a; € NA., K if and
only if t > 0. So lett > 0. Then

F(gg'ar) = F (g¢) + / Flgg'ar) dr,

and so

f(gg'ar)|dr.

t
P (95/a0)] < I1F (69l vyrc + |
0

By Step Il and Lemma.1 (i),

The case wherBm,_,_,, = oo andlim;_., € OH is done similarly.

In the second case the geodesic connects two poird¢/in Then without loss
of generality we may assume that (Rw;, Rw;) is maximal fort = 0. So if
A’ (wg,wg) < 2e*0, we havegA N NA.,, K = (). Otherwise by Lemmé.1
(ii) there exists” > 0 such thatA’ (wp, wr) = A/ (w_p, w_r) = 2¢*°, and since
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A (wp,wr) < i A (wo, W), we see that
1 /
T < Elog (2A" (wr, wr)) — to.

Sogar,ga_r € Na,K andg'a, € NA., K ifand only ift €] — T,T[. Let
t €] — T,T[ and assume > 0 first. Then

T ~
F(gg'a;) = F (99'ar) — /t f(9g'a.)dr,

and so

T
F ag'0)| < IF (0Ol + | [Flog'ar)

By Step Il and Lemm&.1 (i), now

/0 ' ‘f (99'a)

dr.

T dr
dr < C’ / L
o A (w.,w,)

Cl T
R
A (Wo,Wo) 0
< —C, e
- 2A/ (Wo, Wo)
< 20" e %0,

The casé < 0 is done similarly.

(ii) Since on one hand, F ($a,) |,—o = f € L?(I'\G) ® A (C") and on the other
handvol (I'\G) < oo, it suffices to show thag 7" is bounded for allv € @ \ {0}
and¢ € g®. Soleta € @\ {0} and{ € g®. First assumer > 0, which clearly
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implies thate > 1 and¢ € T~. So there exists a continuously differentiable curve
p . I — G contained in thé&/'~-leaf containingl such that) € I, p(0) = 1 and
Op(t)|,—y =& Letg € G. Then by Theoreni .4 (ii), we have

(EF) (9) = OF (9p(1))]1=o

/ a.f (gt (tar)|,
dr Roland Knevel

=— /0 0, f (gara_,p(t)a,) o

— [ (A ©) F) ) a7

dr
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vol. 10, iss. 1, art. 2, 2009

S Title Page
—— [ e (<) gy ar
0 Contents
SO
<« »
[(€F) (9)] < cllgll, < oo,
wherec is the LPSCHITZ constant off~. The casev < 0 is done similarly. O ¢ >

Therefore by the BURIER decomposition described above we have Page 57 of 66

r_ Z Z thn]’ Go Back

Iep(r),|I|=p VveEZL Full Screen
whereF;, € H,forall I € p(r), |I| = p,andv € Z. D = D" + D, and a simple Close
calculation shows thad™ andD~ e RD @ gnN (T & T~), and soDTF, D~ F € . - »
L?(T\G) ® A (C") by Lemmay7.5 ii). So we get the BURIER decomposition off felurel ey li=te el

in pure and applied
mathematics
issn: 1443-575k
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with DY Fy, o+ D™ Fr 0 € H, forallv € Z. But sincef € sS7(I') the FOURIER
decomposition off is exactly
]?: Z arn’

Iep(r),|I|=p

with ¢; € C*°(G)® N Hy,,, and so for all € p(r),

I| =p,andv € Z

) ) (g ffv=k+p
D Fryat D Frots _{ 0 otherwise
Lemma7.6. F;, =0for I € p(r), |I| = p, andv > k + p.

Proof. Similar to the argument of GLLEMIN and KAZHDAN in [6]. Let I € p(r)
such that7| = p. Then by the commutation relations bf* and D~ we get for alll
n ez

(7.2) D Frnl|s = |D Frall2 + v || Frall2,
and for alln > k + p + 1 we haveD" Iy ,,_o + D~ F .40 = 0 and so
HD_FIWF?‘ ‘2 = HD+FL"—2‘ {2 :
Now letr > k + p. We will prove that
|‘D+Fl,u+4l”2 > | Frully
for all [ € N by induction on:

If I = 0 then the inequality is clear by’ (?). So let us assume that the
inequality is true for soméc N. Then again by{.2) we have

"D+FI,V+4Z+4HZ > ‘|D_F1,u+4z+4”§ = ‘|D+Fl,u+4l|‘§ > || Fr |5
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On the other handp* F; € L? (I'\G) by Lemma7.5and so|D* F} ||, ~ 0 for

n ~» oo. This impliesF, = 0.
Soforalll € p(r),
by Lemmayr.1, sincef € O(B), so

larlls = (a1, D Frpsp—) = — (D"a1, Frpsp2) = 0,

and sof: 0, which completes the proof of our main theorem.

I| = p, we obtainD* F; . ,—» = ¢q; and finallyD~¢; = 0

O
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8. Computation of the ¢ 1.

Fix a regular loxodromicy, € T', g € G, ty > 0 andwy € M such thatF, :=
E,, is diagonal andy, = ga;,wog™' € gAMg~'. Let D € R"™*" be diagonal
such thatexp(27iD) = E, andy € R such thatj(w,) = e*™*. Now we will
computep,, ., € sSi(I'), I € p(r),m € % (Z — (k+|I]) x — tr;D), as arelative
POINCARE series with respect tb, := (v,) C I'. Hereby again=" means equality
up to a constang 0 not necessarily independentgf, 7 andm.

Theorem 8.1.Let! € p(r)andk > 2n+1—|I|. Thenforallm € %(Z—(k +11]) x
—tl"]D)
(i)

Pro,I,m = Z q|"f € SSIE:‘ID(F)J
~v€El\I!
where

9] ) 7 ——————k+|T _
0= [ A 0,900) 1 TTgas0) Mt (£, )’

e sM" (To) N LL (To\B) .
(i) Forall z € B we have

1(2) = (A(ZXT)A (2 X)) 2 (1 i ”1>mm (E,)",

1-— U1
where
1 —1
0 0
Xt:=g ) and X =g )
0 0
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are the two fixpoints of, in 0B, and
v:=g 'ze BcCP.
Proof. Let p := |I|.
(i) Let f € sS{”(I"), and defind: = 3=, ) s, hun’ € C (R x M)“ @ A (C7),
all hy € C* (R x M), andb;,,, € C, m € L(Z— (k+|I|)x —tr;D), as in

t,

A Spanning Set for the

Theorem4.1. Then by standard ®URIER theory and Lemma.5we have Space of Super GuspIForms
to ] Roland Knevel
b[}m = / 672mmth[ (t, 1)dt vol. 10, iss. 1, art. 2, 2009
0
to )
- /0 T < (<> gato) e (E C> f) (gat’ )IHP di Title Page
to ) C
_ / 6—2mmt/ <f ( <<> gatO) k—p (E () ) > (gat’ )k‘-i-p dt. ontents
0 ¢ N 4 »
Since by STAKE's theorem, Theorerd.3, f € L>(G) @ A\ (C"), and p R
A (&, ga0) 7 ° (E,'¢) ) j (gag, 0)"**| dt Page 61 of 66
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by TONELLI'Ss and RUBINI’S theorem we can interchange the order of integration:

b= [ (B[ (20.000) 0 (5,0)") Tgan 0 a)

— (/t QﬂlmtA (<> gatO) (g t,O)kerdt (E;1<)I,f)
0
- <Q7 f)rov

where

(/ot TN (G, 90,0) 1 T (gar, 0) "t (Eg‘lg)I>N L@@ \(©),

k+p

/to TN (&, ga0) P 5 (gay, 0) ' dt (Eg_1C)I € O(B)
0

sinceA ({,w) € O(B) for all w € B and the convergence of the integral is com-

pact, and so by Lemma4,

=X [ 00y Tl i (5,20)

v'€lo

€ sMy, (To) N LL (To\B)..

/

v

Clearly
A (0. gai0) 7 (£,1¢)'|
= A (100, 90:0) " (o 1¢) j (70, 0)F
= A (0.7 90) " (B, ') T (5 T 9ai0)

A Spanning Set for the
Space of Super Cusp Forms

Roland Knevel

vol. 10, iss. 1, art. 2, 2009

Title Page
Contents
44 44
< >
Page 62 of 66
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au

so for allz € B we can compute (z) as

. (Z) _ Z /O' 0 627rimtA (<>’ gato)fkfp (Eg_IC)Ij—(gCLt’ O)kJrPdt (Z)

VEZL gkt

tO . L S
-y / TN (2,457 9a,0) " (EVESC) % J (0 "gan )t
0

VEZL
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_ Z/ p2mim(t—vto) A (2, gas—1,0) k ? 5 (g1, 0) It (Eg 1C>
0

Vel Title Page
o . o —k‘
_ / 627r7,mtA (Z,gatO) k p] (gat’ O) +pdt (Eg_1C)I- Contents
> <« >

Again by Lemma2.4 we see thad_ .\, ql, € sM”(T') N L. (I'\B), and so by

< >
SATAKE’s theorem, Theorer. 3, it is even an element csts*,i"’)(l“), such that

Page 63 of 66

Go Back
b],m = Z Q|'77 f )
~eL\T . Full Screen
and so we conclude that,, 1 ,m = > cr @l Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au

(ii)

/ ™M (z, ga,0) " (gay, O)k+pdt

e}

o k
_ k+p/ 27sztA g 1Z;@t0) k P]‘(at,O) +pdt

B 1 A Spanning Set for the
— k+p/ 27”mt — U tanh t) k p—kﬂ)dt Space of Super Cusp Forms
' (COSh t) Roland Knevel
B = k,’—‘,—p g2mimt gt vol. 10, iss. 1, art. 2, 2009
a (cosh ¢ — vysinh ¢)* 17
1 Nktp 1 1+o\™ Title Page
:](g 7Z) (1 2)'“# 11—
— V] Contents
o1 Nk w140 \™ «“« 8
=7 (g7 h2) (1 —v) (1 +w)) 2 -y
— U1
< 4
ktp 1 + vy Tim
— + _
=(A(zX")A(z,X7)) 2 (1—@1) : Page 64 of 66
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