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1. Introduction and Preliminaries

In this paper, using the methods of KKM-theory, see for example, Singh, Watson
and Srivastavall7] and Yuan R0], we prove some results on simultaneous nonlin-
ear inequalities. As corollaries, some results on the simultaneous approximations,
variational inequalities and saddle points are obtained.

Let X be a set. We shall denote Ry the family of all non-empty subsets of
X. If Ais a subset of a vector spagg thencoA denotes the convex hull of in
X. Let K be a subset of a topological vector space Then a multivalued map
G : K — 2% is called a KKM-map if

co{xy,...,x,} C U G (x:)
=1

for each finite subseftry, . .., z,} of K.

Let K be a nonempty convex subset of a vector spacBor a mapf : K — R,
the set

Ep(f) ={(z,r) e K xR: f(z) <r}

is called the epigraph of. Note that a may is convex if and only if the se'p( f)
IS convex.

Let K be anonempty set, € Nandf; : K x K — R maps for all € [n], where
n] = {1,...,n}. A simultaneous nonlinear inequalities problem is to finde K
such that it satisfies the following inequality

(1.1) > filwo,y) =0 forally € K.
1=1

Whenn = 1 and f(x,z) = 0 for all z € K, (1.1) reduces to the scalar equi-
librium problem considered by Blum and Oetthi]] that is, to findxy, € K such
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that
f(zo,y) >0 forally € K.

This problem has been generalized and applied in various directions, see for example
(11, 21, (31, [9], [10], [14].

The following result of Ky Fan§] will be used to prove the main result of this
paper.

Theorem 1.1 (B]). Let X be a topological vector spacé; a nonempty subset of
andG : K — 2% be a KKM-map with closed values.(f(x) is compact for at least
onez € K, then [ G(x) # 0.

zeK
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2. Main Result

Now we will apply Theorem..1to show the existence of a solution for our simulta-
neous nonlinear inequalities problem.

Theorem 2.1.Let K be a nonempty compact convex subset of a topological vector

spaceX andf; : K x K — R,i € [n], continuous maps. If there exists> 0, such
that

(2.1) coEp(fi(x,-)) € Ep(fi(z,-) = A)

forall x € K,i € [n], then there exists, € K such that
An + Zfi(ﬂﬁo,y) = Zfi(foafﬂo) forally € K.
i=1 =1
Proof. Let us define the ma@' : K — 2K by

G(y) = {Jz € K: )\n—l-ifi(x,y) > ifi(x,x)}, forally € K.
i=1 i=1

We have thatz(y) is nonempty for ally € K, because € G(y) forall y € K.

The f;,i € [n] are continuous maps and we obtain thdy) is closed for each
y € K. SinceK is a compact set, we have thGlty) is compact for each € K.

Now, we prove that is a KKM-map. IfG is not a KKM-map, then there exists
a subsey, ..., y,} of K and there existg; > 0, j € [m] with 377", yi; = 1,
such that

vu = 1y ¢ |J Gy))-
j=1 j=1
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So, we have

M+ filyyi) < Y fiyps ), forall j € [n].
=1 =1

On the other hand, since,

(Y)> fi(yu, v5)) € Ep(filyu, ), foralli e [n],j € m],

from condition ¢.1) we obtain

(W Zujfi(yu,yj)> € Ep(fiy,) — A foralli € [n].

j=1

Therefore, it follows that
FiWus yu) — Z (y,y;)  foralli e [n].

This implies that

Zfz (Yus ) < /\”"‘ZZ“JJCZ Ypus )

i=1 j=1

Further, since

SN wifily ) = Zlﬂjzlfz’(ywyj < max Zfz Yur Ui)»
peii

i=1 j=1
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and . .
>\n+Zfi(yu7yj) <Zfi(ymyu)7 for a”] S [m]a
=1 =1
we obtain

Zfi(ywyu) < Zfi(ymyu)‘

This is a contradiction. Thug; is a KKM-map.
By Theoreml.1, there exists;, € K such thaty, € G(y) forall y € K, that is,

An + Zfi(l"o,y) > Zfi(anxO) forally € K.
i=1 =1

O

Corollary 2.2. Let K be a nonempty compact convex subset of a topological vector
spaceX andf; : K x K — R, i € [n], continuous maps. If — f;(z,y) are convex
forall z € K, i € [n], then there exists, € K such that

Zfi(xl]?y) > Zfi(l'o,l’o) for all Yy < K.
i=1 =1

Note that, if in Theoren2.1the maps: — f;(z,y) are upper semicontinuous for
ally € K andf;(x,z) > 0forallx € K, € [n], we obtain the following result.
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(i7) x — fi(x,y) are upper semicontinuous for aJle K,

(7i1) y — fi(x,y) are convex for alk € K,

for all 7 € [n]. Then there existg, € K such that
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Consequently,
An + Zfi(xo,yo) < Zfi(%ﬂ%);
i=1 =1

s0,zo ¢ S and that is a contradiction. Therefopg(z,, z¢) = 0 for anyi € [n]. O
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3. Applications

From Theoren?.1, we have the following simultaneous approximations theorem for

metric spaces.

Theorem 3.1.Let K be a nonempty compact convex subset of a topological vector
spaceX with metricd and f;, g; : K — X,i € [n] continuous maps. Suppose there

exists\ > 0, such thatf;, g; satisfy the condition

(1)  co{(y,r) : d(gi(y), filx)) <7} C{(y,7) : d(gi(y), fi(z)) <7+ A}

forall x € K, i € [n]. Then there existg, € K such that

)\n+2dgl , fi(xo) >ngl xg), fi(zo)) forally e K.

Proof. Define

fz(xmy) :d(gz(y)7fz<x>>7 forx7yEK7iE [n]
Now, the result follows by Theorem 1. O

Remarkl. Let X be a normed space and lgt: K — X be almost affine maps, see,

for example §], [13], [19], [1€], [17], [19], . e.

lgi(aws + (1 = a)zz) = yl| < llgi(er) =yl + (1 = a)llgi(z2) — |

forall 1,25, € K,y € X,a € [0,1],7 € [n]. Then for\A = 0, assumptiond.1) is
satisfied.
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Corollary 3.2. Let K be a nonempty compact convex subset of a normed space
fi,g; - K — X continuous maps ang almost affine maps for all € [n]. Then
there exists, € K such that

Z l19i(y) — fi(xo)|| = Z llgi(xo) — fi(zo)|| forally e K.

Corollary 3.3. Let K be a nonempty compact convex subset of a normed space
andf; : K — X,i € [n], continuous maps. Then there exiggsc K such that

Z lly — fi(zo)|] > Z |wg — fi(wo)|| forally € K.
i=1 P

Remarlk2.

(7) If n = 1 then Corollary3.3 reduces to the well-known best approximations
theorem of Ky Fan§] and Corollary3.2 reduces to the result of J.B. Prolla

[15].

(#7) Note that, ifX is a Hilbert space and = 2, from Corollary3.3we obtain the
result of D. DelboscoT].

As application of Theorerfi.4, we have the following coincidence point theorem
for metric spaces.

Theorem 3.4.Let K be a nonempty compact convex subset of a topological vector
spaceX with metricd and f;, g; : K — X, i € [n], continuous maps. Suppose there
exists\ > 0, such thatf;, g; satisfy the conditiond 1) for all x € K, i € [n]. If for
everyx € K, with f;(z) # g;(x) forall i € [n],

(M € K : d(gi(w). fi(2)) > d(gi(y), fi(x)) + A} # 0,

i=1
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then the set
S = {x e K: n+ Zd(gi(y), fi(x)) > Zd(gi(x), fi(z)) forally e K}
i=1 =1
is nonempty and for each € S there exists € [n] such thatf;(z) = g;(x).

Proof. Put
fl<x7y) :d<gz(y)>fz<x>>7 fOI’[L’,yEK,iE [TL]
Thenf;, g;, i € [n] satisfy all of the requirements of Theoreim. O

Corollary 3.5. Let K be a nonempty compact convex subset of a metric sjace
f,g : K — X continuous maps and

d(g(Azy + (1 = N)xza), f(y)) < Ad(g(x1), f(y)) + (1 = Nd(g(22), f(y)),

forall z,20 € K,y € X, X € [0,1]. If for everyz € K, with f(z) # g(z) there
exists ay € K such that

d(g(x), f(x)) > d(g(y), f(x)),
then the set
S={reK:dgy), f(x)) >d(g(z), f(z)) forallyec K}
is nonempty and(z) = g(x) for eachz € S.

Corollary 3.6. Let K be a nonempty compact convex subset of a metric sjace
and f : K — X acontinuous map such that

x+—d(z, f(y)) is a convex map for alj € X.
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If for everyz € K, with f(z) # = there exists @ € K such that
d(x, f(x)) > d(y, f(z)),

then the set
S={re K :dy,f(z)) >d(z, f(z)) forallye K}
is nonempty and(z) = x for eachz € S.

We note that iff : K — K, then, from Corollary3.6, we obtain the famous
Schauder fixed point theorem.

Now, we establish an existence result for our simultaneous variational inequality
problem by using Corollarg.3.

Theorem 3.7.Let X be a reflexive Banach space with its du& and K a compact
convex subset of. LetT; : K — X*,i € [n], be maps. Ifc — (T;(x),y — z) are
upper semicontinuous for ajl € K, i € [n], then there exists, € K such that

n

Z(Ti(xo),y —x9) >0 forally e K.

=1

Proof. Let fi(z,y) = (Ti(x),y — ), forall z,y € K,i € [n]. By our assumptions,
the mapsf; satisfy all the hypotheses of Corollarys, and it follows that there exists
o € K such that

n

> (Ti(xo),y — o) >0 forally € K.

i=1
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Remark3.

(7) If n = 1then Theoren®.7 reduces to the classical result of F. E. Browder and
W. Takahashi, see for examplE7] Theorem 4. 33].

(17) Given two mapsl’ : K — X*andyp : K x K — X, the variational-like
inequality problem, see for exampl&d], is to findx, € K such that

(T(x0), u(y, 9)) >0 forally € K.

If in Corollary 2.3a map

filz,y) = (T(x), u(y,z)) forallz,ye K

andn = 1, we obtain the result of X.Q. Yang and G.Y. Chei®] Theorem
8], and the result of A. Behera and L. Nayak [Theorem 2.1]. Also, if in
Corollary2.3a map

filz,y) = (T(x), ply, x)) = (Alx), uly, ) forallz,y e K,

whereA : K — X*, we obtain the result of G. K. Panda and N. Dadii, [
Theorem 2.1].

Finally, we give the following application to the existence for saddle points.

Theorem 3.8. Let K be a nonempty compact convex subset of a topological vector
spaceX and f; : K x K — R continuous maps andl(xz,z) = 0 for all x € K,
i € [n]. If there exists\ > 0, such that

coEp(fi(z,-)) C Ep(fi(z,-) —A) foralz e K

and
coEp(—fi(-.y)) € Ep(—fi(-,y) — ) forally € K,
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forall i € [n], then

0 < min maXZfi(m,y maxmanfZ (z,y) < 2\n.

zeK yeK 4 yeK zeK
1=

Proof. Note that

Simultaneous Nonlinear

0 S min max E fz(x’ y — max min E fz €T y Inequalities Problem

i=1 yek zek Zoran D. Mitrovit
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Therefore, we obtain,

(3.3) min maxzn:fi(x,y) < \n.

yeK zeK 4
1=

By combining ¢.2) and 3.9), it follows that

minmaXZfi(a:,y) maxmmel x,y) < 2\n.

zeK yeK 4 T yeK zeK
1=

]

Corollary 3.9. Let K be a nonempty compact convex subset of a topological vector
spaceX. Suppos¢; : K x K — R, i € [n] are continuous maps such that

1. fi(z,z) =0forallz € K,
2. y— fi(x,y)is convex for alk € K,
3. z+— fi(z,y) is concave for ally € K,

for all i € [n]. Then we have

maxmiani(m,y = min maxz:fZ x,y).

zeK yeK
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