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ABSTRACT. Let f be a2 periodic function inZ.![0, 2] and3";> _ __ f(ny)e™* be its Fourier

series with ‘small’ gaps,+1 — nx > ¢ > 1. Here we obtain a sufficiency condition for the
convergence of the serigs, _ , | f(nk) |% (0< B <2)if fis of o A BV locally. We also obtain
beautiful interconnections between the types of lacunarity in Fourier series and the localness of
the hypothesis to be satisfied by the generic function allows us to interpolate results concerning
lacunary Fourier series and non-lacunary Fourier series.
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1. INTRODUCTION

Let f be a2 periodic function inL'[0, 27] and f(n), n € Z, be its Fourier coefficients. The
series

(1.1) Z Flng)e™*,
keZ
wherein{n;}{° is a strictly increasing sequence of natural numbersrand= —ny, for all k,
satisfies an inequality
1.2) (ngs1—ng) >q>1 forall k£=0,1,2,..,

is called the Fourier series gfwith ‘small’ gaps.
Obviously, ifn, = k, for all k, (i.e. ng1 — ni, = ¢ = 1, for all k), then we get non-lacunary
Fourier series and ifn,} is such that

(1.3) (ngr1 —ng) — o0 as k— oo
then [1.1) is said to be the lacunary Fourier series.

ISSN (electronic): 1443-5756
(© 2005 Victoria University. All rights reserved.
205-05


http://jipam.vu.edu.au/
mailto:drrgvyas@yahoo.com
http://www.ams.org/msc/

2 R. G. WAs

In 1982 M. Schramm and D. Waterman [3] have introduced the glassBV (1) of func-
tions of pA-bounded variation ovef and have studied sufficiency conditions for the absolute
convergence of Fourier series of functions\d?V'?) andy A BV..

Definition 1.1. Given a nonnegative convex functign defined o0, co) such thaf@ — 0
asx — 0, for some constani > 2, ¢(2z) < de(x) for all x > 0 and given a sequence of
non-decreasing positive real numbgs= {\,,} (m =1,2,...) such thad _ Ai diverges we
say thatf € o A\ BV (thatisf is a function ofy /-bounded variation over) if
Va (f. 1) = {su%{vm{fm}, f, 1)} < oo,
["L

where

Ve (L} 1) = (Z A = “’””) ,

and{7,,} is a sequence of non-overlapping subintervals= [a,,, b,,] C I = [a, b].

Definition 1.2. For p > 1, the p-integral modulus of continuitw® (6, f,I) of f overI is
defined as

w? (6, f,1) = sup [[(Tnf — £)@)ll, ;-
0<h<d

whereT}, f(z) = f(x + h) for all z and||(-)[[,; = [[(-)x:[l, in which x; is the characteristic
function of/ and||(-)[|, denotes thé”-norm.p = oo gives the modulus of continuity(d, f, I).

By applying the Wiener-Ingham result/[1, Vol. |, p. 222] for the finite trigonometric sums
with ‘small’ gap (1.2) we have already studied the sufficiency conditions for the convergence of

~

5
the seriesy, _, ‘f(nk)‘ (0 < 3 < 2) for the functions ofA BV andABV ® in terms of the

modulus of continuity([6]. Here we obtain a sufficiency condition if functjois of o A BV'.
We prove the following theorem.

Theorem 1.1.Let f € L[—n, n] possess a Fourier series with ‘small’ gaps (1.2) ahtle a
subinterval of lengthd; > 27” ffee ABV(I),1<p<2r,1<r<oo,and

8
2

2r—p ;
- <w((2—’p)s+p) (L’ f 1)) /
—1 s
Z 2 k1l <oo,

Nk i
st Dt %

wherel + 1 =1, then

(1.4) > \f ()

keZ

‘ﬂ<oo (0<8<2).

Theorenj 1.J1 withs = 1 is a ‘small’ gaps analogue of the Schramm and Waterman result [3,
Theorem 2]. Observe that the intervatonsidered in the theorem for the gap condition](1.2)
is of length> %’f so that whem, = k, for all k, I is of length27. Hence for non-lacunary
Fourier series (equality throughout |n (1.2)) the theorem wite: 1 gives the Schramm and
Waterman result |3, Theorem 2] as a particular case.

We need the following lemmas to prove the theorem.

Lemma 1.2([2, Lemma 2]) Let f and ! be as in Theoref 1.1. ff € L*(I) then
~ 2
(15) S| F| < Aslr 7 g 1B

keZ
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whereAs depends only oh.
Lemma 1.3. If |ng| > p then fort € N one has

jus

™

2
sin® |ny| hdh >
/ i

Proof. Obvious. O

Lemma 1.4 (Stechkin, refer to[[5]) If w, > 0 forn € N, u, # 0 and a functionF'(u) is
concave, increasing, andl(0) = 0, then

= = un+un+1+"'
;F(un)§2ZF( . >

Proof of Theoreri Tj1let I = [zo — %, 2o + %] for somez, andd, be such that < & <
dy < 01. Putds =6, — dp andJ = [mo — ‘52 , To + ‘52} Suppose integefs and; satisfy

4
(1.6) Inr| > 5—” and 0<j<
3

f € o ABV(I)implies

[f(@)] < |f(@)] +1f(2) = f(a)| < |f(a)] + Co™ (Vi (f, 1)) forallzel.
Sincef is bounded ovef, we havef € L?(I), so that|[(1.) holds anfl € L?[—, 7]. If we put
fi = (Tojnf — Ti2j—1ynf) thenf; € L*(I) and the Fourier series ¢f also possess ga. s (IL.2).

Hence by Lemmp 1] 2 we get
2, ngh 2
s (%5 ) = 0 (1515,

2.7) Z ‘f(nk)

keZ
Integrating both the sides df (’ . 7) ov@, ;=) with respect tdh and using Lemm. a 1.3, we get

f(nk)’ = O(nT)/OnT (Hf]”;,J) dh.

because

(1.8) R, = i

[ng|>nT

Since2 = W + £, by using Holder’s inequality, we get fro.8)

- [t as
< ([ 1 dac>i ([ 1sr d:c)i
<Q”’"(/|f] y%m) ,

whereQ), ; = (wE P+ (h f, J))>~P. Thus
(1.9) B < [ @) de
J

Sincef is bounded ovef, there exists some positive constart > 1 such that f(z)| < M
for all z € 1. Dividing f by the positive constant/ altersw,(h, f, J) by the same constant
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andp(2|f(z)]) < de(|f(x)|) for all z, we may assume thaf(z)| < 1 forall x € I. Hence
from (1.9) we get

B < s [ (@) da.
J

Sinceyp(2x) < do(z), we havep(az) < d°%2%p(x), SO

B I ()] da
. < 10g2 CQh J J .7
¢<®>_d ( 02
08, | fi(x)| d
== CQ;,E] d(p (fj 3(52

)| dx
_pqenig, o (Llb@ld
hyJ hd ¥ fJ 1dx

)| d
< CQy g (M) (by Jensen’s inequality for integrals)
2

= ( [ elh@ldn).

Multiplying both the sides of the equation l;lg and then taking the summation over 1 to
ny (T € N) we get

(1.10) o (%) <C (%{L)) (/J (ni 90|J;]\'j(13)‘> dx) :

Observe that for: in .J, 2 in (0, = ) and for eacly of the summation the points+ 2jh and
x4+ (2§ — 1)hliein I; moreoverf € p A BV (I) implies

~elfi(@)] _
=5 = o,

. N ynp 1 %
’ (z?% (%))]

Substituting back the value @ in the equation[(1]8), we get

B 00 . 2: -1 M %
R, |n%m fm)| =0 [90 (Z?Tl (%))]

(2-p)stp (1 r\1*
—Pp)sTP | L.
L[ e (G )

=7 ()

J=1

Therefore, it follows from[(1.110) that

B=0

Thus
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A

Finally, Lemmg A withuy, (nk)‘ (k € Z) and F(u) = u”/? gives
> [fow| =23 ([fmn])
Jk|=1 k=1
[e'e) Rn
< k
g ()
k=1
~ /po\%
— Nk
—42( k )
k=1
. 8
w2 p)erp(L f ]))27‘p>]r/ 2
ng’J? k
ng 1
k:l Zjil/\_j
This proves the theorem. O
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