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1. Introduction

An interesting feature of one of the forms of Hilbert-Pachpatte type inequalities, is
that it controls the size (in the sense If or [P spaces ) of the modified Hilbert
transform of a function or of a series with the size of its derivate or its backward
differences, respectively. We start with the following results of Zhongxue LU from
[9], for both continuous and discrete cases. For a sequendg — R, the sequence
Va: N — Risdefined byWa(n) = a(n)—a(n—1). Forafunction: : (0,00) — R,

u’ denotes the usual derivative ©f

Theorem A. Letp > 1,1 +1 = 1,5 > 2—min{p, ¢}, and f(z), g(y) be real-valued
continuous functions defined @ o), respectively, and lef(0) = ¢(0) = 0, and

00 T S Y
0< / / 25| f (1) Pdrdr < 00, 0 < / / y' *1g'(6)]%dédy < oo,
o Jo o Jo

then
Do)
(1) / / qxp1+pyq (w1 g

§B<q+22p+s2 (// 2 |pd7dx)
([

|qd6dy> '
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Theorem B. Letp > 1, >+ = 1, s > 2 — min{p, ¢}, and{a(m)} and {b(n)} be
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two sequences of real numbers wheren € Ny, anda(0) = b(0) = 0, and

0< i imlS|Va(T)]p <oo, 0< iinlS]Vb(d)\q < 00,

m=1 =1 n=1 =1
then
| || | Hilbert-Pachpatte Type
a b Inequalities
1 2 mirn Josip Pecaric, Ivan Peric
( ) mzl ; qmp_l + pnq_l) (m + n)s and Predrag Vukovic
B <q+s 2 pts— 2> 1 vol. 9, iss. 1, art. 9, 2008
q 1—
< >3 wwuor)
<m 17=1 Title Page
1
> — ‘ Content
(S5 mmr)
n=1 §=1 44 144
Note that the conditios > 2 — min{p, ¢} from TheoremB is not sufficient. < >
Namely, the author of the proof of Theore#rused the following result Page 4 of 27
= 1 2 -2 —2
(1.3) Z—S (T) "~ B (Q+5 ’p—O—S >m1—57 Go Back
n=1 (m + n) n q p Full Screen
form € {1,2,...} ands > 2 — min{p,q}. Forp = ¢ = 2, s = 18 andm = 1, Close
the left-hand side ofl(.3) is greater than the right-hand side &f3). Therefore, we . _ -
refer to a paper of Krigiand Péaric, [4], where the next inequality is given: journal of inequalities
in pure and applied
00 1 e e mathematics
(1.4) Z m oS <mITTNTRB(1 — g, s+ ap — 1), issn: 1443-575k
n=1
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where) < s < 14,1 —s<ay < 1fors<2and—1<ay < 1fors > 2. By using
this result, here we shall obtain a generalization of Thedsdyat with the condition
2 —min{p, ¢} < s <2+ min{p, ¢}. Also, the following result is given ind]:

=~ 1 | —2 —2
(1.5) Z_(@) T _1p q+s 7p+8 ml=s,
1ms+nS n S sq Sp

form € {1,2,...} ands > 2 —min{p, ¢}. Similarly as before,fop =¢=2,s=6
andm = 1, the left-hand side ofl(5) is greater than the right-hand side af%).
The case of nontrivial weights is essential in Theorerand Theoren®, since for
s = 1 only the trivial functions and sequences satisfy the assumptions.

In 1951, Bonsall established the following conditions for non-conjugate expo-
nents (seel]]). Let p andq be real parameters, such that

1 1
(1.6) p>1,¢g>1 —+-2>1,
p q

and letp’ and¢’ respectively be their conjugate exponents, tha}%) i$,1§ = 1and
% + ql = 1. Further, define

1.7) A=—+—

p q
and note that < A < 1 for all p andq as in (L.6). In particular,A = 1 holds if and
only if ¢ = p/, thatis, only whem andq are mutually conjugate. Otherwise, we have
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0 < A < 1, and in such casesandg will be referred to as non-conjugate exponents. journal of inequalities
Also, in this paper we shall obtain some generalizations af) ( It will be done in in pure and applied
simplier way than ing]. Our results will be based on the following results oERet mathematics

et al., ], for the non-conjugate and conjugate exponents. issn: 1443-5756
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Theorem C. Letp, p/, ¢, ¢ and X be as in (.6) and (L.7). If K, ¢, ¢, f andg
are non-negative measurable functions, then the following inequalities hold and are
equivalent

@) [ @ty < ( [rr@a) ([ wonran)

and Inequalities

1

1.9 ( [ (o [ 1 mitenas)” dy>q/ < ([ersrmm)
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where the functiong’, G are defined by Title Page
1 R Contents
K(z,y) ) ( K(z,y) ),,/
F(x) = - d and G(y) = - dx :
0= ([ W=\ e “« »
The next inequalities from5] can be seen as a special case o) and (L.9) < >
respectively for the conjugate exponents: Page 6 of 27
Go Back
(1.10) K (z,y)f(x)g(y)dzdy
02 Full Screen
< ([e@rorwe) ([ ewmcmsma) Close
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(1.11) /Gl_p (/ K(z,y)f dx) dy < / OP(x)F () fP(x)dx, issn: 1443-5750
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where

K(z,y) K(z,y)
(1.12) F(r)= | ——=dy and G(y) = | ——=dx
@)= Jo oty W= ), et
In particular, inequalities1(10) and (L.11) are equivalent.
On the other hand, here we also refer to a paper of Brrettal., B], where a

general Hilbert-type inequality was obtained for> 2 conjugate exponents, that H"bﬂ;':acu*z;:z Type
is, real parameters,,....p, > 1, such thaty_ , pi = 1. Namely, we letK : Josip Pegari, Ivan Peric
" — Randg;; : @ — R,4,5 =1,...,n, be non-negative measurable functions. If T P WL ae
[1;,—, #i(z;) = 1, then the inequality vol. 9, iss. 1, art. 9, 2008
(1.13) K(zy,...,x,) [ [ filwi) ds . day Title Page
an i=1 Contents
n 1
Py
< (/ Fi(x:)(¢ufi)P () dﬂ?z’) ; « »
i=1 \/Q < 4
holds for all non-negative measurable functigis . ., f, : 2 — R, where Page 7 of 27
- Go Back
(114) Fz(xz) = K(xl, e ,xn) H f;(ycj)dxl Ce d$i71d$i+1 e dl'n,
Qn—1 Jusirey Full Screen
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2. Integral Case

In this section we shall state our main results. We suppose that all integrals converge

and shall omit these types of conditions. Thus, we have the following.

Theorem 2.1. Let% + % = 1withp > 1. If K(x,y), ¢(x), ¥(y) are non-negative

functions andf(x), g(y) are absolutely continuous functions such tlf&0)
g(0) = 0, then the following inequalities hold

= Kz, y)lf ()] lg(y)]
(2.2) / o p—— dzdy

. / / K(x,y>|f<x>||g<y>|d(x%)d(y)

Q=
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Proof. By using Hoélder’s inequality, (see als8]], we have

@3 1@l < ([ |f'<7>|pd7)’l’ ([ |g'<a>|qcz5)3

From (2.3) and using the elementary inequality

P q 1 1
(2.4) < =+L 2>0 y>0 —4-=1, p>1,
p q p q

we observe that

as TR << ([rore)’ ([ wora)

and therefore

* K (e, y)f ()] 19(y)
(2.6) pq/ o 1+pyq ——dxdy
K
/ K@), 1 0))lg(y) | dedy
qup

< [ [ K ( I |f’(T)|”dT); ([ 1s@pa) " dody.

Applying the substitutions

_ (/Oﬂf/(T)lpdT);’ ) = (/Oy|g’(5)|qd5);
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and (L.10), we obtain

(2.7) /000 /000 K(x,y)fi(x)g:(y)dzdy

< ([ e@ronwe) ([ ewmowtmag)
0 1 Hilbert-Pachpatte Type
P Inequalities
— (/ / ( )’pdex) Josip Pegaric, Ivan Peri¢
and Predrag Vukovic
i vol. 9, iss. 1, art. 9, 2008
([ / WG O dbdy) "

, . . . Title P
By using @.6) and .7) we obtain £.1). The second inequality?(?) can be proved e Taee
by applying (L.11) and the inequality Contents
s L « "
o<t ([Irora) PR
N Page 10 of 27
Now we can apply our main result to non-negative homogeneous functions. Re- i X
call that for a homogeneous function of degree s > 0, the equalityK (tz, ty) = Full Screen
t—°K(x,y) is satisfied. Further, we define
Close
= / K(1,u)u™"du journal of inequalities
0 in pure and applied
and suppose thdt(a) < oo for 1 — s < a < 1. To prove first application of our mathematics
main results we need the following lemma. issn: 1443-5756
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Lemma2.2.1f s > 0,1 —s < a < 1andK(x,y) is a non-negative homogeneous
function of degree-s, then

(2.8) / K(z,y) (z) dy = v *k(a).
0 Y
Proof. By using the substitution = ¥ and the fact thaf’(x, y) is homogeneous
function, the equation?(6) follows easily. O Hilbert-Pachpatte Type
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Corollary 2.3. Lets > 0, }D + % = 1withp > 1. If f(z), g(y) are absolutely

continuous functions such th#(0) = ¢(0) = 0, and K (z,y) is a non-negative .
symmetrical and homogeneous function of degreghen the following inequalities
hold
K Title Page
q37p 1+p?/q 1 Contents
1 1
<[ [ K@al@lawia () a (yq) « »
L < >
p— (/ / st (i )|pd7d$) Page 11 of 27
: Go Back
([ [ aigora)
0 0 Full Screen
and Close
o] o] p
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whereA, € (22, 1), Ay € (1, 1) and L = k(pAs)» pk(gA)7.

Proof. Let F'(z), G(y) be the functions defined as ih.(9). Settingp(x) = 2t and
Y(y) = y*2, by Lemma2.2 we obtain

(2.11) / / x)| fPdrdx
Hilbert-Pachpatte Type
00 - pA2 Inequalities
_ Josip Pecaric, Ivan Peric
- / / P ( | ke (5) dy> A3 g

o - vol. 9, iss. 1, art. 9, 2008
~ k(pAs) / / 1A () P,
0 0

Title Page
and similarly
Contents
(2.12) / / v (y lg'(0)|9dddy ) dd
AR < >
— A —s5+q(A2—A1 ! q .
taa) [ [ 19(6) dsdy —ror
From .1), (2.11) and ¢.129), we get £2.9). Similarly, the inequality Z.10) follows Go Back
from (2.2). O .
ull Screen
We proceed with some special homogeneous functions. First, by pitting)) = Close
(g + - in Corollary 2.3, we get the following.
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hold

)| l9(y)|

dxd

/ / xp1+pyq Dty
< [ [ ) ()

:(J—i—y
% Hilbert-Pachpatte Type
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o0 Yy 5 e @
X (/ / y1_8+‘I(A2_A1)|g'(5)|qd5dy> vol. 9, iss. 1, art. 9, 2008
0 0

and Title Page

” = Content
/ (p=1)(s—1)+p(A1—Az) (/ |f(z)| d( 1>)pd ontents
y IAC IRy y
0 o (@+y) ” o

p '] x
< (&) / / I1_5+p(A1_A2)|f’(7‘)|pdrd:v, < >
p 0 0

Page 13 of 27

whereA, € (22, 2), A, € (1*, 1) and ——
Ly = [B(1 = pAs, pAs + s — D]?[B(1 — gAr, qA; +5 — 1)), Full Sereen
Remarkl. By putting A; = Ay, = % in Corollary 2.4, with the conditions > Close

2 — min{p, ¢}, we obtain Theorem from the introduction. journal of inequalities

Since the functionk (z,y) = in pure and applied

—1, by using Corollary?.3we obtain: mcthemchcs
issn: 1L443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

Corollary 2.5. Let}lo + é = 1L withp > 1. If f(z), g(y) are absolutely continuous
functions such thaf (0) = ¢(0) = 0, then the following inequalities hold

In [ f(z)| g(y)|
/ / (qar— 1+pyq Dy — )dxdy

/ /°°1n 2l f(x Hg( I, (%>d(gﬁ>
el R T )
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hold

()| lg(y)|
/ / (qar~1 +pyq V) max{z, y}* drdy

<[ [ () al)

3 (A1—Asy) % Hilbert-Pachpatte Type
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p 0 0
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Theorem 2.7.Letn € N,n > 2,370, - = 1withp, > 1,0 =1,...,n. Letg;, a;, in pure and applied
i =1,...,n, are defined with- =1 — i ando; = [0, . p- I K(z, ..., 2), el
gbij(xj), i,j =1,...,n, are non-negatlve functions such that',_, ¢;;(z;) = 1, FeSn LARSTSTEL
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and f;(z;),7 = 1,...,n, are absolutely continuous functions such tiigt) = 0,

1 =1,...,n, then the following inequality holds
K .. n (2 (2
/ / xla )Hz 11|f(x)‘dx1dxn
1 ozzm
n 1 1
S / . / K(.Z'l, Ce ,xn) H |f1(.1'1)’d ($1p1> .o.d (xﬁ”) Hilbert-Pachpatte Type
0 0 i1

Inequalities

1 Josip Pecaric, Ivan Peric
P and Predrag Vukovié
S Fi(z)| f; (7)) Pdmida; ) :
1 .

vol. 9, iss. 1, art. 9, 2008

whereF;(z;) are defined as inl(14 fori =1,...,n Title Page

Contents
<44 44
< >
Page 16 of 27

Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

3. Discrete Case

We also give results for the discrete case. For that, we apply the following result
from [5].

Theorem 3.1.1f {a(m)} and {b(n)} are non-negative real sequenceds(z,y) is
non-negative homogeneous function of degreetrictly decreasing in both param-

etersz andy, .+ . = 1,p > 1, A, B, a, 3 > 0, then the following inequalities Hibert Pachpate Type
hold and are equivalent Josip Potarit, Ivan Peré
o oo and Predrag Vukovic
(31) Z Z K(Am“, Bnﬁ)ambn vol. 9, iss. 1, art. 9, 2008
m=1 n=1
00 % Title Page
a(l1—s)+ap(A1—A2)+(p-1)(1-a) ,p
<N Zlm @m Contents
m=
0 3 <« >
. (Z nﬁ(1—5)+6q(A2—A1)+(q—l)(1—ﬁ)bq)
n ’ < 4
n=1
and Page 17 of 27
0o oo p Go Back
3.2 A= (P—1)+pB(A1-A2)+5-1 K(Am®. Bn®)a
(32) 221 221 ( ’ ) Full Screen
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P
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Applying Theorents.1, we obtain the following.

Corollary 3.2. Lets > 0, % + é = 1 withp > 1. Let{a(m)} and{b(n)} be two

sequences of real numbers wheren € Ny, anda(0) = b(0) = 0. If K(z,y)
iS a non-negative homogeneous function of degreestrictly decreasing in both
parameterse andy, A, B, «, § > 0, then the following inequalities hold

ZZ K (Am®, Bn”)|am| |bn]
gmpP~1 + pna—t

ii K(Am~ Bnﬁ)\amel
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Proof. By using Hoélder’s inequality, (see als8]], we have

(3.6) || [br] < man? (Zyva ) <Z|Vb )

=1

From (2.4) and (3.6), we get

P4l am|[bn| !ame | <
g
(3 ) qmp 1_|_pnq 1 — man’ Z|Va Z|Vb

and therefore

ﬂ
(3.8) PQZZ K(Am®, Bn”)|a,||b,|

gmpP~1 + pna—t

< ZZ K(Am® Bn5)|am||b |

m=1 n=1 mqnp

m=1n=1

m=1

Applying the substitutiong,, = (327, |Va(7)[P)7 , b, = (32", |[Vb(5)|9)7 and

(3.1), we have

(3.9) i iK(Am"‘, Bn®)anby,

m=1 n=1

l

Y

sii K (Am®, Bn®) (Z|Va )(ZWZ) )
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hSA

<N (Z ma(1—8)+ap(A1—A2)+(p—1)(1—a)’dgl)

Z nﬁ(15)+54(142A1)+(q1)(15)ZQ> ,

Q=

n

hSAl

(sz (1—8)+ap(A1—A2)+(p—1)(1— a)|Va( )|p)

17=1
[e%¢} n q
(Z nﬁ(ls)Jrﬁq(AzA1)+(q1)(1ﬁ)|Vb(5)’q> ’
n=1 §=1
whereA; € (max{i=% &1 ) Ay € (max{i=s 21 )and the constanV is

defined as in{.3). l\(iowaﬁ)y applying 8.8) and 6 9jgwe obtain §.4). The second
inequality 3.5 can be proved by using () and the inequality

(| < ms (Z rww)

P

O

Remark2. If the function K (z, y) from the previous corollary is symmetrical then
k(2—s—qA;) = k(qA;). So,if K(z,y) = cmme y) ,thenwe can putl; = A, = pq :

A =B =a= = 1inCorollary3.2and obtain Theorer from the introduction
but with the conditior2 — min{p, ¢} < s < 2.

By using (L.4), see fi], we will obtain a larger interval for the parameterMore
precisely, we have:
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Corollary 3.3. Let% + % = 1withp > 1 and2 — min{p, ¢} < s < 2+ min{p, ¢}.

Let {a(m)} and {b(n)} be two sequences of real numbers where: € N,, and
a(0) = b(0) = 0. Then the following inequalities hold

|am| |bn|
(3.10) Z Z (qmP—1 + pna—1)(m + n)*

m=1 n= 1
S IS Hilbert-Pachpatte Type
< 1 |CLm| |b | Inequalities
= 1 1 Josip Pecaric, Ivan Peri¢
rq m=1n=1 TINP (m + n) and Predrag Vukovi¢

=
Q=

<2 (x

m=1 1=

m P 00 n vol. 9, iss. 1, art. 9, 2008
m'~*|Va(r) ) (Z n'=*|Vb( )\) ,
1

n=l o= Title Page
and

- - Contents
@41 3 Do (Z %> NP S V() « »
n=1

1
m=1 mq(m+ p >

whereN, = B(*F=2, =22,

m=1 =1

Page 21 of 27

Proof. As in the proof of Corollarys.2, by using Hélder’s inequality we obtain
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p—1 |am’q‘b1| Full Screen
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< 1 S |am| 0] | . -
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< (f) > (fﬁ = () ) Va<r>p>;
~ <i n (i e (%)2?) Vb<6>q)é.

m=1
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Now, the inequality §.10) follows from (1.4). Let us show that the inequalit (L 1)  Inequalies
is valid. For this purpose we use the following inequality froth | Josip Pecari, fvan Berc

oo ) p %)
(312) Z n(871)(p71) (Z (CLTm)) < L1 Z mlfsaﬁl,
m+n)
m=1

and Predrag Vukovic
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n=1 m=1 :
Title Page
where2 — min{p, ¢} < s <2+ min{p, ¢} andL, = B(*L=2 *1=2) Setting .
m : 44 »»
Ay = (Z |Va(7')|p> < >
T=1
. . Page 22 of 27
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m > Go Back
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4. Non-conjugate Exponents

Letp, ¢/, ¢, ¢ andX be as in (.6) and (L.7). To obtain an analogous result for
the case of non-conjugate exponents, we introduce real parametersuch that
p <1’ < ¢ andi+21 = 1. Forexample, we can define= ql+% orr’ = (2—\)p.

It is easy to see that

Hilbert-Pachpatte Type

1 d nequalities
(41) .’L’P yq < — ('I"Ll'p + 7“ Yy ) T 2 O, Yy Z 0, Josip IIDeélriéI,tlvan Peric
rr’ and Predrag Vukovic
and vol. 9, iss. 1, art. 9, 2008
101 % Y %
@2 1@l <oyt (@) ([wors) Tite Page
0
) ] Contents
hold, wheref (), g(y) are absolutely continuous functions @h co).
Applying TheorenC, (4.1) and ¢.2) in the same way as in the proof of Theorem «“ 4
2.1, we obtain the following result for non-conjugate exponents. < >
Theorem 4.1. Let p, ¢/, q, ¢ and X be as in (.6) and (L.7). Let+’, r be real Page 23 of 27

parameters such that < ' < ¢ and & + 1 = 1. If K(z,y), (), ¢¥(y) are
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1
(/ / (pF)P( )‘pdex) ) Title Page
whereF(z) andG(y) are defined as in Theorem Contents
44 »»

Obviously, Theorem.1is the generalization of Theorefnl. Namely, if\ = 1,
r" = pandr = ¢, then the inequalities4(3) and ¢.4) become respectively the < >
inequalities £.1) and ¢.2). If K(z,y) is a non-negative symmetrical and homoge- Page 24 of 27
neous function of degrees, s > 0, then we obtain:
Corollary 4.2. Lets > 0, p, p', ¢, ¢ and\ be asin (.6) and (L.7). If f(x), g(y) are Go Back
absolutely continuous functions such thf@0) = ¢(0) = 0, and K (z,y) is a non- Full Screen
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e’} ’ [ele] i q/ q’
(46) / y%(s—l)%-q (A1—A2) (/ K)‘((E, y)’f(.%)’d (xp)) dy)
0 0 Title Page
1
< M (/ / B (1) p(A1-A2) e )|pdrdx)p7 Contents
P \Jo Jo « 3
whereA; € (%, pi> , Ay € (q;s, ql> andM = k(p' A7 k(q'Ay)7 . < >
Proof. The proof follows directly from Theorem.1 settingr’ = (2 — \)p, r = Page 25 of 27
(2= N)gq, p(z) = 2 andy(y) = y*2 in the inequalities4.3) and ¢.4). Namely, if Go Back
F(z) andG(y) are the functions defined by
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then applying Lemma.2we have

P
l

(4.7) wm%>—ﬂm(/ ny)q@@)

00 q' Az 5
= ghh (/ K(z,y) (g) dy)

ﬂ/(l 5)+P(A1 A2 kq ( /AQ)

= xa
and similarly
(4.8) (W@ (y) =y IR () Ay).
Now, by using ¢.3), (4.7) and {¢.8) we obtain {.5).
The second inequality}(6) follows directly from (@.4). O

Remark3. SettingK (x,y) = (CEH + mE in Corollary4.2 we obtain that the constan{

isequaltoM = B(1 —p'Ay,p'Ay + s — 1)p’B(1 — ¢ Ay, Ay + s — 1)q’
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