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using Bonsall's form of Hilbert's and Hardy-Hilbert’s inequalities, both in discrete and continu-
ous case.
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1. INTRODUCTION

An interesting feature of one of the forms of Hilbert-Pachpatte type inequalities, is that it
controls the size (in the senselof or [? spaces ) of the modified Hilbert transform of a function
or of a series with the size of its derivate or its backward differences, respectively. We start with
the following results of Zhongxue Lu from|[9], for both continuous and discrete cases. For a
sequence : Ny — R, the sequenc®a : N — Ris defined byWa(n) = a(n) — a(n — 1). For
a functionu : (0,00) — R, v’ denotes the usual derivative ©f
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2 JosIPPECARIC, IVAN PERIC, AND PREDRAG VUKOVIC

Theorem A. Letp > 1, 1+1 =1,s > 2—min{p, ¢}, andf( ), g(y) be real-valued continuous
functions defined oft), co), respectlvely, and lef(0) = ¢(0) = 0, and

0</ / ' 78| f (1) [Pdrdr < oo, O</ / 1751¢'(8)|%dody < oo,
then

Do)
(1) / / qxp1+pyq w1 g

s | ST N )

Theorem B. Letp > 1, 2 5+ 5 = 1,s > 2 — min{p, ¢}, and {a(m)} and {b(n)} be two
sequences of real numbers wheten € Ny, anda(0) = b(0) = 0, and

0< i Zm:mls\Va(T)V’ <oo, 0< iinlSWb(é)P < 00,

m=1 =1 n=1 §=1

then
|G| b

1.2
(12 mZZ (g + pri)(m + )"

B (q—i—s 2 pts— 2) % o n %

< d (szl *|Va(r) ) (Z nls\vz)(aﬂq)
m=1 =1 n=1 /=1

Note that the conditios > 2 — min{p, ¢} from Theorenj B is not sufficient. Namely, the
author of the proof of Theorefn B used the following result

> 1 my\ 23" qg+s—2 p+s—2 s

n=1 q p

form € {1,2,...} ands > 2 — min{p, ¢}. Forp = ¢ = 2, s = 18 andm = 1, the left-hand
side of [1.B) is greater than the right-hand sid€ of|(1.3). Therefore, we refer to a paper®f Krni
and Péaric, [4], where the next inequality is given:

(&5}
(1.4) § e a2<mk”mwﬁﬂLﬂmﬁ+ay—m
TTL n n

n=1

wherel < s < 14,1 —s < agy < 1fors <2and—1 < ay < 1for s > 2. By using this result,
here we shall obtain a generalization of Theofgm B but with the conditiomin{p, ¢} < s <
2 4+ min{p, q}. Also, the following result is given ir [9]:

> 1 m\* 1 _(q+s5s—2 p+s—2\ .,
(1.5) Z m* +ns <E> < EB ( ’ ) e

el 5q sp

form € {1,2,...} ands > 2 — min{p, ¢}. Similarly as before, fop = ¢ = 2, s = 6 and

= 1, the left-hand side of (1|5) is greater than the right-hand sidé of (1.5). The case of
nontrivial weights is essential in Theorgm A and Theofegm B, since fer1 only the trivial
functions and sequences satisfy the assumptions.
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In 1951, Bonsall established the following conditions for non-conjugate exponents|(see [1]).
Let p andq be real parameters, such that

1 1
(1.6) p>1,¢g>1, =+=>1,
P q

and letp’ andq’ respectively be their conjugate exponents, tha}%) Hspl =1 and% + ql = 1.
Further, define

1 1
and note that < A\ < 1 for all p andq as in [1.6). In particularh = 1 holds if and only if
q = p/, that is, only wherp and ¢ are mutually conjugate. Otherwise, we hdve: \ < 1,
and in such casgsandq will be referred to as non-conjugate exponents. Also, in this paper
we shall obtain some generalizations|of [1.1). It will be done in simplier way than in [9]. Our
results will be based on the following results oftBec et al., [2], for the non-conjugate and
conjugate exponents.

Theorem C. Letp, 1/, ¢, ¢ and X be as in[(1.p) and (1]7). IK, ¢, ¢, f andg are non-negative
measurable functions, then the following inequalities hold and are equivalent

o [ o< ( [erren) ([ormn)

and

1
f L

(19) ( [ (a7 [ 2w ns) dy) (] <¢Ff>p<x>dx)’l’,

where the functiong’, G are defined by
K(z,y) )ql’ ( K(z,y) >”’
F(z)= —=d and G(y) = - dr | .
@) ( o Y7 (y) Y ) o ¢ (z)

The next inequalities from [5] can be seen as a special case pf (1.8) and (1.9) respectively for
the conjugate exponents:

[

@10 [ K@iy < ([ @erm ) ([ owcmeon)
and

(1.11) /Gl —r( (/K ) f da:) dyg/ngp(x)F(x)fp(x)dx,
where

(1.12) F(z) = Q%dy and G(y) = fopfz;g)dx

In particular, inequalitieg (1.10) and (I]11) are equivalent.

On the other hand, here we also refer to a paper of Brradtial., [8], where a general
Hilbert-type inequality was obtained far > 2 conjugate exponents, that is, real parameters
Pi,....pn > 1, such thathzlpij = 1. Namely, we letK : Q" — R and¢;; : Q — R,
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1,7 = 1,...,n, be non-negative measurable functions}‘[li.fj:1 ¢ij(z;) = 1, then the inequal-
ity
L.
(1.13) K(zy,...,x Hfl ) day .. <H</ i) (Puifi)Pi (2) d ) ,
Qn

holds for all non-negative measurable functigis . ., f, : 2 — R, where
(114) E(ZL‘Z) = K(l’l, c. ,ZEn) H f; (fL’j)dl’l Ce dl’i_ldl'i_,_l c. dl’n,

Qn—1 s 4 g

J=1,j#i

fori=1,....n

2. INTEGRAL CASE

In this section we shall state our main results. We suppose that all integrals converge and
shall omit these types of conditions. Thus, we have the following.

Theorem 2.1. Letll? +% = lwithp > 1. If K(z,v), ¢(z), ¥(y) are non-negative functions and

f(z), g(y) are absolutely continuous functions such tli&t) = ¢(0) = 0, then the following
inequalities hold

> K(z,y)|f(@)] lg(y)]
(2.1) / S —— dxdy

<[ / K(x,ynf(xmg@)rd(w%)d(ﬁ)
([ [ rarorropi) ([ [ owamsonas)
and

2.2) / G (y) (/ K(e,y)|f(z >|d(m)) dy
< //gop (1)|Pdrd,

whereF'(z) andG(y) are defined as if (1.12).

Proof. By using Hélder’s inequality, (see aldd [9]), we have

23) @l lotl <z ([ |f’(7)|pdr); ([ |9,(5)|qd5);

From (2.3) and using the elementary inequality
Yyl 1 1
(24) $y<_+_7$207920»_+_:17P>17
p q p q

we observe that
z z y H
@y IRl MO ([ iyeypar) ([ o)
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and therefore

o [ [N,

qar~! N !
K x

/ )| 12 lg(v) dedy
qup

0o z % y %

< [" [ ke ( / |f'<7)|pdr) ( / |g'<6>|‘1d6) dedy.
0 0 0 0
Applying the substitutions

. ( [ |f/(T)!PdT)’1’ ) ( [ (Wé);

and [1.10), we obtain

(2.7) /000 /000 K(x,y)fi(z)g:(y)dzdy

< ([ v@reie );(/Omw%y)c;() <>dy)q
([ [ e ),pmy( [ [ e >,qd(sdy)?

By using [2.6) and (2]7) we obtain (2.1). The second inequality (2.2) can be proved by applying

(1.13) and the inequality
ol<at ([ropa)
0

Now we can apply our main result to non-negative homogeneous functions. Recall that for a
homogeneous function of degres;, s > 0, the equalityK (tx, ty) = t*K(x,y) is satisfied.

Further, we define
:/ K(1,u)u™%du
0

and suppose that(«) < oo for 1 — s < a < 1. To prove first application of our main results
we need the following lemma.

O

Lemma2.2.1fs > 0,1 —s < a < 1andK(z,y) is a non-negative homogeneous function of
degree—s, then

(2.8) / K(x,y) (§> dy = 2" k(a).

0 )
Proof. By using the substitution = £ and the fact thak(z, y) is homogeneous function, the
equation|(2.8) follows easily. O

Corollary 2.3. Lets > 0, 1 + 1 = 1 withp > 1. If f(x), g(y) are absolutely continuous func-
tions such thaff (0) = ¢(0) = 0, and K (z, y) is a non-negative symmetrical and homogeneous
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function of degree-s, then the following inequalities hold

(2.9) / B ;C:cfz’/ Jf+ pz‘/(Jg1< ist
. / / Ko )| f@) o) ld () d (47)
< £q (/ooo /0 xl‘s+p<Al-A2>|f’<¢>|pd7d”) ;

0o Ly %
([T [ g sy
0 0
and

(2.10) /Ooo y(pfl)(S—l)er(AlfAQ) (/OOO K(:c,y)|f(;z:)\d(:c;))pdy

L p [e'e] x
< <—) / / xl_sﬂ’(Al_AZ)|f’(7’)|pd7'dx,
o Jo

and L = k(pAy)rk(gA)e.

whereA; € (+2, 1), A2 € (4

q p’p)

Proof. Let F(z), G(y) be the functions defined as in (1]12). Setting) = 24 andy(y) =
y“2, by Lemmd 2.P we obtain

(2.11) / / )| frdrde
_ /0 /0 ()P ( /OOOK(x,y) (g)pAQdy> 2P 42) g

— k;(pAg)/ / xlfs“’(Al*A?)|f’(7’)|pd7'dx,
o Jo

and similarly

(2.12) / / ()G )l (0)9dsdy = k(gAy) / / 1-stalAa=A0)| g1 (5)| 16y,

From (2.1),[(2.111) and (2.12), we gt (2.9). Similarly, the inequdlity {2.10) follows ffom (2.2).
0

We proceed with some special homogeneous functions. First, by piéftingy) = (ij)s in
Corollary[2.3, we get the following.

Corollary 2.4. Lets > 0, }D + é = 1 withp > 1. If f(z), g(y) are absolutely continuous
functions such thaf(0) = ¢(0) = 0, then the following inequalities hold

L] 1+py'q’gf)(1+y) ey

<[ L))
_;(/0 /0 wmAT /(T),pdex>”</o°°/oyy1 T g (8 )\qd6d3/>q
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and

[e'e] [e’] p
/ Y P11 (A1~ A2) (/ Lx)’sd <m>) dy
0 o (z+y)
P [e'e) x
< (&) / / :leSH)(Al*AQ)]f’(T)\pde:I;,
b 0 0

whereA; € (17;5, %), A, € (17 %) and

Ly = [B(1 — pAy, pAs + s — 1)]#[B(1 — qA1, qA, + 5 — 1)]a.

Remark 2.5. By putting4; = Ay = 22 in Corollaryl with the conditios > 2—min{p, ¢},
we obtain TheoremlA from the |ntroduct|on

Since the functionk (z, y) =
Corollary[2.3 we obtain:

Corollary 2.6. Let}o + % = 1 withp > 1. If f(x), g(y) are absolutely continuous functions
such thatf(0) = ¢(0) = 0, then the following inequalities hold

/ / qx;nlyvlprogJ 152); " )dxdy
/ / In If ||g vl ( )d(y%)
U xp<A1-A2>|f’<f>|pdea:) ([ [ rerigeraiay)
and

/OOO P A1—42) (/OOO —‘f; !fw( >)pdy < (%)p/om /Oz A=A (1) Pdrda,

whereA, € (0, 1), Az € (0, ;) and

2

Ly = 7r2(sinpA27r)_% (singAym)~ a.
Similarly, for the symmetrical homogeneous function of degreeK (z,y) =
have:

Corollary 2.7. Lets > 0,
functions such that(0) = ¢

/ / (qur—? +pyq|1|?5n;‘x{:r y}sdwdy
/ [ () a ()
B ([ [Famscsaipiopanis) ([ [ orsnsigopase)

0 [ee] p
/ y(Pfl)(5*1)+p(A1*A2) </ Md (l‘;)) dy
0 o max{zr,y}*
La\? [ [ i sip(ai—az)
<= o P A)| (1 Pl d,
p 0 0
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whereA; € ( . ,q) Ay € ( > andL; = k(pAz)» k(qu)é,wherek:(a) =

p'p (1—a)(s+a—1)"

At the end of this section we give a generalization of the inequality (2.1) from Thgorém 2.1.
In the proof we used a general Hilbert-type inequality (JL.13) of Boredtil., [8].

Theorem 2.8.Letn € N, n > 2, Z?:l;% =1withp, > 1,9 =1,...,n Letg, a;, i =

1,...,n, are defined W|th— =1- ]7 ande; = [, ;. p;. If K(:z:l,.. Tn), Gij(z5), 4,5 =
1,...,n,are non- negatlve functions such tHdt',_, ¢;; (:cj) = 1l,andfi(z;),i=1,...,n,are
absolutely continuous functions such thfgd) = 0,7 = 1, ..., n, then the foIIowmg mequality
holds
/ / K( l’lw- n) [T 11|fi(xi)’d$1...dl’n
z 1 ¢ .%’

S/O /0 K(ml,...,xn)ﬁlfi(a:iﬂd<mf11)...d(xgln)

< (o DR dn)

whereF;(z;) are defined as |r-4) far=1,...,n.

3. DISCRETE CASE
We also give results for the discrete case. For that, we apply the following result from [5].

Theorem 3.1.1f {a(m)} and{b(n)} are non-negative real sequencés(zx, y) is non negative
homogeneous function of degree strictly decreasing in both parametersandy, + = =1,
p>1, A B, «, 3> 0,then the following inequalities hold and are equivalent

(3.1) i i K(Am®, Bn®)a,b,

m=1n=1

S =

<N (Z ma(18)+ap(A1Az)+(p1)(1a)@z;n)
m=1
1
o0 q
. (E nﬁ(1—8)+ﬁq(Az—A1)+(q—1)(1—ﬁ)bq> ’

n=1
and
o0 p
(3.2) Zn s—1)(p—1)+pB(A1—A2)+6-1 <ZK Ama,Bnﬁ)am>
n=1 m=1
< NP Z ma(1—5)+ap(A1—A2)+(P—1)(1—a)a1;m
m=1
whereA; € (max{ﬁ, aa—_ql ,l), Ay € (max{lps, Bﬁ;l} ) and
(3.3) N =q af v A A A I gt Ae il ) A Vo k(2 — s — gAy)a.

Applying Theorenj 3]1, we obtain the following.
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Corollary 3.2. Lets > 0, %—l—% = 1lwithp > 1. Let{a(m)} and{b(n)} be two sequences of real
numbers wheren, n € Ny, anda(0) = b(0) = 0. If K(x,y) is a non-negative homogeneous
function of degree-s strictly decreasing in both parametersandy, A, B, «, 5 > 0, then the
following inequalities hold

Z K(Am®, Bn®)|a,||b,|
m=1n=1

gmP~! 4+ pna-1

1 o= K(Am®, Bn?)|am||bn
(3.4) <Ly gy & ) ] |bn|

Sl

( Z m (=) +ap(Ai—Az)+(p—1)(1-a) \Va(r) |p>

1
q

nﬁ(l5)+ﬁQ(A2A1)+(q1)(1ﬁ)‘Vb(5>’11> ’

and

p
(3.5) Zn s—1)(p—1)+pB(A1—Az)+6—1 <ZK (Am®, Bn >|am|)

n=1 m=1 ma

< NP Z Z ma(l—s)'i'aP(Al—A2)+(P—1)(1—a)|Va(7.)|p’

m=1 =1

whereA; € (maX{ qs, aczl }, ) Ay € (max{ ps, 55;1} , %) and the constanv is defined
asin (3.3).
Proof. By using Hdélder’s inequality, (see alsad [9]), we have

1

(3.6) || |b| < man? (Z|Va ) <Z|Vb )

T=1

From (2.4) and[(3]6), we get

Pq|am||bn| Iamllb |
(3.7) e S Z|Va Zwb :
and therefore

ﬁ
(3.8) pqzz K(Am®, Bn”)|am]|bx]

gmpP~t + pna-t

Q|

m=1 n=1

> i K(Am®, Bn®)|an,||bx]|

S 11

m=1 n=1 mane

< ooiK’Am Bn”) <Z|Va ) (Z\Vb >
m=1 n=1
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Applying the substitutiong,,, = (S, [Va(r)[")7 , by = (S, [Vb(9)|9)+ and [3.1), we
have
(3.9) > > K(Am®, Bn Yayb,

m=1 n=1

<N (Z ma(1—8)+ap(z41—A2)+(p—1)(1—a)5£1>
m=1

. (Z nﬂ(1*5)+5Q(A2*A1)+(Q*1)(1*5)gq

SR

n

8
N———
Q|

n=1
1
) P
(sza(l s)+ap(A1— A2)+(p—1)(1—a)|va(7_)|p>
m=1 =1
(Z nﬂ(13)+BQ(A2A1)+(q1)(1ﬁ)|Vb(5)|Q> ’
=1 6=

whereA; € (max{+7*, %2}, 0), Ay € (max{:* 1} ;) and the constan¥ is defined as

in (3.3). Now, by applyiﬁg@& and (3.9) we obtaiB 4). The second inequality (3.5) can be
proved by using (3]2) and the inequality

|| < ms (Z IVa(ﬂip)

P

O
Remark 3.3. If the function K (z, y) from the previous corollary is symmetrical, théf —
s — qAy) = k(qAy). So, if K(z,y) = T + > then we can pul; = A, = p‘;, A=B=
a = (3 = 1in Corollary[3.2 and obtain Theore@i B from the introduction but with the condition
2 —min{p,q} < s < 2.

By using [1.4), see [4], we will obtain a larger interval for the parametéfore precisely,
we have:

Corollary 3.4. Let] + I = 1withp > 1 and2 — min{p, ¢} < s <2+ min{p, ¢}. Let{a(m)}
and {b(n)} be two sequences of real numbers where: € Ny, anda(0) = b(0) = 0. Then
the following inequalities hold

(3.10) Z Z (g + pnt- V) (m 1 n)?

mlnl

CLshse it

B rq m=1n=1 mqnp(m +n)s

< (o)

3=

=1 =1

and

oo

(3.12) in(s”(”” <Z _lam] ) < szzml *|Va(r)
n=1

1
m:lmq<m+n m=1 =1
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whereN, = B(*H=2, #2=2),

Proof. As in the proof of Corollary 3]2, by using Holder’s inequality we obtain

o |G 4]

— (qmP=! +pna=t)(m +n)?

11 mane (m+n)*

1

quiim@wa )(ZWb )(%)%)

(B (St ) )
(zz(zw Yrwuor)

Now, the inequality[(3.70) follows from (I.4). Let us show that the inequdlity {3.11) is valid.
For this purpose we use the following inequality fram [4]

(3.12) iln(s—l)(p—l) (i ﬁ) < I Zm1 s

where2 — min{p, ¢} < s < 2+ min{p, ¢} andL, = (‘”2%2, %). Setting

am = (Z |Va<¢>|p>p

|| < m (me) ,

the inequality[(3.1]1) follows easily. O

in (3.12) and using

4. NON-CONJUGATE EXPONENTS

Letp, p', ¢, ¢ andX be as in[(1.6) and (1.7). To obtain an analogous result for the case
of non-conjugate exponents, we introduce real parameters such thatp < ' < ¢ and
%+ 1 = 1. For example, we can define =  + 5% ors’ = (2 - M)p.

It is easy to see that

1 ! T
(4.1) YT < (W' +r’yq’)7 r>0, y>0,
rr!

and

4.2 gl <o ([ 176 |Pdr)’1’( /jwmw);,

hold, wheref (x), g(y) are absolutely continuous functions @n o).
Applying Theorenj C,[(4]1) andl (4.2) in the same way as in the proof of Thelorgm 2.1, we
obtain the following result for non-conjugate exponents.
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Theorem 4.1. Letp, p/, ¢, ¢ and X be as in[(1.p) and (1}7). Let, r be real parameters
suchthatp <+ < ¢ and + 1+ = 1. If K(z,y), ¢(z), ¢ (y) are non-negative functions and
f(z), g(y) are absolutely continuous functions such tlié) = ¢(0) = 0, then the following
inequalities hold

“3) //K GITCI.

raov +ryf1

<m [ / KA )| £ @) lo(w)ld («+) d ()
< ( | [y |pdfd:c> ( | [werwise |qd5dy),

1
7

(4.9) ( [ Gaa [ KA(ac,y)\f(x)\d(xé))q' dy) q
( / / (0F)7( )|pd7dx)1,

whereF'(z) andG(y) are defined as in Theoregnj C.

Obviously, Theorerh 4]1 is the generalization of Thedrerm 2.1. Namely=ifl, ' = p and
r = ¢, then the inequalitie$ (4.3) arnd (4#.4) become respectively the inequdlities (2.1) gnd (2.2).
If K(x,y) is anon-negative symmetrical and homogeneous function of degree> 0, then
we obtain:

Corollary 4.2. Lets > 0, p, p/, ¢, ¢ and\ be as in[(1.5) and (1}7). If(z), g(y) are absolutely
continuous functions such th#t0) = ¢(0) = 0, and K (z,y) is a non-negative symmetrical
and homogeneous function of degree then the following inequalities hold

@[] qwmf( oWl

2(P=1DR=2) 4 pyla-12-N)

=57 / / KX, y)| f(2)]9(y )|d(m> ()
(/ / A >rpd7d’“");
| </ s y‘f'(””q“?A”|g'<5>|w6dy)3

@) ( [ operae ([7 0 gisa(s)) dy> '
<= </ / & (1=s)+p(A1— A2)|f( )|pd7'dm> 7

whered; € (2, 1), A, € (L2, L) and M = k(p' A1) 7 k(g Aq) ¥

p

and

and
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Proof. The proof follows directly from Theorem 4.1 settimg = (2 — \)p, r = (2 — \)g,

¢(z) = 2 andy(y) = y*2 in the inequalities] (4]3) andl (4.4). Namely,Afz) andG(y) are
the functions defined by

1 1
7

F(z) = ( OOO K(‘”’%y)q’ and G(y) = ( OOO K<x’y)dx)p ,

Ve (y) o ()
then applying Lemmpa 2.2 we have
(4.7) (pF)P(z) = 2P ( / K (x,y)yq/AQdy) q
0

[e’¢) q' Az 5
= gPhre ( / K(z,y) (E) dy)
0 Y

%(1—5)+P(A1—A2)k§ (q,Az)

— 7 ,
and similarly
(4.8) (WG) (y) =y 1IN (A,
Now, by using[(4.B),[(4]7) and (4.8) we obtdin (4.5).

The second inequality (4.6) follows directly from (4.4). O
Remark 4.3. Setting K (z,y) = W in Corollary we obtain that the constavtis equal

toM = B(1—p' Ay, p/AL +s— 1)53(1 —q Ay, ¢ Ay + 5 — 1>%
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