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ABSTRACT. We present bounds and approximations for the smallest positive zero of the La-

guerre polynomia_lLﬁf)(x) which are sharp as — —11. We indicate the applicability of the
results to more general functions including theaguerre polynomials.
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1. INTRODUCTION

The Laguerre polynomials are given by the explicit formula [13]

(1.1) L (z) = i (Z " 2) (—]j)k’ _ (n :; a)

k=0

Ly e

= (a+ 1

valid for all z, « € C (with the understanding that the second sum is interpreted as a limit when
« IS a negative integer), where

(a+1) =(a+1)(a+2) - (a+k).
They satisfy the three term recurrence relation

(1.2) x L) () =—(n+ 1)L,(1a+)1(x) + (v +2n+ 1)L£La)(x) — (a+ n)L,(fi)l(x),

with initial conditionsL(f“f(x) =0 andLé") (x) = 1 for all complexa andz. Whena > —1,

this recurrence relation is positive definite and the Laguerre polynomials are orthogonal with
respect to the weight functiorf'e=* on [0, +o0). From this it follows that the zeros af (x)

are positive and simple, that they are increasing functionsanfd they interlace with the zeros

of Lff_fl(:c) [13]. Whena < —1 we no longer have orthogonality with respect to a positive
weight function and the zeros can be non-real and non-simple.

210-06


mailto:muldoon@yorku.ca
http://www.ams.org/msc/

2 DHARMA P. GUPTA AND MARTIN E. MULDOON

Our purpose here is to present bounds and approximations for the smallest positive zero of
Lﬁf)(x), a > —1, which are sharp as — —1*. The same kinds of results hold for more
general functions including thgLaguerre polynomialiﬁf‘) (x;9), 0 < ¢ < 1 which satisfy
L (x(1—q) 7Y q) — LY (x) asq — 1.

2. SMALLEST ZEROS OF LAGUERRE POLYNOMIALS

In the casex > —1, successively better upper and lower bounds for the zeros of Laguerre
polynomials can be obtained by the method outlined in [7]. They follow from the knowledge

of the coefficients in the explicit expression fﬁﬁa)(x). However, they are obtained more
conveniently by noting thaj = L (x) satisfies the differential equation

(2.1) vy +(a+1—2)y +ny=0
and hence that = y//y satisfies the Riccati type equation
(2.2) ou? + (a+1—z2)u+n=0.
If we write

2.3) y:(nza)ﬁ(l—%),

i=1
where the zeros; satisfy0 < z; < x5 < ---, then

(2.4) U:Zx_lx = —Zskﬂl’k;

where

(2.5) Se=> x*, k=12...

Substituting in[(2.2), we get

00 k 00
(2.6) >k (Sk +) SiSkZ-H) —(a+k+1)) Szt +n=0,
k=1

i=1 k=0
from which it follows by comparing coefficients that
n Sk+SF | SiSk i
9 Sk+1 -
a+1 a+k+1
For the caser > —1, the zeros are all positive and by the method outlinedlin [7, 83], we have

(2.8) SoUm < gy < S /Smg1, m=1,2,....

These upper and lower bounds give successively improving [7, 83] upper and lower bounds for
x1. For example, forv > —1, n > 2, we get, for the smallest zerg («),

1 xi(«a) (a+2)
(2.9) n o+l S latitn)
a+2 : x1() (a+3)
(2.10) {n(n—l—oﬁ—l)} Sarl (a+142n)’
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where the upper bound recovers thatin [13, (6.31.12)], and

(a+2)(a+3) 3 x1 (@)
nn+a+1)2n+a+1) a+1

_ (+2)(a+4)(a+2n+1)
a3 +4a2 + ba + 2 + bna? + 16na + 11n + 5n2a + 11n?’
Further such bounds may be found but they become successively more complicated. From the

higher estimates we can produce a series expansion validifer o« < 0. The first five terms,
obtained with the help of MAPLE, are:

(2.11)

a+1 n—1/a+1\* n2+3n—4/a+1\°

(2.12) () = n * 2 ( n )_ 12 ( n )

N 7n® + 6n? + 23n — 36 (a+ 1)4

144 n
~293n* + 210n° + 23502 + 9900 — 1728 (a + 1)5 .
8640 n

It is known [13, Theorem 8.1.3] that
(2.13) nll_)IIolo n~*L(®) (%) = 272 ], (22/?),

and hence that; ~ j2,/(4n) asn — oo, with the usual notation for zeros of Bessel functions.
Hence we get

at+1l (a+1) N T(a+1)*  293(a+1)* L
2 12 144 8640 ’

which agrees with the expansion df [12] Q.

It should be noted that the inequalities obtained here are particularly sharglose to—1
but not for largen. Krasikov [10] gives uniform bounds for the extreme zeros of Laguerre and
other polynomials.

The series in[(2.12) converges fer + 1| < 1. This suggests that we consider the case
—2 < a < —1, when the zeros are still real but < 0 < 25 < 23 < --- [13, Theorem 6.73].
In accordance with |7, Lemma 3.3], the inequalities ferare changed, sometimes reversed.
For example, we have, for > 2,

(2.14) G2 ~4la+1) {1 +

(2.15)

1 2 2
—>x1(&)> ot ) —2<a<-—1.
n o a+l n(n+a+1)

3. ¢ EXTENSIONS

In extending the previous results, it is natural to consider some of-thdensions of the
Laguerre polynomials. For this purpose we need the standard notatidns [4, 9] for the basic
hypergeometric functions:
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where(q; q),, denotes the-shifted factorial

(a:9)o =1, (a;¢)n =1 —a)1—aq)--- (1 —ag"™"),

so that(1 — q) % (¢*; ¢)r — (a)r asq — 17,

We seek appropriateanalogues of the results of Sectjgn 2, which will reduce to those results
whenq — 1. Different g-analogues are possible; we have found that a good approach is
through what we now call thittle ¢-Jacobi polynomialsntroduced by W. Hahr [6] (see also

[9, (3.12.1), p.192]):
q;xq) :

n+1

", abg
aq

Hahn proved the discrete orthogonality [4, (7.3.4)]

(3.1) (T3 0,05 q) = 201 ( 4

3.2 N m k'a b: n k.ab, (bq7Q)k a k
&2 ;p (50,5, 0)pold 0,5:) (q;q)k( )

_ (¢; q)n(1 — abq)(bg; Q)n(abq2; ¢)oolagq)™
(abg; )n(1 — abg®*+1)(aq; 4)n(ag; ¢)oo

where0 < ¢, ag < 1 andbg < 1. In this case the orthogonality measure is positive and the
zeros of the polynomials lie if0, co). For a detailed study of the polynomiais(x; a, b; ¢), we
refer to the article of Andrews and Askey [2], and the book of Gasper and Rahiman [4, 87.3]. In
general, the polynomials givegganalogue of the Jacobi polynomials but, fo& 0, they give
ag-analogue of the Laguerre polynomials; gee|(3.6) below.

From (3.1), we get[4, Ex.7.43, p. 210]

: (1-q) q"
1 n |\ ; a’ ba = «
1 p ( by q q 191 g+

LY (z;q)
LY (0;q)

m,n»

g — 33(1 o q)anraJrl)
(3.3) =

with the notation of[[111],§,]4] for the-Laguerre polynomial&'® (z; ¢). This definition

a+1. —n
(3.4) L) (z;q) = %@1 ( qqa+1 ¢ —ax(l— q)qn+a+1> 7
gives [11]
(3:5) lim L ((1 - q) '3 q) = L ().
q—1~—

(We remark that the definition gt (x;¢) givenin [9, p. 108] has replaced by(1 — ¢)~'z.)
On the other hand, again frofn (B.1), we have

im O N G 11 2 G 1 025)
(3.6) Jim po (1= @)z —a"q) ; Trand = 100

This is reported in[4, (7.3.9)], but with a small erréf® (z) rather tharZ.( (2z) on the right-
hand side. The relation (3.6) shows that ligldacobi polynomials also providegaanalogue
of the Laguerre polynomials. However, we use the namedguerre polynomials" only for

L (x; ), as defined in| (3]4).
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The Wall, or little g-Laguerre, polynomial$V,,(z; a; q) ([3], [9, 3.20.1]) are the particular
caseb = 0 of p,(z; a,b; q):

.
(3.7) Wo(z;a;q) = pul(x;a,0;q) = 261 ( qa ;[ ‘ q; qx) :

where0) < ¢ < 1 and0 < aq < 1. From the Wall polynomials, we can again obtain the
g-Laguerre polynomialﬂﬁf‘)(x; q) using [9, p. 108] (changed to our notation):

(3.8) Wo(zig™ |q™") = —(aq;f,)” L((1—q) 2 q).
(@*T5 q)n
From the relation(316), we have
Ly (x)
3.9 lim W,((1—q)x;q%;q) = .
(3.9) q—1>111}1 (( Q)I q Q) Lgf‘)(O)

Here we present in diagrammatic form the relations between the various polynomials consid-
ered:

4. BOUNDS FOR g EXTENSIONS

In finding bounds for the zeros of these polynomials, we no longer have available the dif-
ferential equations method used in Secfipn 2. However we can still apply the Euler method,
described in[]7], based on the explicit expressions for the coefficients in the polynomials to
obtain bounds for the smallest positive zero of the lijt@acobi polynomials. We consider the
function

pa((1 = q)wsa,biq) =1+ ) aga®.
k=1
where

—n; ab n—&-l;
(7" @)x(abg Q)qu(l . q)k

(¢: @) (ag; @)k
We can findS;, Ss, . . ., defined as in[(2]5), in terms af, a,, .. .. As in Sectiorj R, as long as
0<gqaqg<1,b<1 wehave) < z; < x5 < ---. Using [7, (3.4),(3.7)], we hav§, = —ay,
and

n—1
S, = —na, — E a;Sp_i.
i=1

Using inequalities[ (2]8) fom = 1, we obtain the following bounds for the smallest positive
zeroszy(a, b; q) of p,(z(1 — q); a, b; q), where we assume that< ¢,aqg < 1, b < 1:

1 z1(a,byq) (14 ¢)(1 —ag?)

(4.2) (1 =q")(1 —abg"™) ~ ¢" (1 - aq) (I—-qP
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where
P=1+aq + ¢" — 2aq""" — ag"™* — abg"™!
_ 2abq"+2 + abq2n+1 + a2bq”+3 + a2bq2n+3.
Form = 2 we get improved lower and upper bounds:
(1+¢)(1—ag?) x1(a, b; q)

(1—=q¢")(1—q)(1 —abg™t')P = q" (1 — aq)
_ - ¢°)(1 - aq®)P

1/2

(4.3) pTR———
where

(4.4) o1 =3¢*(1 —aq)*(1 — ¢" ) (1 — ¢"7?)(1 — abg"*?)(1 — abg" "),
(4.5) o9 =(1— q3)(1 —aq)(1— aq3)(1 —q")(1— abq”H)P

and

(4.6) 05 =—q(1+q+¢*)(1—aq)(l —ag’)(1 —¢") (1 —¢" ") (1 — abg""")(1 — abg""?).

As observed earlier, with the help oT (B.6) we should be able to derive corresponding inequalities
for zeros ofL{® (z). If we then make the replacements- ¢*, b — —¢” in the modified)

and ) we recover the inequaliti2.9) .10)056?(@ by taking limitsq — 1~.

For the cas® < ¢, aq < 1, the bounds for the smallest zerg(a; q) of the Wall polynomial

(4.7) Wo((1 = q)z;a;q) = 201(¢7", 05 aq; g(1 — q)z),

are obtained fronf (4]2) and (4.3) by substituting 0.
Finally, we record the bounds for the smallest zer¢v; ¢q) for the ¢g-Laguerre polynomial

Lﬁf‘)(x; q). This can be done either by a direct calculation from the series in ) or by
obtaining them as a limiting case of littieJacobi polynomials, employing (3.7), (#.2) and
(4.3). We obtain, fof < ¢ <1, o > —1:

1 a+1 . 1 1 — a+2
.8) _4 ri(a;q)  (1+q)(1—gq )7
L—gn = 1—goH! (I-qR

WhereR -1 + 2q _ qn+a+2 _ qn _ qa+2’ and

(1+q)(1—¢*+?)]? _ q* i (a; q) _ - )1 —-q)(1+q+¢)R
(1-q¢(1—-q")R 1 — gt T

(4.9)
with
(4.10) T=3¢(1—¢" (A1 —¢" (1 —¢*™)
+(1-¢")1=q)1=¢")1+q+ )R
— (1 =g (1 =¢" 1= ¢*"™1 = ¢ 1+ g+ ¢*).

From [4.8) and[(4]9) we can recover the bourds| (2.9) gnd](2.10) for the smallest, z&fro
Laguerre polynomialé™ (z) by taking limitsq — 1~
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