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Abstract

We consider a singular second order differential operator A defined on ]0, ocl.
We give nice estimates for the kernel which intervenes in the integral transform
of the eigenfunction of A. Using these results, we establish Hardy type inequal-
ities for Riemann-Liouville and Wey! transforms associated with the operator A.
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In this paper we consider the differential operatofj@mnx|, defined by

G +A’($) d L
Cdx? A(x) dx P

whereA is a real function defined g, oo[ , satisfying
1
A(z) = 2**"'B(z);a > ~3

andB is a positive, eveilw'™ function onR such thatB(0) = 1, andp > 0. We
suppose that the functiof satisfies the following assumptions

i) A(x)isincreasing, antim ., A(z) = +oc.

i) i’((;v)) is decreasing ankim , ., % = 2.

iii) there exists a constanit> 0, satisfying

By = 20— 2atl 4 e F(z), for p>0,

Bla) = e O F(x), for p =0,

where F' is C* on |0, oo[, bounded together with its derivatives on the

interval [z, oo[, zo > 0.
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This operator plays an important role in harmonic analysis, for example,
many special functions (orthogonal polynomials,...) are eigenfunctions of oper-
ators of the same type ds

The Bessel and Jacobi operators defined respectively by

A :d_2+2a—|-1i_ a>—1
Y a2 x dx’ 2
and
2 d
Aap = 75+ (20 + 1) cotha + (26 + 1) tanhx) — + (a+ § +1)%
1
0425>—§,

are of the type\, with
Ax) = a5 p=0,
respectively
A(z) = sinh®* ™ zcosh® ™ 2, p=a+ B+ 1.

Also, the radial part of the Laplacian - Betrami operator on the Riemannian
symmetric space, is of typ&.
The operatoA has been studied from many points of view]([[ 7], [13],
[14], [15], [16]).In particular, K. Triméche has proved in‘f] that the differen-
tial equation
Au(z) = —Nu(x), AeC
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has a unique solution dn, co[, satisfying the conditions(0) = 1, «/(0) = 0.
We extend this solution ol by parity and we denote it by,. He has also
proved that the eigenfunctiap, has the following Mehler integral representa-
tion .
oa(x) :/ k(x,t) cos Atdt,
0
where the kernet(z, t) is defined by

k(z,t) = 2h(z,t) + CoA 2 (2)z2 (2% — 12)*7 2, O0<t<u

with | poo
B, t) = — / (s A) cos(M)dA,

IT Jo

2«4+ 1)

¢ VIT(a+ 1)
and o

VAER, x €R; 9(x,\) = pa(z) — 2 EAT3 (@)ja(Na),

where

ju(2) = 2°T(a + 1)‘]29

andJ, is the Bessel function of the first kind and orde([]).

The Riemann - Liouville and Weyl transforms associated with the operator

A are respectively defined, for all non-negative measurable funcfiduys

R(f)(x) = / k(e ) f(8)dt
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and

W) = / " k(e ) (2) Ale)de

These operators have been studied on regular spaces of functions. In particular,
in [15], the author has proved that the Riemann-Liouville transf@nis an
isomorphism from€*(R) (the space of even infinitely differentiable functions
onR) onto itself, and that the Weyl transforv is an isomorphism fror®, (R)

(the space of even infinitely differentiable functionsiwith compact support)

onto itself.

The Weyl transform has also been studied on Schwarz spag ([13]).
Our purpose in this work is to study the operat®&sand)»V on the spaces
LP(]0, o[, A(x)dx) consisting of measurable functiofison [0, co[ such that

The main results of this paper are the following Hardy type inequalities

Forp >0 andp > max (2,2« + 2), there exists a positive constari

1 1lpos = (/Oo @) A@) d:(:)p coo 1<p<oo

such that for allf € LP(]0, oo[, A(x)dx),

(1.1)

IR(Nlpa < Cpallfllpa

and for allg € L ([0, o[, A(x)dx),

(1.2)

|

1

A) W(g)

p',A

< Cp7a||9||p’7A7
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wherep’ = p%l

e For p = 0 andp > 2« + 2 there exists a positive constafif , such that
(1.1) and (1.2 hold.

In ([5], [6]) we have obtainedl(1) and (L.2) in the cases

: Hardy Type Inequalities For
respectlvely Integral Transforms Associated
With A Singular Second Order
. 1 Differential Operator
A(z) = sinh®* ™ (2) cosh? ™ (2); a>f3>——.
2 M. Dziri and L.T. Rachdi

This paper is arranged as follows. In the first section, we recall some proper-
ties of the eigenfunctions of the operatdr The second section deals with the Title Page
study of the behavior of the kernk{x, t). In the third section, we introduce the

S Contents
following integral operator
<4< >
v t
10 = [ o (1) s < >
0
Go Back
where
Close
e ¢ is a measurable function defined on1], Quit
e v is a measurable non-negative function]oro| locally integrable. Page 7 of 40
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Then we give the criteria in terms of the functigrto obtain the following
Hardy type inequalities for,,

for all real numbers] < p < ¢ < oo, there exists a positive constafif ,
such that for all non-negative measurable functipradg we have

</OOO (T“<f(x)))q/l(:1:)d:p); = Cra (/Ooo (f(z)) V(x)d:c);

In the fourth section, we use the precedent results to establish the Hardy type

inequalities {.1) and (L.2) for the operator&k andW .
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As mentioned in the introduction, the equation
(2.1) Au(r) = —Nu(x), AeC

has a unique solution df, co[, satisfying the conditions(0) = 1, «/(0) = 0.
We extend this solution oRR by parity and we denote ip,. Equation 2.1)
possesses also two solutiops, linearly independent having the following be-
havior at infinity ¢, (x) ~ e(FA=P)z Then there exists a functiansuch that

pa(x) = c(A)oa(x) + c(=A)d-a(2).

In the case of the Bessel operatty,, the functionsy,, ¢, andc are given
respectively by

2.2) jnO) = 20T (0 + 1) 2208 g
(Az)e
Ko (i)
ka(idz) = 2°T (o + 1)&, A # 0,

c(A) = 2°T (o + D)e @tz \~(at2) x>0,
whereJ, and K, are respectively the Bessel function of first kind and order
and the MacDonald function of ordex
In the case of the Jacobi operatfyy, s, the functionsyp,, ¢, andc are re-
spectively

1 1
gof\“’ﬁ(x) = .5 (é(p — M), §(p+i)\), (+1), —sinhQ(x)> , x>0XeC,
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A
x>0, A e C—(—iN)
and ,
207 (o + 1)T (i)
T (3(p—iN)T (Lo =B+ 1+iN)
where, F7 is the Gaussian hypergeometric function.
From ([1], [2], [15], [1€]) we have the following properties:

c(A) =

i) We have:

eForp=0: Vx>0, po(z) =1,
e Forp > 0 : there exists a constaht> 0 such that

(2.3) Ve >0, e <ygolx) <k(l+xz)e ™.
i) For\ € Randz > 0 we have
(2.4) [oa(@)] < wo().
iif) For A € Csuch that3\| < pandx > 0 we havelp, (z)] < 1.
iv) We have the integral representation of Mehler type,

(25) Vr>0,VAEC,  on(x) = / k(z, 1) cos(At)dt,
0

wherek(z, -) is an even positive’> function on] — z, z[ with support in
[_'Tv QZ]

‘ 1 1
@0 (z) = (2sinh )PP LBy (5(/) —2a — 1)), §(p —iA), 1 — i, (sinh $)2> ;
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v) For\ € R, we haver(—\) = ¢()).
vi) The function|c(\)|~2 is continuous o0, +oo| and there exist positive

constants:, kq, k- such that

elf p>0:VAEC, |N >k
2a+1 —2 2a+1
R AP < e(N)[77 < R AP
Hardy Type Inequalities For
Integral Transforms Associated
With A Singular Second Order
Differential Operator

e lf p>0:VYAEC, A <k
kAP < Je(N)] 72 < kol AP,

M. Dziri and L.T. Rachdi

e lf p=0,a>0:VAeC, |N<Ek
(2.6) kAP < eV < kol AP
Now, let us put
v(z) = A%(x)u(:v) Title Page
The equationZ.1) becomes Contents
V' (x) — (G(x) — AN)v(x) =0, A dd
where 1 (A (2)\ 1 (A=) ‘ '
G(z) = 1 (m) + 5 (m) — P2 Go Back
Let L Clos.e
§(2) = G@) + 1 : Qult
Thus from hypothesis of the functiof, we deduce the following results for age 11 of 40
3.1neq, Pure and Appl. Math. 7(1) Art. 38, 2006
http://jipam.vu.edu.au
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Proposition 2.1.
1. The functiorg is continuous ono, oo|.

2. There exist > 0 anda € R such that the functiog satisfies

§(x) = =5 + oxp(~0x) Fy(2).

whereF; is C* on |0, o[, bounded together with all its derivatives on the

interval [xo, OO[ o > 0. Hardy Type Inequalities For
Integral Transforms Associated
Proposition 2.2 ([ ]) Let With A Singular Second Order
Differential Operator
(2.7 Y(x, A) = pa(z) — xa+%A_%(x)ja()\x), M. Dziri and L.T. Rachdi
wherej,, is defined byZ4.2). Title Page
Then there exist positive constadtsand C; such that
Contents
(2.8) Vo > 0,Y\ € R*, [h(z, \)| < CLAT (2)€(x)A "3 exp ((12@) , & L
< 4
with . Go Back
= [ tetryar Gose
The kernek(z, t) given by the relationZ.5) can be written Quit

—1 1 1 Page 12 of 40
(2.9)  k(x,t) = 2h(z,t) + CuAZ (2)22 *(2® — 1) 2, 0<t<u,
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where
(2.10) B, 1) = % /0 (e, ) cos(M)dA,

_ 2l(a+1)
VIIT (o + 1)’
and(z, A) is the function defined by the relatio®. ().

[0}

Since the Riemann-Liouville and Weyl transforms associated with the oper-

ator A are given by the kernél, then, we need some properties of this function.
But from the relationZ.9) it suffices to study the kernél
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In this section we will study the behaviour of the kerhel

Lemma 3.1. For any reala > 0 there exist positive constan€s, (a) ,Cs(a)
such that for allz € [0, a],

Ci(a)x** ™ < A(x) < Cy(a)z® .

From Propositiori, and [.6], we deduce the following lemma. " "
ardy Type Inequalities For

Integral Transforms Associated

Lemma 3.2. There exist positive constants a,, C; and C, such that fof\| > With A Singular Secand Order

Differential Operator

ay
( C(a)xa%A*%(x) (ja(Az) + O(\)) for | < as M. Dziri and L.T. Rachdi
oa(r) = C(oz))\—(aJr%)A—%(x) (Cy exp —idz + Cy expilz) Title Page
X (1+O0\ Y +0((Mr)™)) Contents
\ for |IAx| > as, <« >
where X < >
1 1
Cla) =T(a+1)Az(1)exp <—§/ B(t)dt) : Go Back
" Close
Quit

Theorem 3.3.For anya > 0, there exists a positive constatit(«, a) such that Page 14 of 40
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Proof. By (2.10 we have foi0 < t < z,

) < 5 [ ot Al

:—/ :p>\|d)\+—/ b(z, A)|dA

(3.1) = Ii(z) + (),

whereaq; is the constant given by Lemn@a2.
We put

fr(z) =27 A3 (@)|(z,\)], O<z<a AER.

From Propositior2.2 the function

(l’, /\) - f)\(ZL’)

is continuous ono, a] x [0, a,]. Then

32) ) = [ e nldr < ClabA b ),
0
where a
=T awp )

IT (2.3)€[0,a]x[0,a1]

Let us study the second term

um:ﬁ/ﬂwaww.
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i) Suppose-1 < a < 1. From inequality 2.8) we get

IQ( ) 61_11 ( )g( )/oo/\ a3 exp (C2€|(/\|)> dA

< G H@)Ew) exp (CM>

l\]\)—l

ai

Since¢ is bounded orf0, o[, we deduce that -
Hardy Type Inequalities For

a—l _1 Integral Transforms Associated
(3.3) I (x) < 02,041' 2 A2 (x) With A Singular Second Order
Differential Operator

This completes the proof in the casg < o < 1. - _
. 1 M. Dziri and L.T. Rachdi
ii) Suppose now that > 3.
e Let a;,a; be the constants given in Lemn%2 From this lemma we Title Page
deduce that there exists a positive constyity) such that
Contents
Qs _1 —(a+l
34 Vo> —, A > a; < Ci(@)A7z (z)A(F2),
B4) Vo>t A> s fpa(o)] < Cia)AH () « | »
On the other hand, the function 4 >
s — 5725, (s) Go Back
is bounded o010, oo]. Close
Quit

Then from equalityZ.7), we have, forr > o

(3.5) —/ (z,\)|d\

Page 16 of 40
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<= |g0,\(a:)|d/\+—$a+§A_é(:v)/ o (A)|dA

1

C 1 > 1 ]_ 1 1 >
< 1(0‘)14*5(3;) / AT 4~ 2 A2 (1) / o (w)|du
H al H az
< pnaio (2) 7 s et o
T (a-pm a I w
Ch(a e\ g <
< 1(1 ) A_% (:E) <_> + —IEQ_%A_%(J/’) / |]a(u)|du Hardy Type Inequalities For
(a - 5) II az I as Integral Transforms Associated
Wwith A Singular Second Ord
< Cyla)z® 3 A7 (), " Difforential Operator
where M. Dziri and L.T. Rachdi
C 1 1 [ .
Co(a) = —1(?) (a2)oT2) 4+ —/ |Ja(u)|du. Title Page
(=) 11 I J,,
Contents
e 0 <z < 2. From Lemma3.2 and the fact that <« Y3
Ve eR, [ja(hx)| <1 < 4
. .. Go Back
we deduce that there exists a positive consldntx) such that
Close
V0<z< 2 0<A<2 |ih(a,\)] < My(a)z 3 A3 (2). Quit
aq X

Page 17 of 40
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This involves

1 % Ml(Oé) atl -1 a9
_ < —— 7 2 2 _- _
H/al i, Mldr £ e AT @) (2 - a)

(3.6) < E M) AT ()
Moreover
—/ (7, \)]d\ < Clr([O‘)A—é(g;)/ A~ (e2) )

(3.7) < Cyla)z® 2A72 ().

From 3.6) and (3.7) we deduce that
(3.8) ‘v’0<35<— —/ Wz, N|dA < Ma(a)z® 2 A2 (z)

where

My(a) = %Ml(a) + Cy(a).
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From 3.5, (3.9) it follows that
VO<x<a;

This completes the proof.
O

In order to provide some estimates for the kern@r later use, we need the
following lemmas

Lemma 3.4.
I) For p > 0, we have

A(z) ~ ¥, (2 — +00)

i) For p =0, we have

A(z) ~ 2?1 (2 — +00).

This lemma can be deduced from hypothesis of the function

Lemma 3.5 ([/]). Forp = 0 anda > % there exist two positive constants
Di(a) and Dy(«) satisfying
I) 1 1
loa(z)] < Dy(a)z*T2A™2(x), x>0, A>0.
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loa(x)] < Da(a)|c(N)|A™2(2), =>1, Az > 1
where
A — c(A)
is the spectral function given bg.©).

Using previous results we will give the behavior of the functiofor large
values of the variable

Theorem 3.6.For p = 0, a > % and a > 0 there exists a positive constant
Ca,q Such that

O<t<z, a>a, [h(z,t)]<Coor®3A}(2).

Proof. We have

at) = g7 [ 10N cosO)an
0
then

(3.9) me<i/ﬂ<xww

:—/\wdeA+—/ b(x, A)|dA.

From Propositior2.2 and the fact that > 5 we get

—/ (2, \)|dA < % 3 (2)€(z) exp <Cg(€(x)> /100 ATOT3 A,
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Since the functiorg is bounded ori0, oo[, we deduce that there exists > 0
verifying

(3.10) = /

On the other hand, we have

1 ! 1 1 1
ﬁ/o |9 (z, A)|dX < ﬁ/o |¢A(x)ydx+ﬁxa+%j4—%<x

However,

(ST

(2, \)|dA < doz® 2 A2 (2).

) [ liata)lin
1) W@l =g [T in@io g [eeio

from Lemma3.5i) we have

(3.11) —/ lox(z |d)\< ¢ O‘_5/4_’()

Furthermore from Lemma.5ii) and the relat|0n2.6) it follows that there exists
d2(a) > 0 such that

1 [t ) 1 1
ﬁ/ |Q0/\(fl§')|d)\ < @A_2(x)/ )\—(oc+§)d)\

< dzlgla)A—é(x) [OOA (a+3) )\
dg(Oé) af— -z
(3.12) < Ta—1)° A2 (x).
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The theorem follows from the relation3.9), (3.10, (3.11) and @.12. O

Theorem 3.7.For p > 0 anda > 1 there exists a positive constafi, , such
that )
VOo<t<z xz>a; |h(zt)] <Cola,a)z?A™2(x),

wherey = max (1, a+ %) :

Proof. This theorem can be obtained in the same manner as Thebéeusing
the properties4.3) and @.4). O
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In this section, we will define a class of integral operators and we recall some
of their properties which we use in the next section to obtain the main results of
this paper.

Let

v 10,1 — ]0,00]

be a measurable function, then we associate the integral opgradefined for

all non-negative measurable functioﬁby Hardy Type Inequalities For
Integral Transforms Associated
T t With A Singular Second Order
Vo > 0; Tsﬂ(f)(x) = / 2 (—> f(t)l/(t)dt Differential Operator
X
0 M. Dziri and L.T. Rachdi
where
e v is a measurable non negative function]oyo[ such that Title Page
a Contents
4.1 Ya > 0, v(t)dt < oo
(4.1 | v ——
and < >
e 1 is a non-negative function dA, oo satisfying Go Back
b Close
(4.2) V0<a<hb, /a w(t)dt < oo. Quit

. . . Page 23 of 40
These operators have been studied by many authors. In particuld, se¢ J

also (B], [14], [11]), we have proved the following results.
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Theorem 4.1. Letp, ¢ be two real numbers such that
1l<p<qg<oo.

Let » and 1 be two measurable non-negative functions|@mo[, satisfying
(4.1 and @.2). Lastly, suppose that the function

¢:]0,1] — ]0,00]
is continuous non increasing and satisfies
Va,y €]0, 1, ¢(zy) < D(p(z) + ¢(y))
whereD is a positive constant. Then the following assertions are equivalent

1. There exists a positive constafi,, such that for all non-negative mea-
surable functiony':

(/Ooo(Tw(f)(lf))qu(x)dx) "< Cog </Ooo(f(x))py(q;)dx) v

2. The functions

and

/ — P
are bounded off), oo[, wherep’ = -5
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Theorem 4.2. Letp andq be two real numbers such that

l<p<g<oo

and i, v two measurable non-negative functions |6noo[, satisfying the hy-
pothesis of Theorerh 1.
Let
¢:]0,1[ — ]0,00]

be a measurable non-decreasing function.
If there exists? € [0, 1] such that the function

(LG o) ([ GG o)

is bounded orj0, oo, then there exists a positive constant, such that for all
non-negative measurable functiofiswe have

wherep’ = ]%

The last result that we need is:

Corollary 4.3. With the hypothesis of Theorefril and ¢ = 1, the following
assertions are equivalent:
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1. there exists a positive constafif , such that for all non-negative measur-
able functionsf we have

(/OOO(H(f)(x))qM(x)dx)‘ll <Chy (/Ooo(f(lf))”u(x)dx> a

2. The function

1 1
° q " o Hardy Type Inequalities For
[(7’> = (/ H(-T)d-T) (/ V(-T)dflf) Integral Transforms Associated
r 0 With A Singular Second Order
Differential Operator

is bounded on0, |,

M. Dziri and L.T. Rachdi

where’H is the Hardy operator defined by
Title Page

Ve >0, H(f)(z)= /o fv(t)dt. Contents
44 44
< >
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This section deals with the proof of the Hardy type inequalitie$) (@nd (L.2)
mentioned in the introduction.
We denote by

e [P ([0,00[, A(x)dz); 1 < p < oo, the space of measurable functions on

0, 0o, satisfying

5l = ([ teratas ) < o
0
e R, the operator defined for all non-negative measurable funciidns

Vo0, Ro(f)o) = [ bl 0f0

whereh is the kernel studied in the third section.

e R, the operator defined for all non-negative measurable functidns

QF(a + 1) 1

Vo >0, Ri(f)(z)= JIIT (a+1)

22 A7 (1) /0 I(ﬁ-t?)a—% Ft)dt.
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Definition 5.1.

1. The Riemann-Liouville transform associated with the operatass de-
fined for all non-negative measurable functighen |0, oo[ by

R(f)(x) = / k(e 0)f (1),

2. The Weyl transform associated with operataris defined for all non-
negative measurable functiorisoy

W) = / " k()£ (2)Ale)da

wherek is the kernel given by the relatiog.§).

Proposition 5.1.

1. Forp>0,a> —% andp > max(2, 2a+2) there exists a positive constant
C1(a, p) such that for allf € L?([0, oo[, A(z)dx),

IRo(Hllp.a < Crle, )| f]p.a-

2.For p=0, a> % andp > 2a + 2, there exists a positive constant
Cs(a, p) such that for allf € L?([0, oo[, A(z)dx)

IRo(H)llp.a < Cala, )| ],
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Proof. 1. Suppose that > 0 andp > max(2, 2« + 2). Let
v(z) = A7 (x)
and

u(z) = Cr(a, a)a?@ 2 AL

b
2

() 1j0.0) () + Cal v, a)a” A5 () g oo (),

with a > 1, Cy (e, a), Cs(er, a) and~y are the constants given in Theorem
3.3and Theoren3.7.
Hardy Type Inequalities For

Then Integral Transforms Associated

(2a+1)(1-p) With A Singular Second Order
y(m) = my (a,p)x Differential Operator

and M. Dziri and L.T. Rachdi

plx) < ma(a, p)a®* T,

These inequalities imply that

Title Page
b

Vb > 0; / v(z)dr < oo, Contents

0 <4 »»
b2

V0 < b < by / p(x)dr < oo 4 >

and b Go Back

1 Close

I(r) = ( / h ,u(:t)dx); ( /0 ' V(a:)d:v) i Quit
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IA

(ma(a, )7 (mi(a, )7

=

_ (mafep)? x ((p = D, p)¥

(p— 20— 2) (20 + 1)(1 — /) + 1)¥

1
7

p—20—2

From Corollary4.3, there exists a positive constafi , such that for all
non-negative measurable functiopae have

s ([ m(ﬁ(@@))%)dx); <G Oo(g(x))pu(x)dx); |

with

Now let us put

then we have

where

7)) = (5

) : | roa

) T

3
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From inequality $.1), we deduce that for all hon-negative measurable

functionsf, we have

5.2) ( / m(T(f)(x))pA(x)dx) "< ( / °O<f<x>>pA<x>dx>;’

On the other hand from Theorer@s8 and3.7 we deduce that the function

Ro(£)a) = [ bt
is well defined and we have

(5.3) [Ro(f) (@) < T(|f])(x).
Thus, the relations3(2) and 6.3) imply that

( /OOO |R0(f)(:v)|pA(x)dx>; <c,. ( /Ooo ‘f(x)|pA(x)dg;); |
which proves 1).

. Suppose that = 0 anda > % From Theorem8.3and3.6 we have

1 1

Vo<t<uz |h(t,z) < Czx* 2A72(x).
Therefore if we take

() =z 2P A5 (1)
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and
v(z) = AV (x),

we obtain the result in the same manner as 1).
O

Proposition 5.2. Suppose thaP% < a< %, p = 0 and that there exists a
positive constant such

Vo<t<z, x>a, h(z,t)=0.
Then for allp > 2o + 2, we can find a positive constaft, , satisfying
Vf e LP([0,00[, A(z)dx);  [|Ro(f)llpa < Caallfllp,a-

Proof. The hypothesis and Theoredi3 imply that there exists a positive con-
stanta such that

[

VO<t<az |h(t,z)] <Cla,a)z* 2 A7 (2) 1 q(z).

Therefore, if we take

p

p(z) = Cla, a)a? =2 A5 ()15 4 ()
and /
v(r) = AP ()

then, we obtain the result using a similar procedure to that in Propodition
2). O
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Now, let us study the operat@®; defined for all measurable non-negative
functionsf by

Ra(f)(x) = Cozb 2 A3 (2) / " — 2t f (),

where
o - 2I'(a + 1)
“ \/ﬁF (a + %) .
Hardy Type Inequalities For
Proposition 5.3. Integral Transforms Associated
With A Singular Second Order
1. For o > —%, p > 0andp > max(2,2«a + 2), there exists a positive Differential Operator
constant’;, , such that for allf € L?(]0, +ool[, A(x)dz), we have M. Dziri and L-T. Rachdi
IR1(Nlpa < Cpallfllpa- _
Title Page
2. For o« > —3, p = 0 andp > 2« + 2 there exists a positive constafif,, Contents
such that for allf € L?([0, +oo], A(z)dz), we have % N
[R1(Nlpa < Cpall fllp,a- < >
Proof. Let T, the Hardy type operator defined for all non-negative measurable EEEEc
functionsf by Close
r t .
10w = [ o (1) rona, Qui
0

Page 33 of 40
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and
v(z) = AP ().

Then for all non-negative measurable functiginsve have
(5.4) Ri(f)(x) = Cox™ 2" A3 (2) T, (9) (),

where
g(x) = f(x) A"} (2).

Let o
u() = 20D AR (),

then, according to the hypothesis satisfied by the funcHorit follows that
there exist positive constants , C; such that for ally > —% andp > 0 we
have

(5.5) Vo >0; 0<p(r) < Cra®tt?

(5.6) Vo> 0; 0<p(z) < Cop?eti—7),

Thus from the relations5(5) and 6.6) we deduce that for > 2, p > 0 and
p > 2a + 2, we have

e the functiony is continuous and non-increasing n1].

e the functionsy, v andyu satisfy the hypothesis of Theorefril
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e the functions

and

are bounded ofp, oo|.

Hence from Theorem. 1, there exist€’, , > 0 such that for all measurable
non-negative functiong we have

</OOO(Teo(f(fU)))p/vb(x)dx>’ < Cha (/Ooo(f(x))py(x)dx) g

This inequality together with the relatios.{) lead to

(/OOO(Rl(f(a:)))pA(a:)d:pf <C,. (/Ooo(f(ﬂf))pA(x)dx)’l’

which proves the Propositioh 1) in the caser > 3.
For—1 < a < 1 andp > 2 we have

e the functiony is continuous and non-decreasing]onl|.
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e if we pick

e Jom (0555 e ()|

and using inequalitie(5) and 6.6), we deduce that the function

1
7

)= (" (o (5)) " ston)” ([ (o (5))" vtas)

is bounded o010, co|.

Consequently, the result follows from Theorén2 and relation §.4).
2) can be obtained in the same fashion as 1). O

Now we will give the main results of this paper.
Theorem 5.4.

1. Fora > —%, p > 0andp > max(2,2a + 2), there exists a positive
constant’;, , such that for allf € L?(]0, oo[, A(x)dx),

IR(H)lp.a < Cpallfllpa-

2. For a > —%, p > 0andp > max(2,2a + 2), there exists a positive
constantC,, , such that for allg € L¥'([0, oo[, A(z)dz),
b

< /
A(I) = CP,QHQHP A

A

W(g)

wherep’ = I%
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Proof. 1) follows from Propositiori, 1) and Propositior, 1), and the fact that

R(f) = Ro(f) + Ra(f)-

2) follows from 1) and the relations

(5.7) lallya = max [ )o@,

max
1£1lp,a<1

for all measurable non-negative functiohandg

(5.8) / TR @)g(x) Alx)dr = / T W(e)(@)f ().

Theorem 5.5.

1. Foro > 1 p=0andp > 2a + 2 there exists a positive constafi}, ,
such that for allf € L?([0, co[, A(z)dx)

IR(Nlpa < CpallFllpa-

2.For o> 3, p=0and p > 2a + 2 there exists a positive constafi ,

such that for ally € L ([0, co[, A(x)dz)

1

H%waq)

< Op7a||g||p’7z4
A

wherep’ = I%
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3. For —% < a < % p = 0, p > 2a + 2 and under the hypothesis of

Proposition5.2, the previous results hold.

Proof. This theorem is obtained by using Propositidng),5.2and1, 2). [
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