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ABSTRACT. Some of the basic inequalities in majorization theory (Hardy-Littlewood-Polya,
Tomic-Weyl and Fuchs) are extended to the framework of relative convexity.
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Relative convexity is related to comparison of quasi-arithmetic means and goes back to B.
Jessen. Segl[5], Theorem 92, p. 75. Later contributions came from G. T. Cargo [2], N. Elezovi
and J. Péaric [3], M. Bessenyei and Z. Pales [1], C. P. Niculescu [10] and many others. The
aim of this note is to prove the extension to this framework of all basic majorization inequali-
ties, starting with the well known inequality of Hardy-Littlewood-Pdlya. The classical text on
majorization theory is still the monograph of A. W. Marshall and I. Olkin [7], but the results
involved in what follows can be also found in [8] and [11].

Throughout this papef andg will be two real-valued functions with the same domain of
definition X. Moreover,g is assumed to be a nonconstant function.

Definition 1. We say thalf is convex with respect tg (abbreviatedg < f) if
1 og(x) flx)
1 gly) fly) [=0
1 g(z) [f(2)
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whenever, y, z € X andg(z) < g(y) < g(z).

When X is an interval and g is continuous and strictly monotonic, this definition simply
means thaff o g~! is convex in the usual sense on the inteival= g(X). Our definition is
strictly larger since we do not make any assumption on the monotonicityFafr example,

f<afeforall f: X — R, and alla > 1.

In particular,sin <sin® on [0, 7], and|z| < 22 onR.
Definition[] allows us to bring together several classes of convex-like functions. In fact,

fis convexs id < f
f islog-convexs id < log f
f is multiplicatively convexs log <1 log f.

Multiplicative convexity means that acts on subintervals df), co) and
f(a' ) < ) )
for all z andy in the domain off and all\ € [0, 1]. See[9], [11].
Lemmal. If f,g: X — R are two functions such thagt< f, then
9(x) = g(y) implies f(z) = f(y).

Proof. Sinceg is not constant, then there must be & X such thay(z) = g(y) # g(z). The
following two cases may occur:
Case 1:g(z) = g(y) < g(2). This yields

1 g(z) f(z)
0<|1 glx) fly) |=(9(2) —g(z)) (f(x) = fy)),
1 g(z) f(2)
so thatf(z) > f(y). A similar argument gives us the reverse inequalfty;) < f(y).
Case 2:g(z) < g(x) = g(y). This case can be treated in a similar way. O

The analogue of Fuchs’ majorization inequality [4] in the context of relative convexity will
be established via a generalization of Galvani’s Lemma.

Lemma 2. If g < f, then for everys, u,v € X with g(u) < g(v) andg(a) ¢ {g(u),g(v)}, we

have
f(w) = f(a) _ f(v) = f(a)
g(u) —gla) = g(v) —g(a)
Proof. In fact, the following three cases may occur:
Case 1:g(a) < g(u) < ¢g(v). Then
g(a) f(a)
0<|1 glu) flu)
1 g(v> f)
= (9(u) = g(a)) (f(v) = f(a)) = (9(v) — g(a)) (f (u) — f(a))

and the conclusion of Lemni& 2 is clear.

Case 2: g(u) < g(v) < g(a). This case can be treated in the same way.
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Case 3: g (u) < g(a) < g(v). According to the discussion above we have

flu) = fla) _ fa) = flu) _ flv) = f(u)
g(w) —gla)  gla) —g(u) = g(v) —g(u)
_ fw) = flv) _ fla) = flv) _ fv) = fla)
g(u) —g(v) = gla) —g(v)  g(v) - g(a)
and the proof is now complete. O

Theorem 3(The generalization of the Hardy-Littlewood-Pdélya inequalitygt f, g : X — R
be two functions such thaki f and consider points,, ..., z,, y1,. . ., y, in X and real weights
P1, ..., P, Such that:

() g(z1) = ... > g(x,) andg(y1) > ... > g(yn);
(i) Dy prg(r) <D prg(ye) forall r =1, n;
(iii) EZ:1 prg(Tr) = Zk:l Prg(Yr)-

Then
> oef () <> pef (-
k=1 k=1

Proof. By mathematical induction. The case= 1 is clear. Assuming the conclusion of
Theoreni B is valid for all families of length — 1, let us pass to the case of families of length
n. If g(z) = g(yx) for some indext, then f(z)) = f(yx) by Lemmd 1, and we can apply our
induction hypothesis. Thus we may restrict ourselves to the case where+# g(y) for all
indicesk. By Abel's summation formula, the difference

(1) > oefly) =D pef (xr)
k=1 k=1

equals
];Ey T (szg i) izlpig(xi)>
5 (=t =) (S-St

1 9(ye) —9(zr)  g(Yre1)

which, by (iii), reduces to

Z_: <f(yk) 8 ﬂyk“; :g((;::i))) (Zpig(yi) - ZZ%’Q(%;)) .

—1 9(ye) —9(zr)  9(Yrta

According to (ii), the proof will be complete if we show that

fWri1) — f(Tri) < f(yr) — flog)
9(Wrks1) — 9(xrr1) — glyr) — g(xr)

(2)

for all indicesk.

In fact, if g(xx) = g(xk1) O g(yr) = g(yry1) for some indexk, this follows from i) and
Lemmag 1L andl2.

Wheng(zg) > g(xk+1) andg(yx) > g(yk+1), the following two cases may occur:
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Case 1:g(zy) # g(yr+1). By a repeated application of Lemina 2 we get

Fpn) = fleen) _ floen) = flen) _ flz) = fyen)

9(Yrt1) — 9(zrt1)  9(@r1) — 9(Wk+1) — g(zk) — 9(Yat1)
S Yrr1) — flan) < flyw) — flzx)
9Wr+1) = g(@e) ~ glu) — g(zw)

Case 2: g(zx) = g(yrs1). In this caseg(zpi1) < g(zr) = g(yrs1) < g(yr), and Lemmag|1
and2 leads us to

fWes1) — f(@r11) f(l"k) f(Tpy1)
9(Wer1) — 9(zen)  g(xr) — g(ze)
f( k)

tin) = flo) _ flge) = flaw)
9(9Ck+1) 9(re) — glyr) — g(zr)
Consequently[ (1) is a sum of nonnegative terms, and the proof is complete. O

The classical Hardy-Littlewood-Podlya inequality corresponds to the case winetiee iden-
tity andp, = 1 for all k. In this case, it is easily seen that the hypothesis i) can be replaced by a
weaker condition,

(i gla) > ... > glan).

When X is an intervalyg is the identity map ofX, andp,, ..., p, are arbitrary weights, we
recover the Fuchs inequality! [4] (orl[8, p. 165]).
An illustration of Theorem|3 is offered by the following simple example.

Example Suppose thaf : [0, 7] — R is a function such that

®3) (f () = f(Z))sinz + (f (2) = [ (2))siny + (f () — [ (y))sinz > 0

forall z,y, z in [0, 7], with sinz < siny < sin z. Then

(@) f(?—D—f(i’—D+f(f—4)gf(g)—f(%)w(o)-

In fact, the condition[(3) means precisely tBat <1f. The conclusion (4) is based on a little
computation:

. . T . 9 3T T
sin — > sin — > sin 0 sin — > sin — > sin —

2 6 ’ 14 14 14’
. T > s
sin 5 sin e
T T 97 3

Slng—SIHE >Sll’lﬁ—SlH 14

T T 91 3 T
Sin — —sin — +sin() = sin — — sin — +sin — =

2 6 14 14 14 2
The inequality(4) is not obvious even whef{z) = sin® z.

In the same spirit we can extend the Térieyl theorem. This will be done f@aynchronous
functions, that is, for functiong, g : X — R such that
(f(@) = f(y) (9(x) — g(y)) = 0

for all x andy in X. For example, this happens whé&nis an interval and” andg have the same
monotonicity. Another example is provided by the pAi= h* andg = h > 0, for o > 1;in
this casey < f.
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Theorem 4(The extension of the To@iWeyl theorem) . Suppose thaf, g : X — R are two
synchronous functions with< f. Consider points:, ..., z,, y1,- .., ¥, iNn X and real weights
P1, ..., P, SUch that:

) g(r1) > ... > g(x,) andg(y) > ... > g(yn);

i) > peg(er) <> peglye) forallr =1,... n.
Then

D ooef) <D pef ()

Proof. Clearly, the statement of Theorgm 4 is true for= 1. Suppose that > 2 and the
statement is true for all families of length— 1. If there exists & € {1,...,n} such that
g(xx) = g(yx), then the conclusion is a consequence of our induction hypothesjézJf #

g(yx) for all k, then we may compute the differen¢é (1) as in the proof of Thepfem 3, by using
the Abel summation formula. By our hypothesis, all the terms in this formula are nonnegative,
hence the differencé](1) is nonnegative. 0J

The integral version of the above results is more or less routine. For example, using Riemann
sums, one can prove the following generalization of Thegrem 4:

Theorem 5. Suppose there are given a pair of synchronous functfops X — R, with g < f,
a continuous weight : [a,b] — R, and functionsp, ¢ : [a, b] — X such that

f o andf o1 are Riemann integrable anglo ¢ and g o v are nonincreasing
and . .
/ g(p(t)w(t)dt < / g((t))w(t)dt forall z € [a,b].
Then ’ , ’ ,
[ sttt < [ o

With some extra work one can adapt these results to the context of Lebesgue integrability and
symmetric-decreasing rearrangements. Notice that a less general integral form of the Hardy-
Littlewood-Pdlya inequality appears inl[7], Ch. 1, Section D. $ée [5] ahd [6] for a thorough
presentation of the topics of symmetric-decreasing rearrangements.

Finally, let us note that a more general concept of relative convexity, with respect to a pair
of functions, is available in the literature. Given a p@if,w,) of continuous functions on an
interval I such that

5) wi(z) wi(y)
wa(z) wa(y)
afunctionf : I — Ris said to bgw,, w,)-convex(in the sense of Pdlya) if
fz) fly)  [f(2)

wi(z) wi(y) wi(z) >0

wa(z) waly) wa(z)

forallz <y < zin I. Itis proved that théw,, w)-convexity implies the continuity of at the
interior points of/, as well as the integrability on compact subintervalg .of
If I is an open intervaly; > 0 and the determinant in the formul[qg (5) is positive, ttfeis

#0 forallx <y,

1
(w1, ws)-convex if and only if the functiorgu%o (ﬁ) is convex in the usual sense (equivalently,

if and only if wy /wy <0 f/wy).
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Historically, the concept ofw;, wy)-convexity can be traced back to G. Pdlya. See [12]
and the comments to Theorem 123, p. 98,[in [5]. Recently, M. Bessenyei and Z.[Pales [1]
have obtained a series of interesting results in this context, which opens the problem of a full
generalization of the Theoreins 3 arjd 4 to the context of relative convexity in the sense of Polya.
But this will be considered elsewhere.
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