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ABSTRACT. Some of the basic inequalities in majorization theory (Hardy-Littlewood-Pólya,
Tomić-Weyl and Fuchs) are extended to the framework of relative convexity.
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Relative convexity is related to comparison of quasi-arithmetic means and goes back to B.
Jessen. See [5], Theorem 92, p. 75. Later contributions came from G. T. Cargo [2], N. Elezović
and J. Pěcaríc [3], M. Bessenyei and Z. Páles [1], C. P. Niculescu [10] and many others. The
aim of this note is to prove the extension to this framework of all basic majorization inequali-
ties, starting with the well known inequality of Hardy-Littlewood-Pólya. The classical text on
majorization theory is still the monograph of A. W. Marshall and I. Olkin [7], but the results
involved in what follows can be also found in [8] and [11].

Throughout this paperf andg will be two real-valued functions with the same domain of
definitionX. Moreover,g is assumed to be a nonconstant function.

Definition 1. We say thatf is convex with respect tog (abbreviated,g C f) if∣∣∣∣∣∣∣
1 g(x) f(x)

1 g(y) f(y)

1 g(z) f(z)

∣∣∣∣∣∣∣ ≥ 0
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wheneverx, y, z ∈ X andg(x) ≤ g(y) ≤ g(z).

WhenX is an interval, andg is continuous and strictly monotonic, this definition simply
means thatf ◦ g−1 is convex in the usual sense on the intervalY = g(X). Our definition is
strictly larger since we do not make any assumption on the monotonicity ofg. For example,

f C fα for all f : X → R+ and allα ≥ 1.

In particular,sin C sin2 on [0, π], and|x|C x2 onR.
Definition 1 allows us to bring together several classes of convex-like functions. In fact,

f is convex⇔ idC f

f is log-convex⇔ idC log f

f is multiplicatively convex⇔ log C log f.

Multiplicative convexity means thatf acts on subintervals of(0,∞) and

f
(
x1−λyλ

)
≤ f(x)1−λf(y)λ

for all x andy in the domain off and allλ ∈ [0, 1]. See [9], [11].

Lemma 1. If f, g : X → R are two functions such thatg C f, then

g(x) = g(y) impliesf(x) = f(y).

Proof. Sinceg is not constant, then there must be az ∈ X such thatg(x) = g(y) 6= g(z). The
following two cases may occur:
Case 1:g(x) = g(y) < g(z). This yields

0 ≤

∣∣∣∣∣∣∣
1 g(x) f(x)

1 g(x) f(y)

1 g(z) f(z)

∣∣∣∣∣∣∣ = (g(z)− g(x)) (f(x)− f(y)) ,

so thatf(x) ≥ f(y). A similar argument gives us the reverse inequality,f(x) ≤ f(y).

Case 2:g(z) < g(x) = g(y). This case can be treated in a similar way. �

The analogue of Fuchs’ majorization inequality [4] in the context of relative convexity will
be established via a generalization of Galvani’s Lemma.

Lemma 2. If g C f, then for everya, u, v ∈ X with g(u) ≤ g(v) andg(a) /∈ {g(u), g(v)} , we
have

f(u)− f(a)

g(u)− g(a)
≤ f(v)− f(a)

g(v)− g(a)
.

Proof. In fact, the following three cases may occur:
Case 1:g(a) < g(u) ≤ g(v). Then

0 ≤

∣∣∣∣∣∣∣
1 g(a) f(a)

1 g(u) f(u)

1 g(v) f(v)

∣∣∣∣∣∣∣
= (g(u)− g(a)) (f(v)− f(a))− (g(v)− g(a)) (f(u)− f(a))

and the conclusion of Lemma 2 is clear.

Case 2: g(u) ≤ g(v) < g(a). This case can be treated in the same way.

J. Inequal. Pure and Appl. Math., 7(1) Art. 27, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


THE EXTENSION OFMAJORIZATION INEQUALITIES WITHIN THE FRAMEWORK OF RELATIVE CONVEXITY 3

Case 3: g (u) < g(a) < g(v). According to the discussion above we have

f(u)− f(a)

g(u)− g(a)
=
f(a)− f(u)

g(a)− g(u)
≤ f(v)− f(u)

g(v)− g(u)

=
f(u)− f(v)

g(u)− g(v)
≤ f(a)− f(v)

g(a)− g(v)
=
f(v)− f(a)

g(v)− g(a)

and the proof is now complete. �

Theorem 3 (The generalization of the Hardy-Littlewood-Pólya inequality). Let f, g : X → R
be two functions such thatgCf and consider pointsx1, . . . , xn, y1, . . . , yn inX and real weights
p1, . . . , pn such that:

(i) g(x1) ≥ . . . ≥ g(xn) andg(y1) ≥ . . . ≥ g(yn);

(ii)
∑r

k=1 pkg(xk) ≤
∑r

k=1 pkg(yk) for all r = 1, . . . , n;

(iii)
∑n

k=1 pkg(xk) =
∑n

k=1 pkg(yk).

Then
n∑

k=1

pkf(xk) ≤
n∑

k=1

pkf(yk).

Proof. By mathematical induction. The casen = 1 is clear. Assuming the conclusion of
Theorem 3 is valid for all families of lengthn − 1, let us pass to the case of families of length
n. If g(xk) = g(yk) for some indexk, thenf(xk) = f(yk) by Lemma 1, and we can apply our
induction hypothesis. Thus we may restrict ourselves to the case whereg(xk) 6= g(yk) for all
indicesk. By Abel’s summation formula, the difference

(1)
n∑

k=1

pkf(yk)−
n∑

k=1

pkf(xk)

equals

f(yn)− f(xn)

g(yn)− g(xn)

(
n∑

i=1

pig(yi)−
n∑

i=1

pig(xi)

)

+
n−1∑
k=1

(
f(yk)− f(xk)

g(yk)− g(xk)
− f(yk+1)− f(xk+1)

g(yk+1)− g(xk+1)

)( k∑
i=1

pig(yi)−
k∑

i=1

pig(xi)

)
which, by (iii), reduces to

n−1∑
k=1

(
f(yk)− f(xk)

g(yk)− g(xk)
− f(yk+1)− f(xk+1)

g(yk+1)− g(xk+1)

)( k∑
i=1

pig(yi)−
k∑

i=1

pig(xi)

)
.

According to (ii), the proof will be complete if we show that

(2)
f(yk+1)− f(xk+1)

g(yk+1)− g(xk+1)
≤ f(yk)− f(xk)

g(yk)− g(xk)

for all indicesk.
In fact, if g(xk) = g(xk+1) or g(yk) = g(yk+1) for some indexk, this follows from i) and

Lemmas 1 and 2.
Wheng(xk) > g(xk+1) andg(yk) > g(yk+1), the following two cases may occur:

J. Inequal. Pure and Appl. Math., 7(1) Art. 27, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 CONSTANTIN P. NICULESCU AND FLORIN POPOVICI

Case 1:g(xk) 6= g(yk+1). By a repeated application of Lemma 2 we get

f(yk+1)− f(xk+1)

g(yk+1)− g(xk+1)
=
f(xk+1)− f(yk+1)

g(xk+1)− g(yk+1)
≤ f(xk)− f(yk+1)

g(xk)− g(yk+1)

=
f(yk+1)− f(xk)

g(yk+1)− g(xk)
≤ f(yk)− f(xk)

g(yk)− g(xk)
.

Case 2:g(xk) = g(yk+1). In this case,g(xk+1) < g(xk) = g(yk+1) < g(yk), and Lemmas 1
and 2 leads us to

f(yk+1)− f(xk+1)

g(yk+1)− g(xk+1)
=
f(xk)− f(xk+1)

g(xk)− g(xk+1)

=
f(xk+1)− f(xk)

g(xk+1)− g(xk)
≤ f(yk)− f(xk)

g(yk)− g(xk)
.

Consequently, (1) is a sum of nonnegative terms, and the proof is complete. �

The classical Hardy-Littlewood-Pólya inequality corresponds to the case whereg is the iden-
tity andpk = 1 for all k. In this case, it is easily seen that the hypothesis i) can be replaced by a
weaker condition,

(i ′) g(x1) ≥ . . . ≥ g(xn).

WhenX is an interval,g is the identity map ofX, andp1, . . . , pn are arbitrary weights, we
recover the Fuchs inequality [4] (or [8, p. 165]).

An illustration of Theorem 3 is offered by the following simple example.

ExampleSuppose thatf : [0, π] → R is a function such that

(3) (f (y)− f (z)) sin x+ (f (z)− f (x)) sin y + (f (x)− f (y)) sin z ≥ 0

for all x, y, z in [0, π], with sin x ≤ sin y ≤ sin z. Then

(4) f

(
9π

14

)
− f

(
3π

14

)
+ f

( π
14

)
≤ f

(π
2

)
− f

(π
6

)
+ f (0) .

In fact, the condition (3) means precisely thatsin Cf. The conclusion (4) is based on a little
computation:

sin
π

2
> sin

π

6
> sin 0, sin

9π

14
> sin

3π

14
> sin

π

14
,

sin
π

2
> sin

9π

14
,

sin
π

2
− sin

π

6
> sin

9π

14
− sin

3π

14
,

sin
π

2
− sin

π

6
+ sin 0 = sin

9π

14
− sin

3π

14
+ sin

π

14
=

1

2
.

The inequality(4) is not obvious even whenf(x) = sin2 x.

In the same spirit we can extend the Tomić-Weyl theorem. This will be done forsynchronous
functions, that is, for functionsf, g : X → R such that

(f(x)− f(y)) (g(x)− g(y)) ≥ 0

for all x andy inX. For example, this happens whenX is an interval andf andg have the same
monotonicity. Another example is provided by the pairf = hα andg = h ≥ 0, for α ≥ 1; in
this case,g C f .
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Theorem 4(The extension of the Tomić-Weyl theorem). . Suppose thatf, g : X → R are two
synchronous functions withgC f . Consider pointsx1, . . . , xn, y1, . . . , yn in X and real weights
p1, . . . , pn such that:

i) g(x1) ≥ . . . ≥ g(xn) andg(y1) ≥ . . . ≥ g(yn);

ii)
∑r

k=1 pkg(xk) ≤
∑r

k=1 pkg(yk) for all r = 1, . . . , n.

Then
n∑

k=1

pkf(xk) ≤
n∑

k=1

pkf(yk).

Proof. Clearly, the statement of Theorem 4 is true forn = 1. Suppose thatn ≥ 2 and the
statement is true for all families of lengthn − 1. If there exists ak ∈ {1, . . . , n} such that
g(xk) = g(yk), then the conclusion is a consequence of our induction hypothesis. Ifg(xk) 6=
g(yk) for all k, then we may compute the difference (1) as in the proof of Theorem 3, by using
the Abel summation formula. By our hypothesis, all the terms in this formula are nonnegative,
hence the difference (1) is nonnegative. �

The integral version of the above results is more or less routine. For example, using Riemann
sums, one can prove the following generalization of Theorem 4:

Theorem 5. Suppose there are given a pair of synchronous functionsf, g : X → R, with gCf,
a continuous weightw : [a, b] → R, and functionsϕ, ψ : [a, b] → X such that

f ◦ ϕ andf ◦ ψ are Riemann integrable andg ◦ ϕ andg ◦ ψ are nonincreasing

and ∫ x

a

g(ϕ(t))w(t)dt ≤
∫ x

a

g(ψ(t))w(t)dt for all x ∈ [a, b].

Then ∫ b

a

f(ϕ(t))w(t)dt ≤
∫ b

a

f(ψ(t))w(t)dt.

With some extra work one can adapt these results to the context of Lebesgue integrability and
symmetric-decreasing rearrangements. Notice that a less general integral form of the Hardy-
Littlewood-Pólya inequality appears in [7], Ch. 1, Section D. See [5] and [6] for a thorough
presentation of the topics of symmetric-decreasing rearrangements.

Finally, let us note that a more general concept of relative convexity, with respect to a pair
of functions, is available in the literature. Given a pair(ω1, ω2) of continuous functions on an
intervalI such that

(5)

∣∣∣∣∣ ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣∣ 6= 0 for all x < y,

a functionf : I → R is said to be(ω1, ω2)-convex(in the sense of Pólya) if∣∣∣∣∣∣∣
f(x) f(y) f(z)

ω1(x) ω1(y) ω1(z)

ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣∣ ≥ 0

for all x < y < z in I. It is proved that the(ω1, ω2)-convexity implies the continuity off at the
interior points ofI, as well as the integrability on compact subintervals ofI.

If I is an open interval,ω1 > 0 and the determinant in the formula (5) is positive, thenf is

(ω1, ω2)-convex if and only if the functionf
ω1
◦
(

ω2

ω1

)−1

is convex in the usual sense (equivalently,

if and only if ω2/ω1 C f/ω1).
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Historically, the concept of(ω1, ω2)-convexity can be traced back to G. Pólya. See [12]
and the comments to Theorem 123, p. 98, in [5]. Recently, M. Bessenyei and Z. Páles [1]
have obtained a series of interesting results in this context, which opens the problem of a full
generalization of the Theorems 3 and 4 to the context of relative convexity in the sense of Pólya.
But this will be considered elsewhere.
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