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1. I NTRODUCTION

In the paper [4], S.S. Dragomir introduced the notion of aw0-Appell type sequence of func-
tions as a sequencew0, w1, . . ., wn, for n ≥ 1, of real absolutely continuous functions defined
on [a, b], such that

w′
k = wk−1, a.e. on[a, b], k = 1, . . . , n.
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2 A. ČIVLJAK , LJ. DEDIĆ, AND M. M ATI Ć

For such a sequence the author proved a generalisation of Mitrinović-Pěcaríc integration-by-
parts formula

(1.1)
∫ b

a

w0(t)g(t)dt = An + Bn,

where

An =
n∑

k=1

(−1)k−1
[
wk(b)g

(k−1)(b)− wk(a)g(k−1)(a)
]

and

Bn = (−1)n

∫ b

a

wn(t)g(n)(t)dt,

for everyg : [a, b]→R such thatg(n−1) is absolutely continuous on[a, b] andwng
(n) ∈ L1[a, b].

Using identity (1.1) the author proved the following inequality

(1.2)

∣∣∣∣∫ b

a

w0(t)g(t)dt− An

∣∣∣∣ ≤ ‖wn‖p ‖g
(n)‖q,

for wn ∈ Lp[a, b], g(n) ∈ Lp[a, b], wherep, q ∈ [1,∞] and1/p + 1/q = 1, giving explicitly
some interesting special cases. For some similar inequalities, see also [5], [6] and [7]. The aim
of this paper is to give a generalization of the integration-by-parts formula (1.1), by replacing
the w0-Appell type sequence of functions by a more general sequence of functions, and to
generalize inequality (1.2), as well as to prove some related inequalities.

2. I NTEGRATION -BY-PARTS FORMULA FOR M EASURES

Fora, b ∈ R, a < b, let C[a, b] be the Banach space of all continuous functionsf : [a, b]→R
with the max norm, andM [a, b] the Banach space of all real Borel measures on[a, b] with the
total variation norm. Forµ ∈ M [a, b] define the functioňµn : [a, b]→R, n ≥ 1, by

µ̌n(t) =
1

(n− 1)!

∫
[a,t]

(t− s)n−1dµ(s).

Note that

µ̌n(t) =
1

(n− 2)!

∫ t

a

(t− s)n−2µ̌1(s)ds, n ≥ 2

and

|µ̌n(t)| ≤ (t− a)n−1

(n− 1)!
‖µ‖ , t ∈ [a, b], n ≥ 1.

The functionµ̌n is differentiable,̌µ′n(t) = µ̌n−1(t) andµ̌n(a) = 0, for everyn ≥ 2, while for
n = 1

µ̌1(t) =

∫
[a,t]

dµ(s) = µ([a, t]),

which means thaťµ1(t) is equal to the distribution function ofµ. A sequence of functions
Pn : [a, b] → R, n ≥ 1, is called aµ-harmonic sequence of functions on[a, b] if

P ′
n(t) = Pn−1(t), n ≥ 2; P1(t) = c + µ̌1(t), t ∈ [a, b],

for somec ∈ R. The sequence(µ̌n, n ≥ 1) is an example of aµ-harmonic sequence of functions
on [a, b]. The notion of aµ-harmonic sequence of functions has been introduced in [2]. See also
[1].
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Remark 2.1. Let w0 : [a, b] → R be an absolutely integrable function and letµ ∈ M [a, b] be
defined by

dµ(t) = w0(t)dt.

If (Pn, n ≥ 1) is a µ-harmonic sequence of functions on[a, b], thenw0, P1, . . . , Pn is a w0-
Appell type sequence of functions on[a, b].

Forµ ∈ M [a, b] let µ = µ+ − µ− be the Jordan-Hahn decomposition ofµ, whereµ+ andµ−
are orthogonal and positive measures. Then we have|µ| = µ+ + µ− and

‖µ‖ = |µ| ([a, b]) = ‖µ+‖+ ‖µ−‖ = µ+([a, b]) + µ−([a, b]).

The measureµ ∈ M [a, b] is said to be balanced ifµ([a, b]) = 0. This is equivalent to

‖µ+‖ = ‖µ−‖ =
1

2
‖µ‖ .

Measureµ ∈ M [a, b] is calledn-balanced ifµ̌n (b) = 0. We see that a1-balanced measure is
the same as a balanced measure. We also write

mk(µ) =

∫
[a,b]

tkdµ(t), k ≥ 0

for thek-th moment ofµ.

Lemma 2.2. For everyf ∈ C[a, b] andµ ∈ M [a, b] we have∫
[a,b]

f(t)dµ̌1(t) =

∫
[a,b]

f(t)dµ(t)− µ({a})f(a).

Proof. DefineI, J : C[a, b]×M [a, b] → R by

I(f, µ) =

∫
[a,b]

f(t)dµ̌1(t)

and

J(f, µ) =

∫
[a,b]

f(t)dµ(t)− µ({a})f(a).

ThenI andJ are continuous bilinear functionals, since

|I(f, µ)| ≤ ‖f‖ ‖µ‖ , |J(f, µ)| ≤ 2 ‖f‖ ‖µ‖ .

Let us prove thatI(f, µ) = J(f, µ) for everyf ∈ C[a, b] and every discrete measureµ ∈
M [a, b].

Forx ∈ [a, b] let µ = δx be the Dirac measure atx, i.e. the measure defined by∫
[a,b]

f(t)dδx(t) = f(x).

If a < x ≤ b, then

µ̌1(t) = δx([a, t]) =

{
0, a ≤ t < x

1, x ≤ t ≤ b

and by a simple calculation we have

I(f, δx) =

∫
[a,b]

f(t)dµ̌1(t) = f(x) =
∫

[a,b]

f(t)dδx(t)− 0

=
∫

[a,b]

f(t)dδx(t)− δx({a})f(a) = J(f, δx).
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Similarly, if x = a, then

µ̌1(t) = δa([a, t]) = 1, a ≤ t ≤ b

and by a similar calculation we have

I(f, δa) =

∫
[a,b]

f(t)dµ̌1(t) = 0 = f(a)− f(a)

=
∫

[a,b]

f(t)dδa(t)− δa({a})f(a) = J(f, δx).

Therefore, for everyf ∈ C[a, b] and everyx ∈ [a, b] we haveI(f, δx) = J(f, δx). Every
discrete measureµ ∈ M [a, b] has the form

µ =
∑
k≥1

ckδxk
,

where(ck, k ≥ 1) is a sequence inR such that∑
k≥1

|ck| < ∞,

and{xk; k ≥ 1} is a subset of[a, b].
By using the continuity ofI andJ, for everyf ∈ C[a, b] and every discrete measureµ ∈

M [a, b] we have

I(f, µ) = I

(
f,
∑
k≥1

ckδxk

)
=
∑
k≥1

ckI(f, δxk
)

=
∑
k≥1

ckJ(f, δxk
) = J

(
f,
∑
k≥1

ckδxk

)
= J(f, µ).

Since the Banach subspaceM [a, b]d of all discrete measures is weakly∗ dense inM [a, b]
and the functionalsI(f, ·) andJ(f, ·) are also weakly∗ continuous we conclude thatI(f, µ) =
J(f, µ) for everyf ∈ C[a, b] andµ ∈ M [a, b]. �

Theorem 2.3. Let f : [a, b] → R be such thatf (n−1) has bounded variation for somen ≥ 1.
Then for everyµ-harmonic sequence(Pn, n ≥ 1) we have

(2.1)
∫

[a,b]

f(t)dµ(t) = µ({a})f(a) + Sn + Rn,

where

(2.2) Sn =
n∑

k=1

(−1)k−1
[
Pk(b)f

(k−1)(b)− Pk(a)f (k−1)(a)
]

and

(2.3) Rn = (−1)n

∫
[a,b]

Pn(t)df (n−1)(t).
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Proof. By partial integration, forn ≥ 2, we have

Rn = (−1)n

∫
[a,b]

Pn(t)df (n−1)(t)

= (−1)n
[
Pn(b)f (n−1)(b)− Pn(a)f (n−1)(a)

]
− (−1)n

∫
[a,b]

Pn−1(t)f
(n−1)(t)dt

= (−1)n
[
Pn(b)f (n−1)(b)− Pn(a)f (n−1)(a)

]
+ Rn−1.

By Lemma 2.2 we have

R1 = −
∫

[a,b]

P1(t)df(t)

= − [P1(b)f(b)− Pn(a)f(a)] +

∫
[a,b]

f(t)dP1(t)

= − [P1(b)f(b)− Pn(a)f(a)] +

∫
[a,b]

f(t)dµ̌1(t)

= − [P1(b)f(b)− Pn(a)f(a)] +

∫
[a,b]

f(t)dµ(t)− µ({a})f(a).

Therefore, by iteration, we have

Rn =
n∑

k=1

(−1)k
[
Pk(b)f

(k−1)(b)− Pk(a)f (k−1)(a)
]
+

∫
[a,b]

f(t)dµ(t)− µ({a})f(a),

which proves our assertion. �

Remark 2.4. By Remark 2.1 we see that identity (2.1) is a generalization of the integration-by-
parts formula (1.1).

Corollary 2.5. Let f : [a, b] → R be such thatf (n−1) has bounded variation for somen ≥ 1.
Then for everyµ ∈ M [a, b] we have∫

[a,b]

f(t)dµ(t) = Šn + Řn,

where

Šn =
n∑

k=1

(−1)k−1µ̌k(b)f
(k−1)(b)

and

Řn = (−1)n

∫
[a,b]

µ̌n(t)df (n−1)(t).

Proof. Apply the theorem above for theµ-harmonic sequence(µ̌n, n ≥ 1) and note thaťµn(a) =
0, for n ≥ 2. �

Corollary 2.6. Let f : [a, b] → R be such thatf (n−1) has bounded variation for somen ≥ 1.
Then for everyx ∈ [a, b] we have

f(x) =
n∑

k=1

(x− b)k−1

(k − 1)!
f (k−1)(b) + Rn(x),
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where

Rn(x) =
(−1)n

(n− 1)!

∫
[x,b]

(t− x)n−1df (n−1)(t).

Proof. Apply Corollary 2.5 forµ = δx and note that in this case

µ̌k(t) =
(t− x)k−1

(k − 1)!
, x ≤ t ≤ b, and µ̌k(t) = 0, a ≤ t < x,

for k ≥ 1. �

Corollary 2.7. Let f : [a, b] → R be such thatf (n−1) has bounded variation for somen ≥ 1.
Further, let(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞

and let{xm; m ≥ 1} ⊂ [a, b]. Then∑
m≥1

cmf(xm) =
∑
m≥1

n∑
k=1

cm
(xm − b)k−1

(k − 1)!
f (k−1)(b) +

∑
m≥1

cmRn(xm),

whereRn(xm) is from Corollary 2.6.

Proof. Apply Corollary 2.5 for the discrete measureµ =
∑

m≥1 cmδxm. �

3. SOME OSTROWSKI -TYPE I NEQUALITIES

In this section we shall use the same notations as above.

Theorem 3.1. Let f : [a, b] → R be such thatf (n−1) is L-Lipschitzian for somen ≥ 1. Then
for everyµ-harmonic sequence(Pn, n ≥ 1) we have

(3.1)

∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ({a})f(a)− Sn

∣∣∣∣ ≤ L

∫ b

a

|Pn(t)| dt,

whereSn is defined by (2.2).

Proof. By Theorem 2.3 we have

|Rn| =
∣∣∣∣∫

[a,b]

Pn(t)df (n−1)(t)

∣∣∣∣ ≤ L

∫ b

a

|Pn(t)| dt,

which proves our assertion. �

Corollary 3.2. If f is L-Lipschitzian, then for everyc ∈ R andµ ∈ M [a, b] we have∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ([a, b])f(b)− c [f(b)− f(a)]

∣∣∣∣ ≤ L

∫ b

a

|c + µ̌1(t)| dt.

Proof. Putn = 1 in the theorem above and note thatP1(t) = c + µ̌1(t), for somec ∈ R. �

Corollary 3.3. If f is L-Lipschitzian, then for everyc ≥ 0 andµ ≥ 0 we have∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ([a, b])f(b)− c [f(b)− f(a)]

∣∣∣∣
≤ L [c(b− a) + µ̌2(b)]

≤ L(b− a)(c + ‖µ‖).
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Proof. Apply Corollary 3.2 and note that in this case∫ b

a

|c + µ̌1(t)| dt =

∫ b

a

[c + µ̌1(t)] dt

= c(b− a) + µ̌2(b)

≤ c(b− a) + (b− a) ‖µ‖
= (b− a)(c + ‖µ‖).

�

Corollary 3.4. Letf beL-Lipschitzian,(cm, m ≥ 1) a sequence in[0,∞) such that∑
m≥1

cm < ∞,

and let{xm; m ≥ 1} ⊂ [a, b]. Then for everyc ≥ 0 we have∣∣∣∣∣∑
m≥1

cm [f(b)− f(xm)] + c [f(b)− f(a)]

∣∣∣∣∣ ≤ L

[
c(b− a) +

∑
m≥1

cm(b− xm)

]

≤ L(b− a)

[
c +

∑
m≥1

cm

]
.

Proof. Apply Corollary 3.3 for the discrete measureµ =
∑

m≥1 cmδxm . �

Corollary 3.5. If f is L-Lipschitzian andµ ≥ 0, then∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ([a, x])f(a)− µ((x, b])f(b)

∣∣∣∣
≤ L [(2x− a− b)µ̌1(x)− 2µ̌2(x) + µ̌2(b)] ,

for everyx ∈ [a, b].

Proof. Apply Corollary 3.2 forc = −µ̌1(x). Then

c + µ̌1(b) = µ((x, b]), µ̌1(x) = µ([a, x])

and ∫ b

a

|−µ̌1(x) + µ̌1(t)| dt =

∫ x

a

(µ̌1(x)− µ̌1(t)) dt +

∫ b

x

(µ̌1(t)− µ̌1(x)) dt

= (2x− a− b)µ̌1(x)− 2µ̌2(x) + µ̌2(b).

�

Corollary 3.6. Let f : [a, b] → R be such thatf (n−1) is L-Lipschitzian for somen ≥ 1. Then
for everyµ ∈ M [a, b] we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− Šn

∣∣∣∣ ≤ L

∫ b

a

|µ̌n(t)| dt ≤ (b− a)n

n!
L ‖µ‖ ,

whereŠn is from Corollary 2.5.

Proof. Apply the theorem above for theµ-harmonic sequence(µ̌n, n ≥ 1). �
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Corollary 3.7. Let f : [a, b] → R be such thatf (n−1) is L-Lipschitzian for somen ≥ 1. Then
for everyx ∈ [a, b] we have∣∣∣∣∣f(x)−

n∑
k=1

(x− b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣ ≤ (b− x)n

n!
L.

Proof. Apply Corollary 3.6 forµ = δx and note that in this case

µ̌k(t) =
(t− x)k−1

(k − 1)!
, x ≤ t ≤ b, and µ̌k(t) = 0, a ≤ t < x,

for k ≥ 1. �

Corollary 3.8. Let f : [a, b] → R be such thatf (n−1) is L-Lipschitzian, for somen ≥ 1.
Further, let(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞

and let{xm; m ≥ 1} ⊂ [a, b]. Then∣∣∣∣∣∑
m≥1

cmf(xm)−
∑
m≥1

n∑
k=1

cm
(xm − b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣
≤ L

n!

∑
m≥1

|cm| (b− xm)n

≤ L

n!
(b− a)n

∑
m≥1

|cm| .

Proof. Apply Corollary 3.6 for the discrete measureµ =
∑

m≥1 cmδxm. �

Theorem 3.9. Let f : [a, b] → R be such thatf (n−1) has bounded variation for somen ≥ 1.
Then for everyµ-harmonic sequence(Pn, n ≥ 1) we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− µ({a})f(a)− Sn

∣∣∣∣ ≤ max
t∈[a,b]

|Pn(t)|
b∨
a

(f (n−1)),

where
∨b

a(f
(n−1)) is the total variation off (n−1) on [a, b].

Proof. By Theorem 2.3 we have

|Rn| =
∣∣∣∣∫

[a,b]

Pn(t)df (n−1)(t)

∣∣∣∣ ≤ max
t∈[a,b]

|Pn(t)|
b∨
a

(f (n−1)),

which proves our assertion. �

Corollary 3.10. If f is a function of bounded variation, then for everyc ∈ R andµ ∈ M [a, b]
we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− µ([a, b])f(b)− c [f(b)− f(a)]

∣∣∣∣ ≤ max
t∈[a,b]

|c + µ̌1(t)|
b∨
a

(f).

Proof. Putn = 1 in the theorem above. �

J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 93, 13 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


INTEGRATION-BY-PARTS FORMULA 9

Corollary 3.11. If f is a function of bounded variation, then for everyc ≥ 0 andµ ≥ 0 we
have ∣∣∣∣∫

[a,b]

f(t)dµ(t)− µ([a, b])f(b)− c [f(b)− f(a)]

∣∣∣∣ ≤ [c + ‖µ‖]
b∨
a

(f).

Proof. In this case we have

max
t∈[a,b]

|c + µ̌1(t)| = c + µ̌1(b) = c + ‖µ‖ .

�

Corollary 3.12. Let f be a function of bounded variation,(cm, m ≥ 1) a sequence in[0,∞)
such that ∑

m≥1

cm < ∞

and let{xm; m ≥ 1} ⊂ [a, b]. Then for everyc ≥ 0 we have∣∣∣∣∣∑
m≥1

cm [f(b)− f(xm)] + c [f(b)− f(a)]

∣∣∣∣∣ ≤
[
c +

∑
m≥1

cm

]
b∨
a

(f).

Proof. Apply Corollary 3.11 for the discrete measureµ =
∑

m≥1 cmδxm . �

Corollary 3.13. If f is a function of bounded variation andµ ≥ 0, then we have∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ([a, x])f(a)− µ((x, b])f(b)

∣∣∣∣
≤ 1

2
[µ̌1(b)− µ̌1(a) + |µ̌1(a) + µ̌1(b)− 2µ̌1(x)|]

b∨
a

(f).

Proof. Apply Corollary 3.11 forc = −µ̌1(x). Then

max
t∈[a,b]

|c + µ̌1(t)| = max
t∈[a,b]

|µ̌1(t)− µ̌1(x)|

= max{µ̌1(x)− µ̌1(a), µ̌1(b)− µ̌1(x)}

=
1

2
[µ̌1(b)− µ̌1(a) + |µ̌1(a) + µ̌1(b)− 2µ̌1(x)|] .

�

Corollary 3.14. Let f : [a, b] → R be such thatf (n−1) has bounded variation for somen ≥ 1.
Then for everyµ ∈ M [a, b] we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− Šn

∣∣∣∣ ≤ max
t∈[a,b]

|µ̌n(t)|
b∨
a

(f (n−1))

≤ (b− a)n−1

(n− 1)!
‖µ‖

b∨
a

(f (n−1)),

whereŠn is from Corollary 2.5.

Proof. Apply the theorem above for theµ-harmonic sequence(µ̌n, n ≥ 1). �
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Corollary 3.15. Let f : [a, b] → R be such thatf (n−1) has bounded variation for somen ≥ 1.
Then for everyx ∈ [a, b] we have∣∣∣∣∣f(x)−

n∑
k=1

(x− b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣ ≤ (b− x)n−1

(n− 1)!

b∨
a

(f (n−1)).

Proof. Apply Corollary 3.14 forµ = δx and note that in this case

max
t∈[a,b]

|µ̌n(t)| = (b− x)n−1

(n− 1)!
.

�

Corollary 3.16. Let f : [a, b] → R be such thatf (n−1) has bounded variation for somen ≥ 1.
Further, let(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞

and let{xm; m ≥ 1} ⊂ [a, b]. Then∣∣∣∣∣∑
m≥1

cmf(xm)−
∑
m≥1

n∑
k=1

cm
(xm − b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣
≤ 1

(n− 1)!

b∨
a

(f (n−1))
∑
m≥1

|cm| (b− xm)n−1

≤ (b− a)n−1

(n− 1)!

b∨
a

(f (n−1))
∑
m≥1

|cm|

Proof. Apply Corollary 3.14 for the discrete measureµ =
∑

m≥1 cmδxm . �

Theorem 3.17.Let f : [a, b] → R be such thatf (n) ∈ Lp[a, b] for somen ≥ 1. Then for every
µ-harmonic sequence(Pn, n ≥ 1) we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− µ({a})f(a)− Sn

∣∣∣∣ ≤ ‖Pn‖q ‖f
(n)‖p,

wherep, q ∈ [1,∞] and1/p + 1/q = 1.

Proof. By Theorem 2.3 and the Hölder inequality we have

|Rn| =
∣∣∣∣∫

[a,b]

Pn(t)df (n−1)(t)

∣∣∣∣
=

∣∣∣∣∫
[a,b]

Pn(t)f (n)(t)dt

∣∣∣∣
≤
(∫ b

a

|Pn(t)|q dt

) 1
q
(∫ b

a

∣∣f (n)(t)
∣∣p dt

) 1
p

= ‖Pn‖q ‖f
(n)‖p.

�

Remark 3.18. We see that the inequality of the theorem above is a generalization of inequality
(1.2).

J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 93, 13 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


INTEGRATION-BY-PARTS FORMULA 11

Corollary 3.19. Let f : [a, b] → R be such thatf (n) ∈ Lp[a, b] for somen ≥ 1, and µ ∈
M [a, b]. Then ∣∣∣∣∫

[a,b]

f(t)dµ(t)− Šn

∣∣∣∣ ≤ ‖µ̌n‖q ‖f
(n)‖p

≤ (b− a)n−1+1/q

(n− 1)! [(n− 1)q + 1]1/q
‖µ‖ ‖f (n)‖p,

wherep, q ∈ [1,∞] and1/p + 1/q = 1.

Proof. Apply the theorem above for theµ-harmonic sequence(µ̌n, n ≥ 1). �

Corollary 3.20. Let f : [a, b] → R be such thatf (n) ∈ Lp[a, b], for somen ≥ 1. Further, let
(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞

and let{xm; m ≥ 1} ⊂ [a, b]. Then∣∣∣∣∣∑
m≥1

cmf(xm)−
∑
m≥1

n∑
k=1

cm
(xm − b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣
≤ ‖f (n)‖p

(n− 1)! [(n− 1)q + 1]1/q

∑
m≥1

|cm| (b− xm)n−1+1/q

≤ (b− a)n−1+1/q‖f (n)‖p

(n− 1)! [(n− 1)q + 1]1/q

∑
m≥1

|cm| ,

wherep, q ∈ [1,∞] and1/p + 1/q = 1.

Proof. Apply the theorem above for the discrete measureµ =
∑

m≥1 cmδxm . �

4. SOME GRÜSS-TYPE I NEQUALITIES

Let f : [a, b] → R be such thatf (n) ∈ L∞[a, b], for somen ≥ 1. Then

mn ≤ f (n)(t) ≤ Mn, t ∈ [a, b], a.e.

for some real constantsmn andMn.

Theorem 4.1. Let f : [a, b] → R be such thatf (n) ∈ L∞[a, b], for somen ≥ 1. Further, let
(Pk, k ≥ 1) be aµ-harmonic sequence such that

Pn+1 (a) = Pn+1 (b) ,

for that particularn. Then∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ({a})f(a)− Sn

∣∣∣∣ ≤ Mn −mn

2

∫ b

a

|Pn(t)| dt.

Proof. Apply Theorem 2.3 for the special case whenf (n−1) is absolutely continuous and its
derivativef (n), existinga.e., is boundeda.e. Define the measureνn by

dνn(t) = −Pn (t) dt.

Then

νn([a, b]) = −
∫ b

a

Pn (t) dt = Pn+1 (a)− Pn+1 (b) = 0,
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which means thatνn is balanced. Further,

‖νn‖ =

∫ b

a

|Pn (t)| dt

and by [1, Theorem 2]

|Rn| =
∣∣∣∣∫ b

a

Pn (t) f (n)(t)dt

∣∣∣∣
≤ Mn −mn

2
‖νn‖

=
Mn −mn

2

∫ b

a

|Pn(t)| dt,

which proves our assertion. �

Corollary 4.2. Letf : [a, b] → R be such thatf (n) ∈ L∞[a, b], for somen ≥ 1. Then for every
(n + 1)-balanced measureµ ∈ M [a, b] we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− Šn

∣∣∣∣ ≤ Mn −mn

2

∫ b

a

|µ̌n(t)| dt

≤ Mn −mn

2

(b− a)n

n!
‖µ‖ ,

whereŠn is from Corollary 2.5.

Proof. Apply Theorem 4.1 for theµ-harmonic sequence(µ̌k, k ≥ 1) and note that the condition
Pn+1 (a) = Pn+1 (b) reduces tǒµn+1 (b) = 0, which means thatµ is (n + 1)-balanced. �

Corollary 4.3. Let f : [a, b] → R be such thatf (n) ∈ L∞[a, b] for somen ≥ 1. Further, let
(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞

and let{xm; m ≥ 1} ⊂ [a, b] satisfy the condition∑
m≥1

cm(b− xm)n = 0.

Then ∣∣∣∣∣∑
m≥1

cmf(xm)−
∑
m≥1

n∑
k=1

cm
(xm − b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣
≤ Mn −mn

2n!

∑
m≥1

|cm| (b− xm)n

≤ Mn −mn

2n!
(b− a)n

∑
m≥1

|cm| .

Proof. Apply Corollary 4.2 for the discrete measureµ =
∑

m≥1 cmδxm . �
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Corollary 4.4. Let f : [a, b] → R be such thatf (n) ∈ L∞[a, b] for somen ≥ 1. Then for every
µ ∈ M [a, b], such that allk-moments ofµ are zero fork = 0, . . . , n, we have∣∣∣∣∫

[a,b]

f(t)dµ(t)

∣∣∣∣ ≤ Mn −mn

2

∫ b

a

|µ̌n(t)| dt

≤ Mn −mn

2

(b− a)n

n!
‖µ‖ .

Proof. By [1, Theorem 5], the conditionmk(µ) = 0, k = 0, . . . , n is equivalent tǒµk(b) = 0,
k = 1, . . . , n + 1. Apply Corollary 4.2 and note that in this caseŠn = 0. �

Corollary 4.5. Let f : [a, b] → R be such thatf (n) ∈ L∞[a, b] for somen ≥ 1. Further, let
(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞

and let{xm; m ≥ 1} ⊂ [a, b]. If∑
m≥1

cm =
∑
m≥1

cmxm = · · · =
∑
m≥1

cmxn
m = 0,

then ∣∣∣∣∣∑
m≥1

cmf(xm)

∣∣∣∣∣ ≤ Mn −mn

2n!

∑
m≥1

|cm| (b− xm)n

≤ Mn −mn

2n!
(b− a)n

∑
m≥1

|cm| .

Proof. Apply Corollary 4.4 for the discrete measureµ =
∑

m≥1 cmδxm . �
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