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ABSTRACT. Given continuous functionsM andN of two variables, it is shown that if in a
continuous iteration semigroup with only(M,N)-convex or(M,N)-concave elements there
are two(M,N)-affine elements, thenM = N and every element of the semigroup isM -affine.
Moreover, all functions in the semigroup either areM -convex orM -concave.
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1. I NTRODUCTION

In this paper we use the definition of(M,N)-convex,(M,N)-concave and(M,N)-affine
functions, introduced earlier by G. Aumann [1]. For a givenM in (0,∞)×(0,∞) J. Matkowski
[5] considered a continuous multiplicative iteration group of homeomorphismsf t : (0,∞) →
(0,∞), consisting ofM -convex orM -concave elements. In the present paper we generalize
some results of Matkowski considering the problem proposed in [5]. LetM andN be arbitrary
continuous functions. We prove that, if in a continuous iteration semigroup with only(M,N)-
convex or(M,N)-concave elements there are two(M,N)-affine functions, then every element
of the semigroup isM -affine. Moreover, we show that if in a semigroup there existf t0 ,which is
(M,N)-affine, and two iterates with indices greater thant0, one(M,N)-convex and the second
(M,N)-concave, then the thesis is the same (all elements in a semigroup areM -affine). We end
the paper with theorems describing the regularity of semigroups containing generalized convex
and concave elements.

2. PRELIMINARIES

Let I, J ⊂ R be open intervals and letM : I2 → I, N : J2 → J be arbitrary functions.
A functionf : I → J is said to be
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(M,N)-convex, if
f(M(x, y)) ≤ N(f(x), f(y)), x, y ∈ I;

(M,N)-concave, if
f(M(x, y)) ≥ N(f(x), f(y)), x, y ∈ I;

(M,N)-affine, if it is both (M,N)-convex and(M,N)-concave.
In the case whenM = N, the respective functions are calledM -convex,M -concave, and

M -affine, respectively.
We start with three remarks which can easily be verified.

Remark 1. If a functionf is increasing and(M,N)-convex, then for allM1 andN1 satisfying
M1 ≤ M andN1 ≥ N it is (M1, N1)-convex. Analogously, if a functionf is decreasing and
(M,N)-concave, then for allM1 andN1 satisfyingM1 ≤ M andN1 ≤ N it is (M1, N1)-
concave.

Remark 2. Let f : I → J be strictly increasing and ontoJ. If f is (M,N)-convex then its
inverse functionf−1 is (N,M)-concave.

If f : I → J is strictly decreasing, onto and(M,N)-convex, then its inverse function is
(N,M)-convex.

If f : I → J is (M,N)-affine, then its inverse function is(N,M)-affine.

Remark 3. Let I, J,K ⊂ R be open intervals andM : I2 → I, N : J2 → J, P : K2 → K be
arbitrary functions.

If g : I → K is (M,P )-affine andf : K → J is (P,N)-affine, thenf ◦ g is (M,N)-affine.

Under some additional conditions onf and g, the converse implication also holds true.
Namely, we have the following:

Lemma 2.1. Suppose thatg : I → K is onto and(M,P )-convex andf : K → J is strictly
increasing and(P,N)-convex. Iff ◦g is (M,N)-affine, theng is (M,P )-affine andf is (P,N)-
affine.

Proof. Let f ◦ g be (M,N)-affine. Assume, to the contrary, thatf is not (P,N)-affine. Then
u0, v0 ∈ K would exist such that

f(P (u0, v0)) < N(f(u0), f(v0)).

Sinceg is ontoK, there arex0, y0 ∈ I such thatg(x0) = u0 andg(y0) = v0. Hence, by the
monotonicity off and the(M,P )-convexity ofg,

f ◦ g(M(x0, y0)) ≤ f(P (g(x0), g(y0)))

= f(P (u0, v0))

< N(f(u0), f(v0))

= N(f ◦ g(x0), f ◦ g(y0)),

which contradicts the assumption thatf ◦ g is (M,N)-affine.
Similarly, if g were not(M,P )-affine then we would have

g(M(x0, y0)) < P (g(x0), g(y0))

for somex0, y0 ∈ I. By the monotonicity and the(P,N)-convexity off we would obtain

f(g(M(x0, y0))) < f(P (g(x0), g(y0))) ≤ N(f(g(x0)), f(g(y0))),

which contradicts the(M,N)-affinity of f ◦ g. This contradiction completes the proof. �

In a similar way one can show the following:
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Remark 4. Suppose thatg : I → K is onto and(M,P )-concave andf : K → J is strictly
increasing and(P,N)-concave. Iff ◦ g is (M,N)-affine, theng is (M,P )-affine andf is
(P,N)-affine.

Remark 5. Observe that, without any loss of generality, considering the(M,N)-affinity, the
(M,N)-convexity or the(M,N)-concavity of a functionf we can assume thatI = J = (0,∞).

Indeed, letϕ : (0,∞) → I andψ : J → (0,∞) be one-to-one and onto. PutMϕ(s, t) :=
ϕ−1(M(ϕ(s), ϕ(t))) andNψ(u, v) := ψ(N(ψ−1(u), ψ−1(v))). A function f : I → J satisfies
the equation

f(M(x, y)) = N(f(x), f(y)), x, y ∈ I,
if and only if the functionf ∗ := ψ ◦ f ◦ ϕ : (0,∞) → (0,∞) satisfies

f ∗(Mϕ(s, t)) = Nψ(f ∗(s), f∗(t)), s, t ∈ (0,∞).

Moreover, ifψ is strictly increasing, thenf is (M,N)-convex ((M,N)-concave) if and only
if f ∗ is (Mϕ, Nψ)-convex ((Mϕ, Nψ)-concave); ifψ is strictly decreasing, thenf is (M,N)-
convex ((M,N)-concave) if and only iff ∗ is (Mϕ, Nψ)-concave ((Mϕ, Nψ)-convex).

In what follows, we assume thatI = J.
In the proof of the main result we need the following

Lemma 2.2. Suppose that a non-decreasing functionf : I → I isM -convex (orM -concave)
and one-to-one or onto. If, for a positive integerm, them-th iterate off isM -affine, thenf is
M -affine.

Proof. Assume thatf isM -convex. Using, in turn, the convexity, the monotonicity, and again
the convexity off, we get, forx, y ∈ I,

f 2(M(x, y)) = f(f(M(x, y))) ≤ f(M(f(x), f(y))) ≤M(f 2(x), f2(y)),

and further, by induction, for allx, y ∈ I andn ∈ N,

fn(M(x, y)) = f(fn−1(M(x, y))) ≤ f(M(fn−1(x), fn−1(y))) ≤M(fn(x), fn(y)).

Hence, sincefm isM -affine for anm ∈ N, i.e.

fm(M(x, y)) = M(fm(x), fm(y)), x, y ∈ I,

we obtain, for allx, y ∈ I,

(2.1) fm(M(x, y)) = f(M(fm−1(x), fm−1(y))) = M(fm(x), fm(y)).

Now, if f is one-to-one, from the first of these equalities we get

fm−1(M(x, y)) = M(fm−1(x), fm−1(y)), x, y ∈ I,

which means thatfm−1 is anM -affine function. Repeating this procedurem − 2 times we
obtain theM -affinity of f. Now assume thatf is ontoI. If m = 1 there is nothing to prove.
Assume thatm ≥ 2. Sincefm−1 is also ontoI, for arbitraryu, v ∈ I there existx, y ∈ I such
thatu = fm−1(x) andv = fm−1(y). Now, from the second equality in(2.1), we get

f(M(u, v)) = M(f(u), f(v)), u, v ∈ I,

that is,f isM -affine.
As the same argument can be used in the case whenf isM -concave, the proof is finished.�
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Let us introduce the notions of an iteration group and an iteration semigroup.
A family {f t : t ∈ R} of homeomorphisms of an intervalI is said to bean iteration group

(of functionf ), if f s ◦ f t = f s+t for all s, t ∈ R (andf 1 = f). An iteration group is called
continuousif for everyx ∈ I the functiont→ f t(x) is continuous.

Note thatf t is increasing for everyt ∈ R.
A one parameter family{f t : t ≥ 0} of continuous one-to-one functionsf t : I → I such

thatf t ◦f s = f t+s, t, s ≥ 0 is said to bean iteration semigroup. If for everyx ∈ I the mapping
t→ f t(x) is continuous then an iteration semigroup is said to becontinuous.

More information on iteration groups and semigroups can be found, for example, in [3], [4],
[8] and [10].

Remark 6 (see [10, Remark 4.1]). If I ⊂ R is an open interval and there exists at least one
element of an iteration semigroup{f t : t ≥ 0} without a fixed point and it is not surjective,
then this semigroup is continuous.

Remark 7. Every iteration semigroup can be uniquely extended to the relative iteration group
(cf. Zdun [9]). Namely, for a given iteration semigroup{f t : t ≥ 0} define

F t :=

{
f t, t ≥ 0,
(f−t)−1, t < 0,

whereDomF t = I andDomF−t = f t[I] for t > 0. It is easy to observe that{F t : t ∈ R} is
a continuous group, i.e.F t ◦ F s(x) = F t+s(x) for all values ofx for which this formula holds.
Moreover, if at least one off t is a homeomorphism, then{F t : t ∈ R} is an iteration group.

In this paper we consider iteration semigroups consisting of(M,N)-convex and(M,N)-
concave elements or semigroups consisting ofM -convex andM -concave elements. Iteration
groups consisting of convex functions were studied earlier, among others, by A. Smajdor [6],
[7] and M.C. Zdun [10].

Remark 8. Let {f t : t ≥ 0} be a continuous iteration semigroup. If there exists a sequence
(f tn)n∈N of (M,N)-convex functions such thatlimn→+∞ tn = 0, thenM ≤ N. Similarly, if
in a continuous semigroup{f t : t ≥ 0} there exists a sequence(f tn)n∈N of (M,N)-concave
elements such thatlimn→+∞ tn = 0, thenM ≥ N.

Indeed, the continuity of the semigroup implies thatf 0, as the limit of a sequence of(M,N)-
convex or(M,N)-concave functions, is(M,N)-convex or(M,N)-concave, respectively. Since
f 0 = id, it follows thatM ≤ N orM ≥ N, respectively.

3. RESULTS

We start with an example of an iteration semigroup consisting of(M,N)-concave elements,
whereM 6= N.

Example 3.1. Let I = (0,∞). For everyt ≥ 0 put f t(x) = x4t
and letM(x, y) = x + y,

N(x, y) = x+y
2
. Since the inequality

(3.1) (x+ y)4t ≥ x4t
+ y4t

2

holds for allt, x, y > 0, there are(M,N)-concave elements in the semigroup{f t : t ≥ 0}.One
can use standard calculus methods to prove (3.1).

In [5], Matkowski considered continuous multiplicative iteration groups of homeomorphisms
f t : (0,∞) → (0,∞) such that, for everyt > 0 the functionf t is M -convex orM -concave,
whereM is continuous on(0,∞)× (0,∞). The main result of [5] says that if in such a group
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there are two elementsf r andf s, r < 1 < s, which are bothM -convex or bothM -concave,
then all elements of the group areM -affine. While discussing the possiblility of a generalization
of this result it was shown that an analogous theorem with(M,N)-convex or(M,N)-concave
functions, whereM 6= N , is not valid.

Our first result establishes conditions under which the desirable thesis holds.

Theorem 3.1.LetM,N : I2 → I be continuous functions. Suppose that a continuous iteration
semigroup{f t : t ≥ 0} is such thatf t is (M,N)-convex or(M,N)-concave for everyt > 0.
If there existr > s > 0 such thatf r and f s are (M,N)-affine, then every element of this
semigroup isM -affine andM = N on the setf s[I]× f s[I].

Proof. Let f r andf s be(M,N)-affine. By Remark 2, the function(f s)−1 is (N,M)-affine. It
is easy to see thath := (f s)−1 ◦ f r = f r−s is M -affine. Moreover, by the(M,N)-affinity of
f s,

(3.2) N(x, y) = f s(M((f s)−1(x), (f s)−1(y))), x, y ∈ f s[I].
The(M,N)-convexity or the(M,N)-concavity offu for everyu > 0, and (3.2) imply that, for
everyu > 0, the functionfu satisfies the inequality

fu(M(x, y)) ≤ N(fu(x), fu(y)) = f s(M((f s)−1(fu(x)), (f s)−1(fu(y))))

or the inequality

fu(M(x, y)) ≥ N(fu(x), fu(y)) = (f s)(M((f s)−1(fu(x)), (f s)−1(fu(y)))),

for everyx andy such thatfu(x), fu(y) ∈ f s[I]. Since foru ≥ s the inclusionfu(x) ∈ f s[I]
holds for everyx ∈ I, we hence get, for allu ≥ s, x, y ∈ I

fu−s(M(x, y)) = (f s)−1 ◦ fu(M(x, y))(3.3)

≤M((f s)−1 ◦ fu(x), (f s)−1 ◦ fu(y))
= M(fu−s(x), fu−s(y)),

or

fu−s(M(x, y)) = (f s)−1 ◦ fu(M(x, y))(3.4)

≥M((f s)−1 ◦ fu(x), (f s)−1 ◦ fu(y))
= M(fu−s(x), fu−s(y)),

i.e. for everyt := u− s ≥ 0 and allx, y ∈ I,
f t(M(x, y)) ≤M(f t(x), f t(y))

or
f t(M(x, y)) ≥M(f t(x), f t(y)),

which means that every element of the semigroup with iterative indext ≥ 0 is M -convex or
M -concave. Defineht := {f t(r−s) : t ≥ 0}. Sinceh1/m = f (r−s)/m for m ∈ N, it is M -convex
orM -concave as an element of the semigroup. On the other hand,h1/m is them-th iterative root
of h = h1 which isM -affine. Hence, by Lemma 2.2, the functionh1/m isM -affine. It follows
that, for all positive integersm,n, the functionhn/m is M -affine. Thus the set{ht : t ∈ Q+}
consists ofM -affine functions. The continuity of the iteration semigroup and the continuity of
M imply that, for everyt ≥ 0, the functionht isM -affine and, consequently,f t, for all t ≥ 0,
areM -affine. To end the proof takef s which is both(M,N)-affine andM -affine. Then, for all
x, y ∈ I,

f s(M(x, y)) = N(f s(x), f s(y))

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. draft, 76 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 DOROTA KRASSOWSKA

and
f s(M(x, y)) = M(f s(x), f s(y)),

whence
N(f s(x), f s(y)) = M(f s(x), f s(y)), x, y ∈ I.

Sincef s is ontof s[I],M(x, y) = N(x, y) for x, y ∈ f s[I]. The proof is completed. �

Remark 9. Let us note that if in an iteration group for somet0 ∈ R the functionf t0 is M -
convex, then the function(f t0)−1 isM -concave.

Now we present two results which generalize Matkowski’s Theorem 1 ([5]).

Theorem 3.2.LetM : I2 → I be continuous. Suppose that an iteration semigroup{f t : t ≥ 0}
is continuous. If there existr, s > 0 such thatr

s
6∈ Q, f r < id, f s < id andf r isM -convex and

f s isM -concave, then every element of the semigroup isM -affine.

Proof. Take the relative iteration group{F t : t ∈ R} defined as in Remark 7. Assume thatf r

isM -convex andf s isM -concave. Putg := f r andh := f−s. It is obvious that, for each pair
(m,n) of positive integers, the functionsgm andhn areM -convex.

LetN (x) := {(m,n) ∈ N×N : hn(x) ∈ gm[I]} andD(x) := {rm− sn : (m,n) ∈ N (x)}.
Note that ifx < y, thenN (x) ⊂ N (y). Moreover, for everyx ∈ I, the setD(x) is dense inR
(see [2]).

Let x ∈ I be fixed. Take an arbitraryt ∈ R. By the density of the setD(x), there exists a
sequence(mk, nk) with terms fromN (x) such thatt = limk→+∞(mkr − nks). Moreover,

F t(x) = lim
k→+∞

f−nks ◦ fmkr(x) = lim
k→+∞

hnk ◦ gmk(x).

Hence, for everyt ∈ R, the functionF t is M -convex, as it is the limit of a sequence ofM -
convex functions.

Now let t > 0 be fixed. SinceF t andF−t are bothM -convex andF−t ◦F t = id, by Lemma
2.1,F t isM -affine. Consequently,f t isM -affine for everyt ≥ 0. �

Theorem 3.3. Let M : I2 → I be continuous. Suppose that{f t : t ≥ 0} is a continuous
iteration semigroup such thatf t is M -convex orM -concave for everyt > 0. If there exist
r, s > 0 such thatf r < id is M -convex andf s < id is M -concave, thenf t is M -affine for
everyt > 0.

Proof. If r
s
6∈ Q, then the thesis follows from the previous theorem. Suppose thatr

s
∈ Q.

Then there existm,n ∈ N such thatnr = ms. Thus(f r)n = (f s)m. PutH := (f r)n. Since
(f r)n isM -convex and(f s)m isM -concave,H isM -affine. By Lemma 2.2, the functionf r is
M -affine. Letn ∈ N be fixed. As

f r/n ◦ f r/n ◦ · · · ◦ f r/n︸ ︷︷ ︸
n times

= f r,

by Lemma 2.2, the functionf r/n is M -affine. Thus for alln,m ∈ N, the functionsf
m
n
r =

(f r/n)m areM -affine. Let us fixt > 0 and take a sequence(wn)n∈N of positive rational numbers
such thatf t = limn→∞ f

wnr. The continuity ofM, the continuity of the semigroup and the
formula forf t imply thatf t isM -affine. �

From Theorems 3.2 and 3.3 we obtain the additive version of Matkowski’s result [5] which
reads as follows.

Corollary 3.4. LetM : I2 → I be continuous and suppose that{f t : t ≥ 0} is a continuous
iteration semigroup of homeomorphismsf t : I → I such that:
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(i) f t isM -convex orM -concave for everyt > 0;
(ii) there existr, s > 0 such thatf r isM -convex andf s isM -concave.

Thenf t isM -affine for everyt ≥ 0.

Now we prove the following

Theorem 3.5. Let M : I2 → I be a continuous function. If every element of a continuous
iteration semigroup{f t : t ≥ 0} is M -convex orM -concave and there exists ans 6= 0 such
thatf s isM -affine, thenf t isM -affine for everyt ≥ 0.

Proof. Assume that every element of the iteration semigroup isM -convex andg := f s is M -
affine. By Lemma 2.2, for anm ∈ N the functiong1/m isM -affine. Now the same argument as
in the proof of Theorem 3.1 can be repeated. �

Coming back to a group with(M,N)-convex or(M,N)-concave elements, we present:

Theorem 3.6.LetM,N : I2 → I be continuous functions. Suppose that an iteration semigroup
{f t : t ≥ 0} is continuous and such that, for everyt > 0, the functionf t is (M,N)-convex or
(M,N)-concave.
Assume moreover that:

(i) there existst0 > 0 such thatf t0 is (M,N)-affine;
(ii) there existr, s > t0 such thatf r is (M,N)-convex andf s is (M,N)-concave.

Then, for everyt ≥ 0, the functionf t isM -affine andM = N onf t0 [I]× f t0 [I].

Proof. By (i) we obtain equality (3.2) withf t0 instead off s. This equality and the(M,N)-
convexity off r give

f r(M(x, y) ≤ N(f r(x), f r(y)) = f t0(M((f t0)−1(f r(x)), (f t0)−1(f r(y))))

for all x, y ∈ I. The monotonicity of the function(f t0)−1 implies that

(f t0)−1(f r(M(x, y))) ≤M((f t0)−1(f r(x)), (f t0)−1(f r(y))), x, y ∈ I,

that is, the functionf r−t0 is M -convex. Similarly,f s−t0 is M -concave. Moreover, repeating
the procedure used in the proof of Theorem 3.1, we have (3.3) or (3.4) witht0 instead ofs for
everyu ≥ t0. Hence for everyt ≥ 0, the functionf t is M -convex orM -concave. Since the
semigroup satisfies all the assumptions of Theorem 3.3, we obtain the first part of the thesis. To
prove the second part, it is enough to takef = f t0 , that is, simultaneously(M,N)-affine and
M -affine, and apply the argument used at the end of the proof of Theorem 3.1. �

In the context of the above proof a natural question arises. Is it true that every(M,N)-convex
function has to beM -convex? The following example shows that the answer is negative.

Example 3.2. Let I = (0,∞), M(x, y) = x + y, N(x, y) =
√
xy and putf t(x) = x

tx+1

for every t > 0. It is easy to check that{f t : t ≥ 0} is a semigroup. The functionf t is
(M,N)-concave andM -convex for everyt > 0.

The proof needs only some standard calculations.

We now present theorems which establish the regularity of the semigroup we deal with.
Namely,

Theorem 3.7.Suppose that{f t : t ≥ 0} is a continuous iteration semigroup. Iff t isM -convex
or M -concave for everyt > 0, then in this semigroup either for everyt > 0 elementf t is
M -convex or, contrarily, for everyt > 0 elementf t isM -concave.

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. draft, 76 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


8 DOROTA KRASSOWSKA

Proof. Let A = {t > 0 : f t(M(x, y)) ≤ M(f t(x), f t(y)), x, y ∈ I} andB = {t > 0 :
f t(M(x, y)) ≥ M(f t(x), f t(y)), x, y ∈ I}. The setsA andB are relatively closed subsets of
(0,∞). Moreover,A ∪B = (0,∞). Let us consider two cases:
(i) A ∩B = ∅. Then the connectivity of the set(0,∞) implies thatA = ∅ orB = ∅;
(ii) A∩B 6= ∅. Then there existsu ∈ A∩B, u 6= 0, sofu isM -affine. Hence all the assumptions
of Theorem 3.5 are satisfied and the semigroup consists only ofM -affine elements, so the thesis
is fulfilled. �

However, for a semigroup with(M,N)-convex or(M,N)-concave elements, we have the
following weaker result:

Theorem 3.8. Suppose that{f t : t ≥ 0} is a continuous iteration semigroup. Iff t is (M,N)-
convex or(M,N)-concave for everyt > 0, then there existst0 ≥ 0 such that in this semigroup
either for everyt ≥ t0 the elementf t is (M,N)-convex and for every0 ≤ t ≤ t0 the element
f t is (M,N)-concave or, contrarily, for everyt ≥ t0 the elementf t is (M,N)-concave and for
every0 ≤ t ≤ t0 the elementf t is (M,N)-convex.

Proof. Let A = {t > 0 : f t(M(x, y)) ≤ N(f t(x), f t(y)), x, y ∈ I} andB = {t > 0 :
f t(M(x, y)) ≥ N(f t(x), f t(y)), x, y ∈ I}. The setsA andB are relatively closed subsets of
(0,∞). Moreover,A ∪B = (0,∞). Now we consider three cases:
(i) A ∩B = ∅. Then the connectivity of the set(0,∞) implies thatA = ∅ orB = ∅;
(ii) A∩B 6= ∅ and there exist at least two elements in this set. All the assumptions of Theorem
3.1 are satisfied and the semigroup consists only of(M,N)-affine elements, of courset0 = 0;
(iii) A ∩ B is a singleton. DenoteA ∩ B = {u}. The functionfu is (M,N)-affine. Hence all
the assumptions of Theorem 3.6 are satisfied and the semigroup contains only(M,N)-affine
elements. The thesis is thus fulfilled. Of course,f t0 is (M,N)-affine. �

Applying Theorem 3.8, we obtain the following

Corollary 3.9. Let us assume that a continuous iteration semigroup{f t : t ≥ 0} consists only
of (M,N)-convex or(M,N)-concave functions and there arer, s > 0 such thatf r andf s are
both(M,N)-affine. Then eitherM ≤ N or N ≤M.
If M ≤ N and for at least one point(x0, y0) ∈ I2 the strict inequality

(3.5) M(x0, y0) < N(x0, y0)

holds, then for everyt > 0, the functionsf t are (M,N)-convex.

Proof. Assume, on the contrary, that there existst0 > 0 such thatf t0 is (M,N)-concave. By
Theorem 3.8, for everyt > 0, the functionf t is (M,N)-concave. Hencef 0 = id is (M,N)-
concave since it is the limit of an(M,N)-concave function. Thus

M(x, y) ≥ N(x, y) x, y ∈ I,
which contradicts the assumed inequality (3.5). �

In all theorems, according to Remark 6, if at least one function in a semigroup is without a
fixed point and not surjective, then the assumption of the continuity of the semigroup can be
omitted.
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