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ABSTRACT. An integration-by-parts formula, involving finite Borel measures supported by in-

tervals on real line, is proved. Some applications to Ostrowski-type and Griiss-type inequalities
are presented.
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1. INTRODUCTION

In the paperi[4], S.S. Dragomir introduced the notion af@Appell type sequence of func-

tions as a sequenee), wy, ..., w,, for n > 1, of real absolutely continuous functions defined
on [a, b], such that

wy, = wg_1, a.€.ona, b, k=1,....n.
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2 A. CIVLIAK, LJ. DEDIC, AND M. MATIE

For such a sequence the author proved a generalisation of MitthR&aric integration-by-
parts formula

(1.1) /b wo(t)g(t)dt = A, + By,
where a

A= 300 [ 0)g® ) - (g (a)]
and -

By = (1) [ g0

for everyg : [a, b]—R such thay"~Y is absolutely continuous da, b] andw, g™ € L,[a, b].
Using identity (1.1) the author proved the following inequality

[ wvgtoyn -4,

for w, € L,la,b], g™ € L,[a,b], wherep,q € [1,00] and1/p + 1/q = 1, giving explicitly

some interesting special cases. For some similar inequalities, seglalso [5], [6] and [7]. The aim
of this paper is to give a generalization of the integration-by-parts formula (1.1), by replacing
the wy-Appell type sequence of functions by a more general sequence of functions, and to
generalize inequality (1].2), as well as to prove some related inequalities.

(1.2) < Jlwall, 9™ lg;

2. INTEGRATION -BY-PARTS FORMULA FOR MEASURES

Fora,b € R, a < b, let C[a, b] be the Banach space of all continuous functignga, b] —R
with the max norm, and/|[a, b] the Banach space of all real Borel measure$aob] with the
total variation norm. For, € M|a, b] define the function,, : [a,b]—R, n > 1, by

! ——1 — )" Ydu(s
) = gy [ (=9 G

Note that
1

fin(t) = m/a (t—s)"?fu(s)ds, n>2

and B
] <

The functionj, is differentiable,! () = fi,-1(t) andf,(a) = 0, for everyn > 2, while for
n=1

el t € fa, 0], n> 1.

)= [ dn(s) = il ),
a,t
which means thafi,(¢) is equal to the distribution function gi. A sequence of functions
P, :[a,b] — R, n > 1, is called au-harmonic sequence of functions pnb] if
P/(t)=P,_1(t), n>2; Pi(t)=c+u(t), tE€]la,b,

for somec € R. The sequencgi,, n > 1) is an example of @a-harmonic sequence of functions
on[a, b]. The notion of au-harmonic sequence of functions has been introduced in [2]. See also

[l.
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Remark 2.1. Let wy : [a,b] — R be an absolutely integrable function and et M|a, b] be
defined by

du(t) = wo(t)dt.
If (P,,n > 1) is ap-harmonic sequence of functions énb|, thenwy, P,..., P, is awy-
Appell type sequence of functions @n b|.

Foru € Mla,b] let u = . — p_ be the Jordan-Hahn decompositioryofvherep,. andy
are orthogonal and positive measures. Then we hdve n, + p_ and

el = Tl ([, 0]) = [ ]| + [l =} = g4 ([, ]) + p—(la, B]).
The measurg € M|a, b] is said to be balanced if([a, b]) = 0. This is equivalent to

1
sl = M-Il = 5 Nl

Measureu € M|a, b is calledn-balanced ifi, (b) = 0. We see that d-balanced measure is
the same as a balanced measure. We also write

i) = /[ ault), k20
a,b

for the k-th moment ofy.

Lemma 2.2. For everyf € Cla,b] andy € Ma, b] we have
- f(O)dpu(t) = - f®)du(t) — p({a}) f(a).
Proof. Definel, J : Cla,b] x Mla,b] — R by
I(f.n) = - f(t)dfu(t)
and

J(fw) = [ fO)du(t) — p({a})f(a).

[a,b]
Then and.J are continuous bilinear functionals, since

(L wl < ALl TGl < 201l

Let us prove thaf (f, u) = J(f, ) for every f € C[a,b] and every discrete measytec
Mla, b].
Forz € [a,b] let u = ¢, be the Dirac measure at i.e. the measure defined by

J F(£)dog(t) = f(z).

[a,b]
If a<ax<b, then
fir(t) = 04(a, t]) = {

and by a simple calculation we have

I(f.0.) = [ f(t)dpu(t) = f(x) = [ f(t)dos(t) =0

[a,b] [a,b]
— [fb]f(t)dém(t) —0.({a}) fa) = J(f,0.).
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Similarly, if z = a, then
f1(t) = 04([a,t]) =1, a<t<b

and by a similar calculation we have

I(f,00) = [ f(O)diu(t) =0= f(a)— f(a)

[a,b]

= f]f(t)déa(t) —du({a})f(a) = J(f, 0z).

[a/7b

Therefore, for everyf € C|a,b] and everyr € [a,b] we havel(f,,) = J(f,0.). Every
discrete measure € M|a, b] has the form

H = Z Ck51k7
k>1
where(ci, k > 1) is a sequence iR such that

ji:\ck]<:oo,

k>1

and{zy; k > 1} is a subset ofa, b].
By using the continuity of and.J, for every f € Cla,b] and every discrete measutec
M]a, b] we have

I(fJL) =1 (fazckéxk> :ch‘[(f7523k)

k>1 k>1

=Y e (f,00) = J (f, > ckaxk)

k>1 k>1

= J(f. 1.

Since the Banach subspagdé[a, b]; of all discrete measures is weaklgense inM|a, b]
and the functionalg(f, -) and.J(f,-) are also weakfycontinuous we conclude théaf f, ;) =
J(f, ) foreveryf € Cla,b] andp € Mia, b]. O

Theorem 2.3.Let f : [a,b] — R be such thatf("~! has bounded variation for some > 1.
Then for every.-harmonic sequence’,,n > 1) we have

(2.1) - f)du(t) = p({a}) f(a) + Sn + Ra,

where

(2.2) Sp = Z(—l)’H [PL(b) fED(b) — Py(a) f*(a)]
k=1

and

2.3 R, = (—1)" P.(t)df "D (¢).

(2.3) ( >/[a’b] (Hdf ™D (1)
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Proof. By partial integration, for, > 2, we have
R, = (—-1)" P, (t)df V(¢
[ Rar
= (=1)" [Pa(0) [V (b) = Pu(a) f"V(a)]
— (=) [ Poa(t)f"Y(t)d
1 [P

= (=" [Ba0)f" V() = Pua) f" D (a)] + R
By Lemmg 2.2 we have

Ry = — /[a’b] Pi(t)df(t)

= —[Pi(b)f(b) = Fu(a) f(a)] + [ f(t)dPr(?)

2.0
= = [Pu(b)f(b) = Pula) f(a)] + . f@)djn(t)
= = [Pu(b)f(b) = Pula) f(a)] + . f@)dp(t) — p({a})f(a).

Therefore, by iteration, we have

n

R, =Y (-1} [P(b)f* D (b) — Pi(a) f*V(a)] + | ) du(t) — p({a}) f(a),

k=1 la,b
which proves our assertion. O

Remark 2.4. By RemarK 2. we see that identify (R.1) is a generalization of the integration-by-
parts formula[(T]1).

Corollary 2.5. Let f : [a,b] — R be such thayf"~") has bounded variation for some> 1.
Then for every: € M|a, b| we have

F(t)du(t) = Sn + Ra,
[a,]

where

and

R, = (-1)" /[ (0400

Proof. Apply the theorem above for theharmonic sequendgi,,, » > 1) and note that,,(a) =
0, forn > 2. O

Corollary 2.6. Let f : [a,b] — R be such thaif"~" has bounded variation for some> 1.
Then for every: € [a, b] we have

o) = Y G 1) + o),
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where 1)
—1)" / —1 —1
t— )"t ().
= 1) M( ) (t)
Proof. Apply Corollary[2.5 foru = §, and note that in this case
) (t — )t 3
i) =~ w<t<b and () =0, a<t<uz,
(k—1)!
fork > 1. O

R, (x) =

Corollary 2.7. Let f : [a,b] — R be such thaif"~" has bounded variation for some> 1.
Further, let(c,,,m > 1) be a sequence IR such that

Z‘le < 0

m>1

and let{x,,;m > 1} C [a,b]. Then

> enfln) = zzm“‘m:b FED0) + 3 enBalan)

m>1 m>1 k=1 m>1
whereR,,(z,,) is from Corollary[2.6.
Proof. Apply Corollar for the discrete measyre= 3_ ., c;nd,,,. O

3. SOME OSTROWSKI-TYPE INEQUALITIES
In this section we shall use the same notations as above.
Theorem 3.1.Let f : [a,b] — R be such thatf"~!) is L-Lipschitzian for some > 1. Then
for everyu-harmonic sequence’,, n > 1) we have
< L/ | P,(t)] dt,

\ 100~ )1

wheresS,, is defined by (2]2).
Proof. By Theorenj 2.3 we have

b
/ &@ﬂWWﬂSL/W&@wa
[a,b] a

which proves our assertion. O

(3.1)

| R| =

Corollary 3.2. If fis L-Lipschitzian, then for every € R andu € M[a, b] we have

b
f@)du(t) — p(la, 0) f(b) — c[f(b) — f(a)]| < L/ e+ fu(t)] dt.

[a,b]

Proof. Putn = 1 in the theorem above and note t{t) = ¢ + ji,(t), for somec € R. O

Corollary 3.3. If fis L-Lipschitzian, then for every > 0 andx > 0 we have
[ 0t = o, 2 0) = el0) = )

Lie(b - a) + fia(b)]
< L(b—a)(c+[|ul)-
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Proof. Apply Corollary[3.2 and note that in this case
b b
[l m@lde= [ fe-+ o)
= c(b—a) + fi2(b)
<clb—a)+(b—a) ||

= (b—a)(c+ [lull).
0
Corollary 3.4. Let f be L-Lipschitzian,(c,,, m > 1) a sequence if0, co) such that
Z Cm < 00,
m>1

and let{x,,; m > 1} C [a, b]. Then for every: > 0 we have

D e lf(0) = flam)] +c[f(b) - fl@)]] < L [C(b —a)+ Y cnlb— xm)]

m2>1 m>1

< L(b—a) c—i—Zcm] :
m>1
Proof. Apply Corollar for the discrete measyre= Y, - cmd.,,- O
Corollary 3.5. If fis L-Lipschitzian and: > 0, then
‘ . f@)du(t) — p(la, z]) f(a) — u((x,b])f(b)‘
< L[(2z —a—b)jin(x) — 2f12(x) + f1(b)]
for everyz € [a, b].
Proof. Apply Corollary[3.2 forc = —fi;(x). Then
¢+ i (b) = p((x,0]),  julz) = p(la,z])
and
b T b
[ o)+ m@lde = [ o) = o) de+ [ G - o) dt
= (22 — a = b)fu(x) — 2fi2(x) + fi2(D).
0

Corollary 3.6. Let f : [a,b] — R be such thatf»1) is L-Lipschitzian for some > 1. Then
for everyu € Mla, b] we have

. b (b—a)"
. F@)du(t) = Su| < L | |fm(t)] dt < ———L]|pl],
wheres,, is from Corollary{2.5.
Proof. Apply the theorem above for theharmonic sequenagi,,,n > 1). O
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Corollary 3.7. Let f : [a,b] — R be such thatf™»~!) is L-Lipschitzian for some > 1. Then
for everyz € [a, b] we have

Proof. Apply Corollary[3.6 foru = §,, and note that in this case

(t —x)!
(k—1) "

fork > 1. O

[ (1) = r<t<b and j(t)=0, a<t<uz,

Corollary 3.8. Let f : [a,b] — R be such thatf™~1 is L-Lipschitzian, for some: > 1.
Further, let(c,,,m > 1) be a sequence iR such that

Z |em| < o0
m>1

and let{x,,;m > 1} C [a,b]. Then

m>1 m>1 k=1 (k—1)!

L n
=00 Z [Cm| (b — 2,)

T m>1

L n

< —(b—a) > el
m>1
Proof. Apply Corollary|3.6 for the discrete measyre= 3", ., ¢, O

Theorem 3.9.Let f : [a,b] — R be such thatf("~!) has bounded variation for some> 1.
Then for every:-harmonic sequencg’,,n > 1) we have

b

< max |PL()] \/ (/).

T t€la,b]

f@)dp(t) — p({a})f(a) — S,

[a,b]

a

where\/’(f("~1) is the total variation off "~ on [a, b].

Proof. By Theorenj 2.3 we have
b

R, = \ /[ b] Pn(t)df(”_”(t)' < max [P0 \/ (7).

te(a,b)
which proves our assertion. O

Corollary 3.10. If f is a function of bounded variation, then for everg R andp € M|a, b]
we have
b

FOdu(t) = u(la, b)) f(b) = e [f(b) = f(@)]] < max e+ ()] \/ ().

te(a,b]

‘ [a,b]

Proof. Putn = 1 in the theorem above. O
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Corollary 3.11. If f is a function of bounded variation, then for every> 0 andp > 0 we

have
F)du(t) — ([, b)) £(b) — c[f(b) — F(a)]| < [e+ [ll] \/ (f)

‘ [a,b]
Proof. In this case we have

mmax lc+ @) =c+ ) =c+|u].

O

Corollary 3.12. Let f be a function of bounded variatiofy,,,, m» > 1) a sequence if), oo)

such that
Z Cm < 00

m>1
and let{x,,;m > 1} C [a,b]. Then for every: > 0 we have

<

D emlf) = fl@m)] +c[f(b) - f(a)]

m>1

Proof. Apply Corollar for the discrete measyre= 3, -, ¢, O

Corollary 3.13. If f is a function of bounded variation and> 0, then we have

F(O)dn(t) — ulfa, ) F(a) — (e, b])f(b)‘

‘ [a,b]
b

[1(b) — fu(a) + [ (a) + fia (b) — 2/ (2)]] \/(f)

a

1
< Z
-2

Proof. Apply Corollary[3.11 forc = —ji;(z). Then
mas fo-+ s ()] = ma [ja (1) — ia(x)

tefa,b t€la,b]
= max{ /iy () — 1 (a), 11 (b) — 1 (x)}
_ % [f1(0) — fua(a) + |fur (@) + i (b) — 2fin ()] -

0

Corollary 3.14. Let f : [a,b] — R be such thaif"~") has bounded variation for some> 1.
Then for every, € M|a, b] we have

FOdu(t) = S| < mas [t |\/ (f"1)

te(a,b)

< Lo \a/(f(”‘”),

‘ [a,b]

wheres,, is from Corollary{2.5.
Proof. Apply the theorem above for theharmonic sequenagi,,,n > 1). O
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Corollary 3.15. Let f : [a,b] — R be such thayf"~!) has bounded variation for some> 1.
Then for every: € [a, b] we have

n k—1 n-1 b
o) = 30 G 140w < T Ve
k=1 a
Proof. Apply Corollary{3.14 foru = §,, and note that in this case
ma ()] = UL
tefa,b] (n—1)!

0

Corollary 3.16. Let f : [a,b] — R be such thayf"~") has bounded variation for some> 1.
Further, let(c,,,m > 1) be a sequence IR such that

Z |em| < o0
m>1

and let{x,,;m > 1} C [a,b]. Then

_ b k—1 B
> emf(rm) =) Z G ) — 1)
m>1 m>1 k=1
1

< \/ ") D leml (b= wn)"

(n m>1

b _ CL n 1 b
< (n— 1)
= (n—1 ngl [Cm|

Proof. Apply Corollary|3.14 for the discrete measyre= 3 ., ¢, O

Theorem 3.17.Let f : [a,b] — R be such thaff™ € L,[a, b] for somen > 1. Then for every
u-harmonic sequence’,, n > 1) we have

f@)dp(t) — p(fa})f(a) —

[a,b]
wherep, ¢ € [1,00] and1/p+1/q = 1.

< 1Pall 11F 5,

Proof. By Theorenj 2.3 and the Holder inequality we have
mi-|[ P df“()‘
[a,b]
= |[ poreon
[a,b]
s >
</ |Pu(t y%zz) (/ |f(")(t)\”dt)

= 1Pl 17 -
O

Remark 3.18. We see that the inequality of the theorem above is a generalization of inequality

Z.2).
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Corollary 3.19. Let f : [a,b] — R be such thatf™ € L,[a,b] for somen > 1, andp €
Mla, b]. Then

FOdu(t) = Su| < Nl 11F 1,

[a,b]
(b o a)n—l—i—l/q

<
(n—1D![(n—1)q+1]
wherep, ¢ € [1,00] and1/p+1/q = 1.

7 Il L,

Proof. Apply the theorem above for theharmonic sequendgi,,,n > 1). O

Corollary 3.20. Let f : [a,b] — R be such thaf™ € L,[a,b], for somen > 1. Further, let
(cm,m > 1) be a sequence IR such that

Z\cm| < 00

m>1
and let{x,,;m > 1} C [a,b]. Then

> enflam) = 3 S enm U s

m>1 m>1 k=1

LF) o
T z s

(b_a)n 1+1/qu(n)H Z’ |
(n=1)!(n - Q+11/qm>1
wherep, ¢ € [1,00] and1/p+1/q = 1.

Proof. Apply the theorem above for the discrete meagure } | cnos,,- O

4. SOME GRUSSTYPE INEQUALITIES
Let f : [a,b] — R be such thaf™ € L.[a,b], for somen > 1. Then
m, < fM) < M,, te]lab], ae
for some real constants,, and\/,,.

Theorem 4.1.Let f : [a,b] — R be such thatf™ € L.[a,b], for somen > 1. Further, let
(Py, k > 1) be ap-harmonic sequence such that

Poya(a) = Poya (b)),

M o b
S| < "Tm”/ P, (8] dt.

Proof. Apply Theore for the special case whgfi~! is absolutely continuous and its
derivative (" existinga.e., is bounded:.e. Define the measure, by

dva(t) = —P, (t) dt.

for that particularn. Then

f@)dp(t) — p({a}) f(a) -

[a,b]

Then ,
valla,B]) = - / Py (£)dt = Pyr (a) — Paya (b) = 0,

J. Inequal. Pure and Appl. Mat}8(4) (2007), Art. 93, 13 pp. http://jipam.vu.edu.au/
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which means that,, is balanced. Further,

b
\Wb/%wﬁ

and by [1, Theorem 2]

b
mal=| [ 20 0t
M, —mn
< ——5— vl
- m” / P, ()] dt,
which proves our assertion. O

Corollary 4.2. Letf : [a,b] — R be such thaf™ € L.[a, b], for somen > 1. Then for every
(n + 1)-balanced measure € M|a, b] we have

< M W/m|ﬁ

M, mn(—)
2

f(t)du(t) — S,

‘ [a,b]

<

ll

wheres,, is from Corollary{2.5.

Proof. Apply Theorenj 41 for thg-harmonic sequendgi, £ > 1) and note that the condition
P11 (a) = P, (b) reduces tqi,,1 (b) = 0, which means that is (n + 1)-balanced. O

Corollary 4.3. Let f : [a,b] — R be such thatf™ € L_[a,b] for somen > 1. Further, let
(cm,m > 1) be a sequence iR such that

Z\cm| < 00

m>1

and let{x,,;m > 1} C [a, b] satisfy the condition

Z cm(b—z)" = 0.

m>1

Then

Proof. Apply Corollar for the discrete measyre= 3_ ., cnd,,,- O
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Corollary 4.4. Letf : [a,b] — R be such thaf™ ¢ L.]a, b] for somen > 1. Then for every
w € M|a,b], such that allz--moments of. are zero fork = 0, ..., n, we have

y f<t>du<t>] / ()] d

M, — mn( —a)"
<
< M Gl

Proof. By [1, Theorem 5], the conditiom () = 0, k = 0,...,n is equivalent tqi (b) = 0,
k=1,...,n+ 1. Apply Corollary[4.2 and note that in this caSg = 0. O

Corollary 4.5. Let f : [a,b] — R be such thatf™ € L[a,b] for somen > 1. Further, let
(cm,m > 1) be a sequence iR such that

D lem| < 00

m>1

and let{z,,;m > 1} C [a,]]. If

E cm:E cmxm:---zg Ty, =0,

m>1 m>1 m>1
then
M, —m,
S e (o) < S el (0
m>1 m>1
Mn — my n
< T(b - a) mX>:1 |cm| :
Proof. Apply Corollar for the discrete measyre= Y, - cnds,,- O
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