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1. THE INEQUALITY
The purpose of this contribution is to prove the following.

Theorem 1.1. Let« be a real-valued smooth localized function with non-zero integral,

(1.1) /Qp(m) dx = M # 0,
satisfying :

(1.2) / 2" 04(x)| dx < O, forall ,7 > 0.
Then there exists a unifoﬂjm constant > 0 such that

(1.3) sup [u(@)] < Ol [lull £ lus — o]l 2,

T

forallu € H'(R) and alla € R.

Clearly, this result is an extension of the classical Sobolev inequality
lull3e < 2llullze [l 2

Assumingy satisfies[(1]1) and (3.2), inequalify (L.3) is valid for ang H'(R) and alla € R;
here the constar@, > 0 is independent of. and «, but depends om. This result may be
useful while studying the asymptotic behavior of solutions to evolution equations that decay to
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2 RAMON G. PLAZA

a manifold spanned by a certain functign(see Sectiof]2 below). It is somewhat surprising
that the result holds for alt € R. The crucial fact is that the antiderivative pfcannot be in
L?, thanks to hypothesi§ (1.1). In this fashion we avoid the ease span{1}.

We would like to establish (I].3) by extremal functions. Since the solution to the mini-
mization problem associated with (L.3) may not exist, our approach will consist of studying
a parametrized family of inequalities for which we can explicitly compute extremal functions
for each parameter value.

Theorem 1.2. Under the assumptions of Theorgem| 1.1, there exists a constant such that
(1.4) e < p HlullZz + pllus — a2,

forall p > 0, @ € R, andu in a dense subset df'(R) with u(0) = 1. Moreover,, is also
uniform under translation)(-) = ¢ (- + y), wherey € R (even though hypothed(%.2) is not
uniform by translation).

Proposition 1.3. Theoreny 12 implies Theorgm[1.1.
Proof. It suffices to show that
(1.5) [u(0)] < Cullull i lus — o] 7,

with uniform C, > 0, also by translation. Indeed, we can always take, foriaayR, u(x) :=

u(z +y), ¥(z) = ¢(x +y), yielding
lu(y)| = [@(0)] < C.|la|l )i i — ad||}s
= Culfu(- + |22 ol + ) — awd(- + y) || /2
= CulJul i lue — ap|| 32, Wy ER,

by uniformity of C,, and by translation invariance @ norms. This shows (11.3).
Now assume Theoren 1.2 holdsf0) = 0 then [I.5) holds trivially. In the cas€0) # 0,
consideri = u/u(0), & = o/u(0) and apply[(1.4),

cxu(0)* < p~Hullze + pllue — a7
Minimizing overp yieldsp = ||u||p2/||u. — at)]| 12, SO that
cxu(0)* < 2|lullzz [lus — o] .
This proves[(1.5) witlC, = /2/c.. O

Therefore, we are left to prove Theorém|1.2.

1.1. Proof of Theorem([1.2. Without loss of generality assume that

(1.6) ¥l = 1.
Sinceu € H', we may use the Fourier transform, and the constrgitit = 1 becomes
@) JEGLS

R

up to a constant involving. Note that the expression on the right [of (1.4) defines a family of
functionals parametrized Qy> 0,

(1.8) Tl = o /R ()2 de + p /R i€a(€) — o (€) de.
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We shall see by direct computation that the minimizexists and is unique (given by a simple

formula) for eactp anda. Denotei = v + iw, ¥» = n + if (real and imaginary parts). Then
each functional (1]8) can be written as

@9) 7 =p" |

R

(02 + w?) dE + p/(§2(v2 +w?) + 208 (wn — v8) + *(* + 67)) dE.

R

The constraint[(1]7) splits intg vd¢é = 1 and [wd¢ = 0. Hence, we have the following
minimization problem

min J*[(v,w)]

u€H1(R)
subject to

T, (v, w)] :/vazg—lzo,
Zi(v.u)) = [ wde =0,

for eachp > 0 anda € R. The Lagrange multiplier conditions
%D(hho)j[(v, U))] = :uD(hluO)Il[(/U’ w)]7
3D0ha) T [(v,w)] = VDo) Io[ (v, w)],
yield

/(p_lv + p€2v — pabé)h, dé = u/ hy dE,
R R

[ 7w o+ panghad = v | hade
R R
for some(, v) € R? and for all test function$h,, h,). Therefore
p~tv + p€Pu — path = p,
ptw + p&lw + pakn = v.
Denote) = i + iv. Multiply the second equation by and solve for andw to obtain
iap2Ed
1 +p2€2
Equation [(1.ID) is, in fact, the expression for the minimizer. Whence, we can compute the

minimum value of7” for eachp > 0, in terms of\ anda. Substituting[(1.10) one obtains
(after some computations),

(IAI” + a?|d]?)
1 +p2£2
Hence we easily find that the minimum value/6f is given by

R

11~ A A 1%
p~Hal* + pligi — ap|* =

14 p22 r 1+ 0262
(1.11) =7\ + a’T(p),
where

._ ()
(1.12) L(p):=p rers dg.
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Now we find the Lagrange multipliexin terms ofa using the constrain (1.7), which implies

1= )\/ pds ap? i€y(€) dé = At + aO(p),
R

14 p*¢? r 142
where
o [ €O
(1.13) O(p) :=—p /]R T dé.
Solving for A we find,
(1.14) A= %(1 —aO(p)).

~

~

Observe that since is real, then) (&) = ¢(—¢) and therefor®(p) € R for all p > 0. This

readily implies that\ € R and, upon substitution if (1./11), that
1
(1.15) Tiin = —(1=aB(p))* + a’T(p).

The latter expression is a real quadratic polynomial ia R. Minimizing overa we get

_ 9k
L' (p) + O(p)

Thus, we can substitute (1]116) [n (1.15), obtaining in this fashion the lower bound

I'(p)
mL'(p) + ©(p)?

(1.16)

33

Tnin = L(p) = > 0.

Remark 1.4. The choice[(1.16) corresponds to taking= fz'le@df € R, as the reader may
easily verify using[(1.70). Intuitively, the most we can do within (1.8) is to remove the
y-component ofa. In other words, if we minimize|u, — a| > over a we obtaina =

[updz/ [?*de = fszude (recall ||4||: = 1). We can substitute its value in the ex-
pression of the minimizer to compute the lower bodiid).

We do not need to show thdt (I]10) is the actual minimizer. The variational formulation
simply helps us to compute a lower bound for the functional in terms dfext, we study the
behavior of©(p) andI'(p) for all p > 0. We are particularly interested in what happens for
largep. In addition, we have to prove that the lower bound is uniform | R if we substitute
¥(+) by ¥(- +y), a property that was required in the proof of Propositiof 1.3.

Lemma 1.5. There holds

(i) T'(p) € R* for all p > 0 and it is invariant under translationy(-) — (- + y) for any
y € R,

(i) C~1p <T(p) < Cpforp~ 0", and some& > 0,

(i) T(p) — TM?asp — +oo,

(iv) ©(p) < Cp?*forp~ 0F, and

(v) ©(p) is uniformly bounded under translatiaf(-) — (- +vy) withy € R, asp — +oo.
Proof. (i) is obvious, asé/(- + y)(&)| = [d(€)] = [4(€)
['(p) > 0, forall p > 0.

; also by [(1.1), it is clear that
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(ii) follows directly from T'(p) < p [ |4[?d¢ = p for all p > 0, because of (1}6), and from
noticing that

I(p) = [ I@/)C(Qéipil

/<<1 /<|>1

2 2q0c =L h(E|? de.
. /;qum|g AQMW®|€

d¢

-2

Since||1]| 2 = 1, we have forp sufficiently small,

/ (e de >
|€1<1/p

and thus(p) > 1p = C~'pfor p ~ 07,

DN | —

(iii) to prove (iii), notice that|¢)| is boundedy(¢/p) — (0) asp — +oco pointwise, and
(¢% + 1)~ is integrable; therefore we clearly have

[9(¢/p) |2 |w ;
0(p) = [ PP dc— [ T dc = mlio) = A >
asp — +oo.

(iv) follows directly from hypothesig (1}2), as

©(p)| < p? l’ff(z)gzé_ /|§¢ )| d¢ < Cp2.

Note that this estimate is valid also by translation, even thaugh- y) may not satisfy[(1]2).

(v) in order to prove (v), we first assume thattself satisfies[(1]1) andl (1.2). Split the integral
into two parts,

i€P(§) iEP(E)
O(p) = — ——=2_df — d L + L.
) /|£<1 & +1/p? : /£|>1 §2+1/p? $i=htd
I, is clearly bounded gs — +o0o by hypothesis/(1]2),
<0
I — )| d
ni< [ arigds [io<c
Denote . .
£((&) —1(0)) for& #0,
)&
ole) = {%(0) for ¢ = 0.
¢ is continuous. Thenl; can be further decomposed into
) i€ dg i80(E)
I, = —9(0 ———d d¢.
' v )/|§§1 &2+1/p? < - /§|<1 &2 +1/p? <
The first integral is clearly zero for gl > 0, and the second is clearly bounded as
269
=2 ¢ < ¢ < C.
4&1 & +1/p? ‘= gl<1 e <
Therefore©(p) is bounded ap — +oc.
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Now, let us suppose that(-) = iy(- + y) for some fixedy € R,y # 0, wherey, satisfies
(L.1) and[(T.R). Then clearly(&) = €Y1 (€) and

igeitue)

& +1/p

Assume thay > 0 (the casg) < 0 is analogous); then consider the function
_ iz (2)
g(z) - Z2+1/p2 )

for z in Im z > 0, and take the upper contour
C=[-R,RlU{z= Re"; 0 c0,7]},

for someR > 0 large. Themy(z) is analytic inside&C except at the simple pole= i/p. (When
y < 0 one takes the lower contour that encloses the pate-at-i/p.) By complex integration
of g alongC in the counterclockwise direction, and by the residue theorem, one gets

/Cg(z) dz = 2miRes.—;/, g(2) = —me~YPg (i) p).

Therefore it is easy to see that the vatig) is uniformly bounded iy € R as
1©(p)| < wlido(i/p)] — 7| M| >0
whenp — +oco. This completes the proof of the lemma.

Remark 1.6. If we consider the solution” to

(1.17) g+ 2 = Y,
p
then, after taking Fourier transform, one finds
N3
u (f) 52 + 1/[)2’
so thatu”(0) = [4rd¢ = —O(p). The claim that”(0) is bounded ap — +oo is plausible
because in the limit (formally) we haveu?, = v, oru? = —. Since is integrableu”

should be bounded. The boustp) ~ e~¥I/» represents the (slow) exponential decay of the
Green’s function solution t¢ (1.17).

In Lemma[ 1.5, we have shown th@{p) andI'(p) are uniformly bounded fop large and
in y € R. The same applies td(p). For p near0, since both tend to zero as— 07, by
L'Hobpital's rule we get

dr

lim Z(p) = lim ap

-1
———— =1 >0
dr de )
0+ o0+ ral de
p—0 pol?dp+2@dp

because (ii) implie$dI’/dp)|,—o+ > C~' > 0, andd®©/dp is bounded ap — 0" by (iv).

Therefore, the constaf(p) is uniformly bounded from above and below for alt> 0, in
particular forp — +oo. This implies the uniform boundedness from belowf. and of
J*[u] for all u in the constrained class of functions considered in Thegrepn 1.2. Furthermore,
the lower bound is uniform by translation as well. This completes the proof. O
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Remark 1.7. The corresponding Fouridr' estimate
il < Cllale’ lliga — a2,
(from which the result can be directly deduced), does not hold. Here it is a counterexample: let
1) be a nonnegative function with compact support an@lég its antiderivative. Set
u(z) == (z) - V(z/L),

whereL > 0 is large. Then there i® > 0 such that: vanishes outsider| < RL. Henceforth
|ul| 2 < CL for someC' > 0. Moreover, we also have, — ) = ¢(x)/L, and consequently
|uz — || 2 < C/L. This implies that the produ@its|| .2 ||u. — || L= remains uniformly bounded
in L. Now, the Fourier transform of is

i) = $(9) — (L) = £ (h(L) ~ b))

Since) has compact support, it vanishes outsile< R, for someR > 0. Now, |@@(0)| =
M > 0 implies that|¢(¢)| > 0 near¢ = 0, and we can choose sufficiently large such that
1ih(€)] > ¢ for R/L < |¢] < 6,/2, wheres, = sup {8 > 0; [¢)(€)| > 0 for 0 < |¢| < 6}, and
o IS independent of.. Therefore

forall R/L < |¢| < 6,/2, and theL' norm of @ behaves like

d
lall > co / % ol — too,
R/r<lei<s. /2 I€]

aslL — +oo.

2. APPLICATIONS TO VISCOUS SHOCK WAVES

To illustrate an application of uniform inequality (IL.3), consider a scalar conservation law
with second order viscosity,
(2.1) w4 f(U)r = Ugg,
where(z,t) € R x [0,+0c0), f is smooth, andf” > a > 0 (convex mode). Assume the
triple (u_, u,, s) (with uy < u_) is a classical shock front/[5] satisfying the Rankine-Hugoniot
jump conditior| —s[u] + [f(u)] = 0, and Lax entropy conditiorf’(u;) < s < f'(u_). A
shock profile[1] is a traveling wave solution fo (2.1) of foww,t) = u(x — st), whereu
satisfiesu” = f(u), — su’, with’ = d/dz, z = = — st, andu — uy asz — +oo. Without
loss of generality we can assume= 0 by normalizingf (see e. g.[[3]), so that(uy) = 0,
f'(uy) < 0 < f'(u_) and the profile equation becomes

(2.2) iy = f(10).
Such a profile solution exists, and under the assumptions, it is both mon@tore 0 and
exponentially decaying up to two derivatives

0 (a(z) — us)| S e,

forall 0 < j < 2 and some constant> 0 (see[7[ -8/ 1] and the references thergin)
We will show that the following consequence of Theofen)j 1.1 is useful to obtain decay rates
for solutions to the linearized equations for the perturbed problem.

'Here[g] denotes the jump(u, ) — g(u_) for anyg.
2In the sequel £” means ‘<” modulo a harmless positive constant.

J. Inequal. Pure and Appl. Mat}8(1) (2007), Art. 2, 13 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

8 RAMON G. PLAZA

Lemma 2.1. Letu be the shock profile solution €.2). Then
(2.3) ullioe S llullzzllue — atig| 12,
forallu € H'(R) and alla € R.

Proof. Follows immediately from Theorem 1.1 with = @, which satisfies hypothesds ([1.1)
and [1.2), ag, is exponentially decaying and has non-zero intefgriaj 0. O

Consider a solution t¢ (2.1) of the formi-u, v being a perturbation; linearizing the resulting
equation around the profile we obtain

(2.4) up = Lu = Uy — (f'(ﬂ)u)x,

whereL is a densely defined linear operator in, sA¥, In [4], Goodman introduced thigux
transformF : WP — LP, whereFu := u,, — f'(u)u, as a way to cure the negative sign
of f"(u)u, < 0. That is, ifu solves [[2.4) then clearly its flux variable:= Fu satisfies the
“integrated” equation 2],

(2.5) = L= Upy — [ (U)Uy,

which leads to better energy estimates. Another feature of the flux transform formulation is the
following inequality (see [4] for details, or [6] — Chapter 4, Proposition 4.6 — for the proof).

Lemma 2.2(Poincaré-type inequality)T here exists a constatt > 0 such that for alll <p <
+oo andu € L?,

(2.6) |lu — dtg||r < Cl|Ful| e,
wherej is given by
1
2.7 == U
(27) 5= / uii, d.

andZ = [, a2 dz > 0is a constant.

Here we illustrate an application of the uniform estimate|(2.3) to obtain sharp decay rates for
solutions to the linearized perturbation equation, using the flux formulation due to Goodman.

Proposition 2.3 (Goodman [[4]) For all global solutions tou; = Lu, with suitable initial
conditions, there holds

(2.8) lu(t) = 0(t) el S ¢[[u(0)wra,

whered(t) is given by(2.7).

Remark 2.4. This is a linear stability result with a sharp decay rate (the pawe? is that of
the heat equation, and therefore, optimal). Notice alsodtftatiepends om, corresponding (at
least at this linear level) to an instantaneous projection onto the manifold spannedTine

need of a uniform inequality for all € R such as[(2]3) is thus clear. For a very comprehensive
discussion on (nonlinear) “wave tracking” and stronger results, see Zumbrun [9].

Remark 2.5. The formal adjoint of the integrated operator is given by
LU = gy + (f (W)u),.
Note that ifv andw are solutions te;, = Lv andw, = —L*w, respectively, then

d

- Ry(t)w(t) der = /(wﬁv —vL'w)dz =0,

R
and hence

/Rv(t)w(t) dx = /RU(O)w(O) dzx, forall ¢t>0.
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In the sequel, we will gloss over many details, such as global existence of the solutions to
the linear equations, or the correct assumptions for initial conditions in suitable spaces (which
are standard and can be found elsewhere! [2, 9]), and concentrate on filling out the details of the
proof of Propositiof 2]3 sketched in [4].

2.1. Energy Estimates. We start with the basic energy estimate.

Lemma 2.6. Letwv be a solution to eithev, = Lv or v, = L*v. Then for allt > s > 0 we have
the basic energy estimate

d
(2.9) 3l < o0l = 5 [ F@lalote e <o
and,
(2.10) [o(®)3 < llo(s) 2,
2.11) [ el dr < 50t
(2.12) | [ 1@l dadr < foGs)

Proof. Follows by standard arguments. Multiply = Lv by v and integrate by parts once to
get (2.9). Likewise, multiply, = L£*v by v and integrate by parts twice to arrive at the same
estimate. The negative sign jn (R.9) is a consequence of compressivity of th¢{vaye, < 0.

Estimates[(2.70) { (2.12) follow directly froin (2.9). O
Next, we establish decay rates fgrandw, and solutions te; = Lv andw; = L*w.

Lemma 2.7. Letwv be a solution ta;, = Lv. Then the following decay rate holds

(2.13) loe(®)llze < 72 [[0(0)]] 22

Proof. First observe that, = Fuv,, and thereforey,, = (Fv,); = Fu, = Loy, that is, v,
solves the integrated equation as well, and hence, the estiates (2.9)]- (2.12) hplal$or
In particular, thel.? norm ofu, is decreasing. To shoW (2]13) it suffices to prove

(2.14) loe()1I7> < llva(s)l72,
forallt > s+ 1,s > 0. Integrate[(2.14) in € [0,¢ — 1] and use[(2.]1) to obtain

t
le(®)IZ2 < (¢ = 1)‘1/0 lva ()12 ds < (£ = D) o(O)IZ2 <t lo(0)][Z2,

for all ¢t > 2, yielding (2.13). To show (2.14) differentiate = Lu with respect tor, multiply
by v, and integrate by parts to obtain

1d 1 _

(2.15) 52Oz = —llvaa(O)ll72 — 5 / F(@)zvz de < Mljvs(8)]1Z2,
2dt 2 Jr

whereM := sup |f'(u),|. By Gronwall’'s inequality

(2.16) lva(T + )72 < e floa(T) 72,

forall t,7 > 0. Integrating[(2.15) int € [s, T7,

@17) ol < [0~ [ lonadr =5 [ [ F@0 )2 dun
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Estimate the last integral usirg (2] 16), to obtain

T-s
(@hoddodr| <1 [ M)l dr < M ()]
0

Upon substitution in(2.17),

T
/H%WW%WS%O+JMMM%®ML

Likewise, from [2.1B) it is easy to show that

//'f s (7)? dedr < - M(TSH%()Hm

wherem := sup | f'()|. Denotingu(t) := max { 1( +eMt) meMil we see that both

xx 22d7 d (@ T 2dd7
lrwcmuf an L‘4UWWWﬂ wdr

are bounded by (T —s)||v,(s)||72. Since theL? norm ofv, is decreasing, integrating inequality
(2.10) forv, we obtain

(T =)Dl < [ r) B dr
— [ 1@l dr

slwwmw;w+Laéwwmwymm

S (T = 8)|lva(s) | z2-
Choos€l’ — s = 1 to finally arrive at

loe()172 < [loe(X + )72 < p(D)lva(s)l[7e,
forallt > 1+ s, establishing[(2.14). This proves the lemma. O

Lemma 2.8. Letw be a solution tav; = L*w. Then the following decay rate holds
(2.18) [w(t)[z S 4w (0)]] 2.

Proof. Recall that[(2.9) {(2.32) hold far. In particular, by convexity” > a > 0 and [2.12),
we have

¢
(2.19) //\ﬂm|w(7')2dxd7'§a1Hw(0)||%2,
0o Jr

for all ¢ > 0. Differentiatew, = L*w with respect tor, multiply by w, and integrate by parts
to obtain, for allt > 0,

d
gl O =l Ol =5 [ P @R de =5 [ F@uw(oP do

The first two terms on the right hand side have the right sign for decay. We must control the
term — [ f'(u)...w? dz. For that purpose, use the equation éoand the profile equation to

compute
/\uxlw —/Iﬂx|wz(t)2dw—/f”(ﬂ)lﬂxlzw(t)de
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This provides the cancellation we need, as the decredgimprm we seek will be that of,
plus a multiple of|i,|'/?w. First note by the smoothness pfand convexity that there exists
A > 0 such that

|/ (@)aaa] < Altis].
This implies

d
% (Ghos: + 54 [ adute ao)

1
o 0 / F@ il do =5 [ @)t dos

— Ag? _$$2d_A—1 //——:62 24
a /R|u |w,(t)* dx a /Rf (@)|ay|*w(t)” dx
< J(t) — é/R\uwa(t)z dzx

J(t) = —llwe ()72 — 5 / S ()|t |wo (8)? da — Aal/ g | wg (1) dz < 0,
R
for all t > 0. DenotingA = Aa~! and defining
RE) = unlt)lf + A [ [aafu(o? do
R

we have thus shown that(¢) is the decaying norm we were looking for, @8/dt < 0. Inte-
gratingR(t) < R(r) according to custom with respecttoc [0, ¢], for fixedt > 0, and using

(2.11) and[(2.19), one can estimate

t
IR(t) < / R(r)dr < Yw(0)[2: + Aa w(0)[2> < [w(0)]2..

where

Therefore,
e ()22 S 2w (0)]] 12,
forall t > 0 large. By the classical Sobolev inequality ahd (2.10) we obtain

1/2 1/2 _
[w(®)[zee < Nwa (]2 w15 S 4w (0)]] 2,
as claimed. 0

2.2. Proof of Proposition[2.3. If u solvesu; = Lu, then its flux transforme = Fu is a solution
to v, = Lv. Apply the uniform Sobolev-type inequality (2.3) tpsubstituting « by

. 1 B
i(t) = Z /va(t)ux dz,
(with Z = [, |u,|* dz), and the Poincaré-type inequalify (2.6) (with= 2), to obtain
o= S lo(®)llz2llve = 6(t) |2
S o@)lz2ll(Foe) @)l = o)l z2 (0w ()] 2.
Then, using the estimate (2]13), we arrive at

(2.20) lo@®)l7 < (8 = 5)"llu(s)]17,

'Here the uniformity of inequalityf (2] 3) in € R plays a crucial role.
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for all t > s + 2. For fixedT > 0 define the linear functionall : L? — R as

Agi= [ v(@)gds,
R
for all g € L?, with norm

Al = s | [ o(T)gs
lgllp2=11/R

For everyg € L? with ||g||z: = 1, we can always solve the equation = —L*w = —w,, —
(f'(u)w), ont € [0,T] “backwards” in time, withw(T') = g. Thus, by Remark 2|5

/]R o(T)g da /]R o(T)e(T) dz /R 0(0)w(0) dz

for all 7 > 0. Making the change of variables(x,t) = w(x,T — t) we readily see thab
satisfies, = L£*w with @w(0) = g, and we can use estimalfe (2.18), yielding

lw(0) ]|z = (D)l < T gllz2.

_ - < (O |zt [lw(0) | =

Thus,
[o(T)]| 2 = e /RU(T)gd:c < o)z [lw(O) [z S T4[0(0)]l 11,
gli2=
forall 7" > 0. Chooses = t/2 in (2.20), and apply the last estimate with= ¢/2, to get
(2.21) [o()llze S (¢/2)7Hlo(t/2) |2 S 72 [0(0)]1 1,

which corresponds to the optimal decay rate for solutions to the integrated equation.
To prove the decay ratg (2.8) for the original solution to the unintegrated equation_u,
apply the Poincaré-type inequality again (now with- co) together with|[(2.21),
lu(t) = 6()ae | S o)l S 2 [0(0)]2r S 2 u(0) [
This completes the proof. O
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