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ABSTRACT. In this paper we will give the behavior of ther−derivative near origin of sine series
with convex coefficients.
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1. I NTRODUCTION AND PRELIMINARIES

Let us denote by

(1.1)
∞∑

n=1

an sin nx,

the sine series of the functionf(x) with coefficientsan such thatan ↓ 0 or an → 0 and
∆2an = ∆an −∆an+1 ≥ 0, ∆an = an − an+1. It is a known fact that under these conditions,
series (1.1) converges uniformly in the intervalδ ≤ x ≤ 2π − δ, ∀δ > 0 (see [2, p. 95]). In the
following we will denote byg(x) the sum of the series (1.1), i.e

(1.2) g(x) =
∞∑

n=1

an sin nx.

Many authors have investigated the behaviors of the series (1.1), near the origin with convex
coefficients. Young in [9] gave the estimation for|g(x)| near the origin from the upper side.
Later Salem (see [4], [5]) proved the following estimation for the behavior of the functiong(x)
near the origin

g(x) ∼ mam,

for
π

m + 1
< x ≤ π

m
, m = 1, 2, . . . .
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Hartman and Winter (see [3]), proved that

lim
x→0

g(x)

x
=

∞∑
n=1

nan,

holds foran ↓ 0. In this context Telyakovskii (see [7]) has proved the behavior near the origin
of the sine series with convex coefficients. He has compared his own results with those of
Shogunbenkov (see [6]) and Aljancic et al. (see [1]).

In the sequel we will mention some results which are useful for further work. Dirichlet’s
kernels are denoted by

Dn(t) =
1

2
+

n∑
k=1

cos kt =
sin
(
n + 1

2

)
t

2 sin t
2

,

D̃n(t) =
n∑

k=1

sin kt =
cos t

2
− cos

(
n + 1

2

)
t

2 sin t
2

,

and

Dn(t) = −1

2
cot

t

2
+ D̃n(t) = −

cos
(
n + 1

2

)
t

2 sin t
2

.

Let En(t) = 1
2

+
∑n

k=1 eikt andE−n(t) = 1
2

+
∑n

k=1 e−ikt, then the following holds:

Lemma 1.1([8]). Let r be a non-negative integer. Then for all0 < x ≤ π and all n ≥ 1 the
following estimates hold

(1)
∣∣∣E−n

(r)(x)
∣∣∣ ≤ 4πnr

|x| ;

(2)
∣∣∣D̃(r)

n (x)
∣∣∣ ≤ 4πnr

|x| ;

(3)
∣∣∣Dn

(r)
(x)
∣∣∣ ≤ 4πnr

|x| + O
(

1
|x|r+1

)
.

2. RESULTS

Theorem 2.1.Letan be a sequence of scalars such that:

(1) an ↓ 0;
(2)
∑∞

n=1 nr∆an < ∞, for r = 0, 1, 2, . . . ,

then for π
m+1

< x ≤ π
m

, m = 1, 2, . . . the following estimate is valid

g(r)(x) =
m∑

n=1

nran

(
nx +

rπ

2

)
+ O

{
m∑

n=1

an

[
nr
( n

m
+

r

2

)3

+ n3mr−3

]}
+ o(m).

Proof. Applying Abel’s transform we obtain

(2.1) g(x) =
∞∑

n=1

∆anD̃n(x),

whereD̃n(x) =
∑n

k=1 sin kx is Dirichlet’s conjugate kernel. Let us denote byg(r)(x) ther−th
derivatives for the functiong. Let

(2.2)
∞∑

n=1

∆anD̃n

(r)
(x),

be ther-th derivatives of the series in the relation (2.1).
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From the given conditions in the theorem and Lemma 1.1(2), series (2.2) converges uniformly
in (0, π], so the following relation holds

(2.3) g(r)(x) =
∞∑

n=1

∆anD̃n

(r)
(x).

From the last relation we have

(2.4) g(r)(x) =
m∑

n=1

∆anD̃n

(r)
(x) +

∞∑
n=m+1

∆anD̃n

(r)
(x) = I1(x) + I2(x).

In the following we will estimate sumsI1(x) and I2(x). Let us start with estimation of the
second sum. From the second condition in Lemma 1.1, the second condition of the theorem and
fact that π

m+1
< x ≤ π

m
, we have

(2.5) I2(x) ≤ 4π ·
∞∑

n=m+1

∆an
nr

x
≤ 8m

∞∑
n=m+1

nr∆an = o(m).

For the first sum we have the following estimation

I1(x) =
m∑

n=1

∆anD̃
(r)
n (x) =

m∑
n=1

an

[
D̃(r)

n (x)− D̃
(r)
n−1(x)

]
− am+1D̃

(r)
m (x),

whereD̃
(r)
0 (x) = 0. Knowing that

D̃(r)
n (x)− D̃

(r)
n−1(x) = nr sin

(
nx +

rπ

2

)
,

taking into consideration Lemma 1.1 and the conditions in Theorem 2.1, we have

I1(x) =
m∑

n=1

nr sin
(
nx +

rπ

2

)
+ O(mr+1am).

In the last relation we can use the known fact thatsin x = x + O(x3) for x → 0. The following
relation then holds

I1(x) =
m∑

n=1

nran

(
nx +

rπ

2

)
+ O

[
m∑

n=1

nran

(
nx +

rπ

2

)3
]

+ 8mr+1am.

Taking into consideration the fact thatan is a monotone sequence we obtain

mam ≤ 4

m3

m∑
n=1

n3an,

from which it follows that

mr+1am ≤ 4mr−3

m∑
n=1

n3an.

From the above relations we have the following estimation forI1(x),

(2.6) I1(x) =
m∑

n=1

nran

(
nx +

rπ

2

)
+ O

{
m∑

n=1

an

[
nr
(
nx +

rπ

2

)3

+ n3mr−3

]}
.

Now proof of Theorem 2.1 follows from (2.4), (2.5) and (2.6). �

Remark 2.2. The above result is a generalization of that given in [7].
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Corollary 2.3. Let an be sequence of scalars such thatan ↓ 0. Then for π
m+1

< x ≤ π
m

,
m = 1, 2, . . . , the following relation holds

g(x) =
m∑

n=1

nanx + O

(
1

m3

m∑
n=1

n3an

)
.

Theorem 2.4.Let (an) be a sequence of scalars such that the following conditions hold:

(1) an → 0 and∆an ≥ 0
(2)
∑∞

n=1 nr+1∆2an < ∞, for r = 0, 1, 2, . . . .

Then for π
m+1

< x ≤ π
m

, m = 1, 2, . . . the following estimate is valid

g(r)(x) ≤ M(r)

{
mr+2[am + ∆am] +

m−1∑
n=1

nr+1
( n

m
+

r

2

)
∆an + o(m)

}
,

whereM(r) is a constant which depends only onr.

Proof. Applying Abel’s transform we obtain
∞∑

n=1

nr∆an =
∞∑

n=1

∆2an

n∑
i=1

ir ≤
∞∑

n=1

nr+1∆2an < ∞.

From the convergence of the series
∑∞

n=1 nr∆an and Condition 2 in Lemma 1.1 we obtain that
∞∑

n=1

∆anD̃
(r)
n (x)

converges uniformly in(0, π], so the following relation is valid

g(r)(x) =
∞∑

n=1

∆anD̃
(r)
n (x).

From the other side we have that

D̃(r)
n (x) =

1

2

(
cot

x

2

)(r)

+ Dn
(r)

(x),

respectively,

g(r)(x) =
am

2

(
cot

x

2

)(r)

+
m−1∑
n=1

∆anD̃n
(r)(x) +

∞∑
n=m

∆anDn
(r)(x)

=
am

2

(
cot

x

2

)(r)

+ J1(x) + J2(x).(2.7)

For π
m+1

< x ≤ π
m

, we will have the following estimation

(2.8)
(
cot

x

2

)(r)

≤ M

xr+1
≤ M(r)mr+2.

On the other hand it is known that

D̃(r)
n (x) =

n∑
i=1

ir sin
(
ix +

rπ

2

)
≤ nr+1

(
nx +

rπ

2

)
≤ πnr+1

( n

m
+

r

2

)
.

From last two relations we have the following estimation forJ1(x),

(2.9) J1(x) ≤ π

m−1∑
n=1

nr+1
( n

m
+

r

2

)
∆an.
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In the following we will estimate the second sumJ2(x). Applying the Abel transform we have

J2(x) =
∞∑

n=m

∆2an

n∑
i=0

Di
(r)

(x)−∆am

m−1∑
i=0

Di
(r)

(x)

=
∞∑

n=m

∆2an

{
n∑

i=0

Di
(r)

(x)−
m−1∑
i=0

Di
(r)

(x)

}
,

because
∑∞

n=m ∆2an = ∆am.
Taking into consideration Lemma 1.1, we have the following estimation

n∑
i=0

∣∣∣Di
(r)

(x)
∣∣∣ ≤ 4π

n∑
i=0

ir

x
+ M

n∑
i=0

1

xr+1
≤ M(r)mnr+1.

In a similar way we can prove that
m−1∑
i=0

∣∣∣Di
(r)

(x)
∣∣∣ ≤ M(r)mr+2.

Now the estimation ofJ2(x) can be expressed in the following way

|J2(x)| ≤ M(r)

{
m

∞∑
n=m

nr+1∆2an + mr+2∆am

}
(2.10)

= M(r){mr+2∆am + o(m)}.
The proof of the theorem follows from relations (2.7), (2.8), (2.9) and (2.10). �

Remark 2.5. The above theorem is a generalization of the result obtained in [7], from the upper
side for the casem ≥ 11.

Corollary 2.6. Letan → 0 be a convex sequence of scalars. If
π

m + 1
< x ≤ π

m
, m ≥ 11

then the following estimation holds

am

2
cot

x

2
+

1

2m

m−1∑
n=1

n2∆an ≤ g(x) ≤ am

2
cot

x

2
+

6

m

m−1∑
n=1

n2∆an.

Remark 2.7. Telyakovskii compared his own results with those given by Hartman, Winter (see
[3]), then with results given by Salem (see [4], [5]). Taking into consideration Corollary 2.3 and
Corollary 2.6 for the caser = 0, we can compare our results with the results mentioned above.

REFERENCES

[1] S. ALJANCIC, R. BOJANICAND M. TOMIC, Sur le comportement asymtotique au voisinage de
zero des series trigonometrique de sinus a coefficients monotones,Publ. Inst. Math. Acad. Serie Sci.,
10 (1956), 101–120.

[2] N.K. BARY, Trigonometric Series, Moscow, 1961 (in Russian).

[3] Ph. HARTMAN AND A. WINTER, On sine series with monotone coefficients,J. London Math.
Soc., 28 (1953), 102–104.

[4] R. SALEM, Determination de l’order de grandeur a l’origine de certaines series trigonometrique,
C.R. Acad. Paris, 186(1928), 1804–1806.

[5] R. SALEM,Essais sur les series Trigonometriques, Paris, 1940.

J. Inequal. Pure and Appl. Math., 8(1) (2007), Art. 22, 6 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 XH. Z. KRASNIQI AND N. L. BRAHA

[6] Sh.Sh. SHOGUNBENKOV, Certain estimates for sine series with convex coefficients (in Russian),
Primenenie Funktzional’nogo analiza v teorii priblizhenii, Tver’ 1993, 67–72.

[7] S.A. TELYAKOVSKI, On the behaivor near the origin of sine series with convex coefficients,Pub.
De L’inst. Math. Nouvelle serie, 58(72) (1995), 43–50.

[8] Z. TOMOVSKI, Some results onL1-approximation of ther−th derivateve of Fourier series,J. In-
equal. Pure and Appl. Math., 3(1) (2002), Art. 10. [ONLINE:http://jipam.vu.edu.au/
article.php?sid=162 ].

[9] W.H. YOUNG, On the mode of oscillation of Fourier series and of its allied series,Proc. London
Math. Soc., 12 (1913), 433–452.

J. Inequal. Pure and Appl. Math., 8(1) (2007), Art. 22, 6 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/article.php?sid=162
http://jipam.vu.edu.au/article.php?sid=162
http://jipam.vu.edu.au/

	1. Introduction and Preliminaries
	2. Results
	References

