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ABSTRACT. Weighted distributions in general and length-biased distributions in particular are
very useful and convenient for the analysis of lifetime data. These distributions occur naturally
for some sampling plans in reliability, ecology, biometry and survival analysis. In this note an
increasing failure rate property for lifetime distributions is used to define a natural ordering of the
weighted reliability measures. Some useful bounds, probability weighted moment inequalities
and variability orderings for weighted and unweighted reliability measures and related functions
are presented. Stochastic comparisons and moment inequalities for weighted reliability measures
and related functions are given.
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1. I NTRODUCTION

Weighted distributions occur frequently in research related to reliability, bio-medicine, ecol-
ogy and several other areas. If item lengths are distributed according to the distribution function
(df) F, and if the probability of selecting any particular item is proportional to its length, then
the lengths of the sampled items have the length-biased distribution. If data is unknowingly
sampled from a weighted distribution as opposed to the parent distribution, the reliability func-
tion, hazard function and mean residual life function may be over or underestimated, depending
on the weight function. For size-biased or length-biased distributions in which the weight func-
tion is increasing monotonically, the analyst usually gives an over optimistic estimate of the
reliability function and the mean residual life function. A survey of applications of weighted
distributions in general and length-biased distributions in particular are given by Patil and Rao
[8]. Vardi [10] derived a non-parametric maximum likelihood estimate of a lifetime distribution
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2 BRODERICK O. OLUYEDE

F, on the basis of two independent samples, one sample of sizem, fromF, and the other a sam-
ple of sizen, from the length-biased distribution ofF, and studied its distributional properties.
Gupta and Keating [4] obtained results on relations for reliability measures under length-biased
sampling. Oluyede [7] obtained useful results on inequalities and selection of experiments for
length-biased distributions, and investigated certain modified length-biased cross-entropy mea-
sures. Also, see Daniels [2], Bhattacharyya et al [1], Zelen and Feinleib [11] and references
therein for additional results on weighted distributions.

LetX be a non-negative random variable with distribution functionF and probability density
function (pdf)f . The weighted random variableX

W
, has a survival function given by,

(1.1) GW (x) =
F (x)(W (x) + TF (x))

EF (W (X))
,

whereTF (x) =
∫∞

x
(F (u)W

′
(u)du)/F (x), andW

′
(u) = dW (u)/du, assuming thatW (x)F (x)

→ 0 asx → ∞. The probability density function of the survival function given in (1.1) is re-
ferred to as a weighted distribution with weight functionW (x) ≥ 0. If W (x) = x in (1.1),
the resulting function is referred to as the length-biased reliability function. The purpose of this
note is to establish and compare inequalities for weighted distributions including length-biased
distributions. An increasing failure rate property (IFRP) for lifetime distributions is used to de-
fine a natural ordering of the weighted reliability measures and some implications are explored.
We establish some moment type inequalities for the comparisons of length-biased and weighted
distributions with the parent distributions. Some important utility notions, including useful and
meaningful inequalities, are presented in Section 2. Section 3 is concerned with orderings, in-
cluding the increasing failure rate property (IFRP) ordering for weighted reliability measures
and related functions. Stochastic comparisons and moment inequalities involving reliability
functions, are presented in Section 4.

2. UTILITY NOTIONS AND BASIC RESULTS

In this section, we give some definitions and useful concepts. LetF be the set of absolutely
continuous distribution functions satisfying

(2.1) H(0) = 0, lim
x→∞

H(x) = 1, sup{x : H(x) < 1} = ∞.

Note that if the mean of a random variable inF is finite, it is positive. We begin by presenting
some definitions. LetF andG denote the distribution functions of the random variablesX and
Y respectively. Also, letF (x) = 1 − F (x) andG(x) = 1 − G(x) be the respective reliability
functions. A class of moments, called probability weighted moments (PWM), was introduced
by Greenwood et al [3].

Definition 2.1. The PWM is given by

(2.2) Ml,k,j = E[X lF jF
k
],

wherel, k, j are real numbers andF (x) = 1− F (x).

Example 2.1 (IRLS and Hazard Functions). In the iterative reweighted least-square (IRLS)
algorithm for the maximum likelihood fitting of the binary regression model, the expressions in
the algorithm for the weights are given by,

(2.3) W−1 = (f(θ))−2F (θ)F (θ)

which can be expressed in terms of the hazard functionshF (θ) andλF (θ), that is,

(2.4) W =
f(θ)

F (θ)

f(θ)

F (θ)
= hF (θ)λF (θ),
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PROBABILITY WEIGHTED MOMENT INEQUALITIES 3

where the relationship between the fitted response probabilityp, and the linear predictorθ is
given byp = F (θ), the derivativedθ/dp = 1/f(θ), andf(θ) = dF (θ)/dθ is the probability
density function of the predictor. Clearly, the expectation of the expression for the weights
in the reweighted least-square (IRLS) algorithm for maximum likelihood fitting of the binary
regression model is the probability weighted moment of(f(θ))−2, that is,

(2.5) E[W−1] = E[(f(θ))−2F (θ)F (θ)].

Following Greenwood et al [3], we define the following probability weighted moment (PWM)
order for life distributionsF andG.

Definition 2.2. Let F andG be inF , and setp = l + 1, thenF is said to be larger thanG in
PWM(l, k, j) ordering,(F ≥PWM(l,k,j) G) if

(2.6)
∫ ∞

t

xp−1F j(x)F
k
(x)dF (x) ≥

∫ ∞

t

xp−1Gj(x)G
k
(x)dG(x)

for all t ≥ 0.

Next we present some basic definitions for the comparisons of reliability functions of two
random variablesX andY. These definitions involve the hazard functionλF (x) = f(x)/F (x),
and the reverse hazard functionhF (x) = f(x)/F (x), wheref(x) = dF (x)/dx is the probabil-
ity density function (pdf) of the random variableX. Note that the functionhF (x) behaves like
the density functionf(x) in the upper tail ofF (x). See Szekli [9] for details on these and other
ageing concepts.

Definition 2.3.
(i) Let X andY be random variables with distribution functionsF andG respectively. We

say thatX is larger thanY in stochastic ordering(X ≥st Y ) if F (t) ≥ G(t) for all
t ≥ 0.

(ii) A random variableX with distribution functionF is said to have a decreasing (increas-
ing) hazard rate if and only ifF (x + t)/F (x) is increasing (decreasing) inx ≥ 0, for
everyt ≥ 0.

(iii) Supposeµ
G

andµ
H

are finite. We sayG preceedsH in mean residual life and write
G ≤mr H if for every t ≥ 0,

(2.7)
∫ ∞

t

H(y)dy ≥
∫ ∞

t

G(y)dy.

The MR ordering is a partial ordering on the class of distributions of non-negative random
variables with finite mean. Note that ifGl andHl are length-biased distribution functions with
F ≤st K andµ

F
= µ

K
, thenGl ≥mr Hl, whereGl(t) = µ−1

F

∫∞
t
xdF (x), andH l(t) =

µ−1
K

∫∞
t
xdK(x) respectively.

Definition 2.4.
(i) If F andG are inF , we say thatG has more tail at the origin thanF, denoted by

F <TOP G, if

(2.8) hG(x) ≥ hF (x),

wherehF (x) = f(x)/F (x), for all x ≥ 0, is the reverse hazard function.
(ii) If F andG are inF , we say thatG has larger tail thanF, denoted byF <LTP G, if

(2.9)
λF (x)

hF (x)
≥ λG(x)

hG(x)
,

whereλF (x) = f(x)/F (x), for all x ≥ 0.
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(iii) A life distribution F is said to have a larger increasing failure rate than the life distribu-
tionG, denoted byF ≥IFRP G, if and only if

(2.10)
P (X > x2|X > y1)

P (X > y2|X > y1)
≥ P (Y > x2|X > x1)

P (Y > y2|X > y1)

for all x1 < x2, x1 < y1, y1 < y2, x2 < y2.

The next definition is mainly due to Loh [6].

Definition 2.5. An absolutely continuous distribution functionF on(0,∞) for which lim
x→0+

F (x)
x

exists is:
(i) new better than used in average failure rate (NBAFR) if

λF (0) = lim
t→0+

t−1

∫ t

0

λF (x)dx

≤ t−1

∫ t

0

λF (x)dx,(2.11)

for t > 0,
(ii) new better than used in failure rate (NBUFR) if there exists a version ofλF of the failure

or hazard rate such that

(2.12) λF (0) ≤ λF (t),

for all t > 0, whereλF (0) is given by (2.11). The inequalities are reversed for new
better than used in average failure rate (NBAFR) and new worse than used in failure
rate (NWUFR) respectively.

The class of NBUFR (NWUFR) enjoys many desirable properties under several reliability op-
erations. This class also includes any life distribution withλF (0) = 0. Clearly,F ∈ NBUFR
if and only if

(2.13) F (x+ t) ≤ exp{−λF (0)t}F (x),

for all x, t ≥ 0.

Theorem 2.1. LetGl(t) andH l(t) be length-biased reliability functions. If there existsa > 0
such that for everyv > 0 andβ > 0, there is at0 such that

λGl
(v + βt) > λHl

(t) + a,

for everyt > t0, thenGl(t) > H l(t) for all t > t0, andGl ≥mr Hl for all t > t0.

Proof. For all t > t0 and somea > 0, we have fort0 < t1 < t2,

(2.14)
∫ t2

t1

λGl
(t)dt >

∫ t2

t1

λHl
(t)dt+ a(t2 − t1).

This is equivalent to

(2.15) log

(
Gl(t1)

Gl(t2)

)
> log

(
H l(t1)

H l(t2)

)
+ a(t2 − t1),

that is,
Gl(t1)

H l(t1)
>
Gl(t2)

H l(t2)
ea(t2−t1).

Hence, there existstu > t0 such thatGl(t) > H l(t), for all t > t0.
Consequently,Gl ≥mr Hl for all t > t0. �
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Theorem 2.2.LetF be absolutely continuous on[0,∞). SupposeF (x)/x has a limit asx→ 0
from above. ThenF ∈ NWUFR impliesG ∈ NWUFR, whereGl(t) = µ−1

F

∫∞
t
xdF (x).

Proof. Note thatF ∈ NWUFR if and only if

(2.16) F (x+ t) ≥ exp{−λF (0)t}F (x),

for all x, t ≥ 0. The left side of (2.16) satisfies

(2.17) Gl(x+ t) ≥ F (x+ t),

for all x, t ≥ 0, whereGl(t) = µ−1
F

∫∞
t
xdF (x). Now,∫ t

0

λF (x)dx ≤
∫ t

0

λGl
(x)dx

for all t ≥ 0, so that

(2.18) λF (0)t ≤ λGl
(0)t,

for all t ≥ 0. From (2.17) and (2.18) we have

(2.19) exp{−λF (0)t}F (x) ≥ exp{−λGl
(0)t}G

l
(x),

for all x, t ≥ 0.
Consequently,

(2.20) Gl(x+ t) ≥ F (x+ t) ≥ exp{−λF (0)t}F (x) ≥ exp{−λGl
(0)t}G

l
(x),

for all x, t ≥ 0. �

In a similar manner, one can show that ifGi, i = 1, 2, are length-biased distribution functions
on [0,∞) for which limx→0+ Gi(x)/x < ∞ and limx→0+ Fi(x)/x < ∞, i = 1, 2, thenG1 ∗
G2 ∈ NWUFR. This follows from the fact thatG1 ∗ G2(x) ≤ F1 ∗ F2(x) ≤ F1(x)F2(x) for
everyx ∈ (0,∞), whereG1 ∗ G2 is the convolution of the distribution functionsG1 andG2

respectively.

Example 2.2(Rayleigh Distribution). The Rayleigh distribution plays an important role in ap-
plied probability and statistics. The probability density function is given by,

(2.21) f(x; θ) = 2π−1/2θ−1 exp

{
−

(x
θ

)2
}
,

for x > 0, θ > 0. The corresponding length-biased reliability and hazard functions are given
by,

F (x; θ) = 2[1− Φ(
√

2x/θ)]

and

λF (x; θ) =

√
2φ(

√
2x/θ)

θ[1− Φ(
√

2x/θ)]
,

whereΦ andφ are the standard normal distribution and density functions, respectively. Let
XW be the corresponding weighted random variable with weight functionW (x) = x. The
probability density function ofXW is given by,

(2.22) g
l
(x; θ) = 2xθ−2 exp

{
−

(x
θ

)2
}
,

for x > 0, θ > 0. The reliability and hazard functions areGl(x; θ) = exp{−(x/θ)2}, x > 0,
andλGl

(x; θ) = 2x/θ2, x > 0, respectively. Clearly,Gl(x+ t; θ) ≥ F (x+ t; θ), for all x, t ≥ 0,
andλGl

(0) = 0. In view of Theorem2.2, we get thatGl ∈ NWUFR.
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3. SOME ORDERINGS FOR WEIGHTED RELIABILITY M EASURES

LetX be a non-negative random variable with distribution functionF and meanµ = E(X)
and letXe be a non-negative random variable with distribution function

(3.1) Fe(x) =

∫∞
0
P (X ≥ t)dt

µ
,

x ≥ 0. Thekth moment of the random variableXe is given by

E(Xk
e ) = k

∫ ∞

0

xk−1F e(x)dx

=

∫∞
0
tkF (t)dt

µF

=
E(Xk+1)

(k + 1)µF

(3.2)

whereF (·) = 1 − F (·) andµ
F

=
∫∞

0
F (u)du. The distribution functionFe(x) is called the

stationary renewal distribution with mean remaining or residual life given by

(3.3) µ(t) =
1

F (t)

∫ ∞

t

F (y)dy,

t ≥ 0. The mean remaining life and failure rate function ofFe are given by

(3.4) µ
Fe

(t) =

∫∞
t
F (y)µ(y)dy

F (t)µ(t)

andλe(t) = [µ(t)]−1 respectively,t ≥ 0.
If W (x) = x in equation (1.1), then the corresponding probability density function (pdf) is

called the length-biased pdf and is given by

(3.5) g
l
(x) =

xf(x)

µ
,

x ≥ 0. The correspondingkth moment is

(3.6) E(Xk
l ) =

E(Xk+1)

µF

.

Proposition 3.1.E(Xk
e ) > E(Xk

l ) for k < 0 andE(Xk
e ) ≤ E(Xk

l ) for k ≥ 0.

Proposition 3.2. LetG
W

be a weighted distribution function with increasing weight function
W (x), x ≥ 0, andF the parent distribution function respectively, thenF <LTP GW .

Proof. LetG
W

be a weighted distribution function with increasing weight functionW (x), x ≥
0, then,

(3.7) GW (x) ≥ F (x),

for all x ≥ 0. Equivalently,

(3.8) GW (x)− F (x)GW (x) ≥ F (x)− F (x)GW (x),

for all x ≥ 0. This is equivalent to

(3.9)
F (x)

F (x)
≥ GW (x)

GW (x)
,
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for all x ≥ 0, which in turn is seen to be equivalent to

(3.10)
f(x)/F (x)

f(x)/F (x)
≥ gW (x)/GW (x)

gW (x)/GW (x)
,

for all x ≥ 0. Consequently,F <LTP GW . �

Example 3.1 (Exponential Distribution). The most useful model in reliability studies is the
exponential failure model with pdf given by,

(3.11) f(x; θ) = θ−1 exp
{
−x
θ

}
,

for x > 0 andθ > 0. It is well known that the reliability and failure rate functions areF (x; θ) =
exp{−x/θ} andλF (x; θ) = θ−1 respectively. LetW (x) = x, then the reliability and hazard
functions are given by,GW (x; θ) = {1 + x

θ
} exp{−x/θ} andλGW

(x, θ) = x
θ(x+θ)

respectively.

Clearly,GW (x; θ) ≥ F (x; θ) andλGW
(x, θ) ≤ λF (x; θ), for all x > 0 andθ > 0. In view of

Proposition 3.2,F <LTP GW .

Proposition 3.3. LetG
W

be a weighted distribution function with increasing weight function
W (x), x ≥ 0, andF the parent distribution function respectively. IfW (x) = x andx ≥ µ

F
> 0

thenF <TOP G
W
.

Proof. LetW (x) = x, then the length-biased reliability function is given by

(3.12) G
W

(x) =
F (x)VF (x)

µ
F

,

whereVF (x) = E(X|X > x) is the vitality function. Clearly,G
W

(x) ≥ F (x), for all x ≥ 0.

Now, if x ≥ µF > 0, thengW (x) = xf(x)
µF

≥ f(x), so that(G
W

(x))−1 ≥ (F (x))−1, and

(3.13) hF (x) =
f(x)

F (x)
≤ gW (x)

GW (x)
= hGW

(x).

Consequently,

(3.14) hGW
(x) ≥ hF (x),

for all x ≥ µF > 0. �

Proposition 3.4. LetG
W

be a weighted distribution function with increasing weight function
W (x), x ≥ 0, andF the parent distribution function respectively, thenGW <IFRP F.

Proof. Note thatλGW
(x) ≤ λF (x) for all x ≥ 0, wheneverW (x) is an increasing weight

function, whereλF (x) = f(x)/F (x), F (x) > 0. However,λGW
(x) ≤ λF (x) implies

(3.15)
∫ ∞

x

dGW (t)

1−GW (t)
≤

∫ ∞

x

dF (t)

1− F (t)
,

that is,

(3.16)
F (y2)− F (x2)

F (y1)− F (x1)
≤ GW (y2)−GW (x2)

GW (y1)−GW (x1)
,

for all x1 < x2, x1 < y1, y1 < y2, x2 < y2. Consequently,

(3.17)
F (x2)− F (y2)

F (x1)− F (y1)
≤ GW (x2)−GW (y2)

GW (x1)−GW (y1)
,

for all x1 < x2, x1 < y1, y1 < y2, x2 < y2, andGW <IFRP F. �
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Example 3.2 (Pareto Distribution). The Pareto distribution arises in reliability studies as a
gamma mixture of the exponential distribution. See Harris [5]. The reliability and failure rate
functions are given by,F (x;α, β) = (1 + βx)−α, andλF (x;α, β) = αβ(1 + βx)−1, for x > 0,
β > 0, andα > 1. LetW (x) = x, then the corresponding length-biased reliability and hazard
functions are

GW (x;α, β) = (1 + βx)−α(1 + αβx) = F (x;α, β)[1 + αβx],

and

λGW
(x;α, β) = αβ(1 + βx)−1β(α− 1)x

1 + αβx
,

for x > 0, β > 0, andα > 1. ClearlyGW (x; β) ≥ F (x; β) andλGW
(x; β) ≤ λF (x; β). In view

of Proposition 3.4,GW <IFRP F.

4. COMPARISONS AND M OMENT I NEQUALITIES FOR RELIABILITY M EASURES

Let f
W

andg
W

be two non-negative integrable functions, possibly weighted probability den-
sity functions. A natural and common approach to ordering of distribution functionsF and
G with probability density functionsf andg (pdf) respectively is concerned with the rate at
which the density tends to zero at infinity. A pdff is said to have a lighter tail than a pdfg
if f(x)/g(x) −→ 0 asx → ∞. Let g

l
andg

W
be the length-biased and weighted probabil-

ity density functions respectively. The length-biased probability density function is a weighted
probability density function with weight functionW (x) = x. The corresponding length-biased
reliability function is given by

(4.1) G
l
(x) =

F (x)VF (x)

µ
F

,

whereVF (x) = E(X|X > x) is the vitality function and the length-biased probability density
function (pdf) is given byg

l
(x) = xf(x)

µ
F
. Note thatf(x)/g

l
(x) = µ

F
/x −→ 0 asx → ∞, that

is, the length-biased distribution has a heavier tail than the original distribution. Indeed,

(4.2) G
l
(x) ≥ F (x),

for all x ≥ 0.

Theorem 4.1. LetG
W

be a weighted distribution function with weight functionW (x), x ≥ 0,
andF the parent distribution function. IfW (x) = x andEFX

k ≤ EF (Xk+1)/µF for all k ≥ 0,
then

(4.3) ΨGW
(t) =

∫ ∞

0

etxdGW (x) ≥ ΨF (t),

for all t ≥ 0.

Proof.

ΨGW
(t) =

∫ ∞

0

etxdGW (x) =

∫ ∞

0

∞∑
k=0

(tx)k

k!
dGW (x)

=
∞∑

k=0

tk

k!
EGW

Xk =
∞∑

k=0

tk

k!

EFX
k+1

µF

≥
∞∑

k=0

tk

k!
EFX

k =

∫ ∞

0

∞∑
k=0

(tx)k

k!
dF (x)

= ΨF (t),(4.4)
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for all t ≥ 0. �

Example 4.1 (Gamma Distribution). The gamma distribution is used to model lifetimes of
various practical situations, including lengths of time between catastrophic events, and lengths
of time between emergency arrivals at a hospital. The pdf is given by,

(4.5) f(x;α, β) =
βα

Γ(α)
xα−1e−βx,

for x > 0, α > 0, andβ > 0. Clearly,ΨF (t) =
(

β
β−t

)α

, for t < β. The length-biased gamma

pdf is given by,

(4.6) gl(x;α, β) =
βα+1

Γ(α+ 1)
xα+1−1e−βx,

for x > 0, α > 0, andβ > 0. Note thatΨGW
(t) =

(
β

β−t

)α+1

, for t < β. In view of Theorem

4.1, we get thatΨGW
(t) ≥ ΨF (t) for all t ≥ 0.

Theorem 4.2. Let G
W

be a weighted distribution function with increasing weight function
W (x), x ≥ 0, andF the parent distribution function. Ifψ is a non-negative and non-decreasing
function on(0,∞), then

(4.7)
∫ ∞

0

ψp(x)Gk
W

(x)dx ≤
∫ ∞

0

ψp(x)F k(x)dx,

for all t ≥ 0 andp > 0.

Proof. Note thatG
W

(x) ≤ F (x) for all x ≥ 0, wheneverW (x) is increasing inx. For any
integerk ≥ 1, Gk

W
(x) ≤ F k(x). It follows therefore that

(4.8)
∫ ∞

t

ψp(x)Gk
W

(x)dx ≤
∫ ∞

t

ψp(x)F k(x)dx,

for all t ≥ 0 andp > 0. The result follows by lettingt→ 0+. �

Theorem 4.3.LetW (x) = x ≥ µF andGl the length-biased reliability function, then

(4.9)
∫ ∞

0

xp−1Gl(x)dGl(x) ≥
∫ ∞

0

xp−1F (x)dF (x),

for all t ≥ 0.

Proof. Note that forx ≥ µF > 0, Gl(x) ≥ F (x) andgl(x) ≥ f(x). So thatxp−1Gl(x) ≥
xp−1F (x), and

(4.10)
∫ ∞

t

xp−1Gl(x)dGl(x) ≥
∫ ∞

t

xp−1F (x)dF (x),

Consequently,

(4.11)
∫ ∞

0

xp−1Gl(x)dGl(x) ≥
∫ ∞

0

xp−1F (x)dF (x),

by lettingt→ 0+. �

Corollary 4.4. LetG
l

be the length-biased distribution function, then under the conditions of
Theorem 4.2,

(4.12)
∫ ∞

0

f 2(x)dx ≤
∫ ∞

0

g2
l (x)dx,

whereg
l
(x) = xf(x)

µF
is the length-biased probability density function, and0 < µF <∞.
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Example 4.2 (Log-logistic Distribution). The log-logistic distribution is a useful model that
provides a good fit to a wide variety of data, including mortality, precipitation, and stream
flow. The log-logistic distribution is mathematically tractable and provides a reasonably good
alternative to the Weibull distribution. The reliability function is given by,

F (x;α, β) =
1

1 +
(

x
α

)β
,

for x > 0, α > 0, andβ > 1. The hazard function is

λF (x;α, β) =

(
β
α

) (
x
α

)β−1

1 +
(

x
α

)β
,

for x > 0, α > 0, andβ > 1. The PWM withl = 1, j = s, andk = 0 is

E[X(F (X))s(F (X))0] =

∫ ∞

0

x

(
x
α

)βs

[1 +
(

x
α

)β
]s

(
β
α

) (
x
α

)β−1

[1 +
(

x
α

)β
]2
dx

=
αΓ

(
s+ 1 + 1

β

)
Γ

(
1− 1

β

)
Γ(s+ 2)

,(4.13)

for s = 0, 1, 2, . . . , andβ > 1. Applying Definition 2.2, and Theorem 4.2, for fixedα, we have
F ≥PWM(1,s,0) G, if and only if

Γ

(
s+ 1 +

1

β1

)
Γ

(
1− 1

β1

)
≥ Γ

(
s+ 1 +

1

β2

)
Γ

(
1− 1

β2

)
.

In particular,F ≥PWM(1,1,0) G, if and only if

1 + β1

2β1

µ
F
≥ 1 + β2

2β2

µ
G
,

where

µ
F

=

∫ ∞

0

F (y : α, β)dy = αΓ

(
1 +

1

β

)
Γ

(
1− 1

β

)
=
απ

β

(
sin

(
π

β

))−1

.

For fixedβ, F ≥PWM(1,s,0) G, if and only if α1 ≥ α2.
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