journal of inequalities in pure and
applied mathematics

http://jipam.vu.edu.au
issn: 1443-5756

Volume 10 (2009), Issue 2, Article 33, 10 pp. © 2009 Victoria University. All rights reserved.

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR
MAJORANT

SIMON J. SMITH
DEPARTMENT OFMATHEMATICS AND STATISTICS
LA TROBE UNIVERSITY
P.O. Box 199, BENDIGO
VICTORIA 3552, AUSTRALIA

s.smith@latrobe.edu.au

Received 31 July, 2008; accepted 06 February, 2009
Communicated by Q.l. Rahman

ABSTRACT. Denote byL,, the projection operator obtained by applying the Lagrange inter-
polation method, weighted b{i — x2)'/2, at the zeros of the Chebyshev polynomial of the

second kind of degree + 1. The norm||L,| = ”;ﬂla)il L+ f|loo, Where|| - ||« denotes the

supremum norm ofi-1, 1], is known to be asymptotically the same as the minimum possible
norm over all choices of interpolation nodes for unweighted Lagrange interpolation. Because the
projection forces the interpolating function to vanishtdy, it is appropriate to consider a modi-
fied projection normj|L,, ||, = " rﬂ%( ) I L+ f]loo, Wherey € C[—1,1] is a given function (a

xz xT
curved majorantthat satisfie$) < «(x) < 1 andy(+1) = 0. In this paper the asymptotic be-
haviour of the modified projection norm is studied in the case wier) is the circular majorant
w(z) = (1 — 22)'/2. In particular, it is shown that asymptotically., ||, is smaller thar| L, ||
by the quantity2r—1(1 — log 2).

Key words and phrasednterpolation, Lagrange interpolation, Weighted interpolation, Circular majorant, Projection norm,
Lebesgue constant, Chebyshev polynomial.
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1. INTRODUCTION

Suppose: > 1 is an integer, and for any, let6; = 6,,, = (s + 1)7/(n + 2). Fori =
0,1,...,n, putx; = cosf;. Thez; are the zeros of the Chebyshev polynomial of the second
kind of degree:+ 1, defined byU,, .1 (z) = [sin(n+2)#]/ sin § wherex = cosf and0 < 6 < .
Also let w be the weight functionv(xz) = +/1 — 22, and denote the set of all polynomials of
degreen or less byP,.

In the paper![5], J.C. Mason and G.H. Elliott introduced the interpolating projeétjoof
Cl-1,1] on{wp, : p, € P,} that is defined by

1) (Luf)le) = wle) 3 blo) 2,

w
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where/; () is the fundamental Lagrange polynomial

T — @ Unii(x)
42 @ == = e -
kti
Mason and Elliott studied the projection norm

L,| = L
L]l = max Lo fl

where|| - ||, denotes the uniform norty||. = max_;<.<1 |g(x)|, and obtained results that led
to the conjecture

2 2 4
(1.3) |L,|| = —logn + — <1og— + 7) +o0(1) asn — oo,
7r T 77

wherey = 0.577 ... is Euler’s constant. This resuft (1.3) was proved later by Smith [8].

As pointed out by Mason and Elliott, the projection norm for the much-studied Lagrange in-
terpolation method based on the zeros of the Chebyshev polynomial of the firgt kind) =
cos(n + 1)0, wherex = cosf and0 < § < 7, is

2 2 8
—logn + — (log— +7> + o(1).
s s ™

(See Luttmann and Rivlin_[4] for a short proof of this result based on a conjecture that was
later established by Ehlich and Zeller [3].) Therefore the norm of the weighted interpolation
method [(1.]L) is smaller by a quantity asymptoti2to ! log 2. In addition, [1.8) means that
L,, which is based on a simple node system, has (to within terms) the same norm as the
Lagrange method of minimal norm over all possible choices of nodes — and the optimal nodes
for Lagrange interpolation are not known explicitly. (See Brutman [2, Section 3] for further
discussion and references on the optimal choice of nodes for Lagrange interpolation.)

Now, an immediate consequence(of [1.1) is that fofallL,, f)(+1) = 0. ThusL,, is partic-
ularly appropriate for approximations of thogdor which f(+1) = 0. This leads naturally to
a study of the norm
(1.4) 1l = max L flloc
wherey € C[—1,1] is a given function (axurved majorantthat satisfie$) < ¢ (z) < 1 and
Y(£1) = 0. Evidently||L, ||, < ||L,||- In this paper we will look at the particular case when
¥ (x) is the circular majorani(x) = /1 — x2. Note that studies of this nature were initiated
by P. Turéan in the early 1970s, in the context of obtaining Markov and Bernstein type estimates
for p' if p € P, satisfiedp(x)| < w(zx) for z € [—1, 1] — see Rahman [6] for a key early paper
in this area.

Our principal result is the following theorem, the proof of which will be developed in Sec-
tions[2 and B.

Theorem 1.1. The modified projection normL,,||,,, defined by4) withv(z) = 1 — 22,
satisfies

2 2
(1.5) | Ln||lw = —logn + — (log§—|—7— 1) +o0(1l) asn — .
m ™ ™
Observe that{ (1]5) showtL, ||, is smaller than|L, || by an amount that is asymptotic to

27711 — log 2).
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Figure 1.1: Plot of F75(0) for 0 < 6 < 7 /2

Before proving the theorem, we make a few remarks about the method to be usgd.| By (1.1),

Lol = masx (w(x) > \mx)\) .

Since they; are arranged symmetrically about 0, thefx) >~ |¢;(x)| is even, and so by (1.2),
|Ly|lw = max F,(6),

0<0<m/2

where

| sin(n + 2)0| < sin? 0;
1. F =
(1.6) n(0) Z | cos

n+2

Figure[1.1 shows the graph of a typic&l () if n is even, and it suggests that the local
maximum values of;, () are monotonic increasing &moves from left to right, so that the
maximum ofF},(6) occurs close tar/2. Forn odd, similar graphs suggest that the maximum
occurs precisely at/2. These observations help to motivate the strategy used in Seffions 2
and[3 to prove the theorem — the approach is akin to that used by Brutman [1] in his inves-
tigation of the Lebesgue function for Lagrange interpolation based on the zeros of Chebyshev
polynomials of the first kind.

2. SOME LEMMAS

This section contains several lemmas that will be needed to prove the theorem. The first such
lemma provides alternative representations of the fundfigf) that was defined ifj (1.6).

Lemma 2.1. If j is an integer with) < j <n 4 1, andd,;_; < 0 < §;, then

@1)  F.(6) = (1) St 2)0 (Z _sin'h g~ _9)

n—+ 2 — 08 0; — cos b — cos @ — cos b;
, 2sin(n + 2)6 . sin26;
, = (=1) |si 1 . .
(2.2) (=1) [sm(n + 10+ n 4+ 2 Z: cos B; — cos 0]

J. Inequal. Pure and Appl. Mathl0(2) (2009), Art. 33, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 SIMON J. SMITH

Proof. The result[(2.]1) follows immediately frorh (1.6). Fr (2.2), note that the Lagrange inter-
polation polynomial forl/,,(x) based on the zeros éf,,(x) is simply U, (z) itself, so, with

¢;(z) defined by[(1.R),
Unle) = S @) Un(a) = ) g 1200
=0 -

n -+ 2 Ox—:z:i'

(This formula appears in Rivlin[7, p. 23, Exercise 1.3.2].) Therefore

n

_ sin(n +2)0 Z sin® 0;

i 1)6 .
sinn + 1) n -+ 2 cos 6 — cos 0;

=0

If this expression is used to rewrite the second surfiinj (2.1), the result (2.2) is obtained]

We now show that on the intervé), = /2], the values ofF,,(0) at the midpoints between
consecutivé-nodes are increasing — this result is established in the next two lemmas.

Lemma 2.2. If j is an integer withd < j < n, then
And‘ = (TL + 2) (Fn(9j+1/2) — Fn(ej_l/g)) = 2sin 9]' sin 0_1/2 X A:;j,

where

J
(23) A;j = (] —n — 1) + Z cot 9(2]'4_22'_3)/4 cot 6(2]'_21'_1)/4

i=1

1
+ cot 9]'_1/4 cot 9_1/2 + 5 CSC Qj_1/4 CSC 6j+1/4.

Proof. By (2.2),
j i1

sin? 6, sin? 6,
Anj = —2(n+2)sinf, sin_, s + 2 L - Z :
J (n+2)sinf;sinf_; 5 + Z cos 0; — cos 011 Z cosb; — cost;_1)s

1=

From the trigonometric identity
in® A 1 B-A B+ A
(2.4) cosjlmm =3 sin B {cot (T) + cot ( ;— )1 —cos A — cos B,

it follows that

7 sin? 6, Ch sin? 6;
iz_; costy — cos 12 B iz_; cost; —cost;_i/o
] 2j+2 ] 2j
=3 sin ;412 Z cot O(2i—3)/a — 3 sint;_1 /o Z cot 0(2i—3)/4
i1 P
—cosb; — (j+1)cosbi1/o+ jcosbi_io
2j
= cosf;sinf_y Z cot Oi—3y/a + (2 +2) sin6;sin0_, 5
i=1

L.
+ § S1n 0j+1/2 (COt 0]',1/4 + cot 9j+1/4) .
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Therefore
2
(2.5) A, =(4j —2n)sin6;sinf_,/o + 2cosf;sinb_; Z cot 0(2i—3)/4
i=1
+ sin 9j+1/2 (COt «9]‘_1/4 + cot 9j+1/4) .
Next consider
25
Jsinf; 4 cos; Z cot 0(2i—3)/4

=1

J
= Z [Sin 9]' -+ cos 9j (COt 9(%_3)/4 + cot 9(4]‘—2@‘—1)/4)]
=1

J
cos 0;
= ginf; 1 J
sin 6; ZZ:; { + o 9(%_3)

/4 sin 9(4j—2z'—1)/4

J
= sin Hj Z cot 0(4j—2i—1)/4 cot H(Qi_g)/4

=1

J
(26) = sin (9]' Z cot 0(2j+2’£73)/4 cot e(gjfgifl)/zl.

=1
Also
sin 0j+1/2 (COt 9];1/4 + cot 9j+1/4)

costjsint; /o

= 2sinf;
J sin Gj_1/4 sin 9j+1/4

208011748004 1/4 +sin0_y )9

= sin 6, 00 0
i 0j-1/4800;11/4

2c0s0j41/4

= sin Hj sin 6_1/2 + csc ‘9]‘_1/4 CSC 9j+1/4

sin 9]‘_1/4 sin 9_1/2

(2.7) = sin6;sinf_, [—2 +2cot ;4 cot0_y/p + csclj_y4csc 9j+1/4} )
The lemma is now established by substituting](2.6) (2.7)[int (2.5). O

Lemma 2.3.If j is an integer with) < j < (n —1)/2, then
Fn(0j+1/2) > Fn(gj—l/Q)-

Proof. By Lemma 2.2 we need to show that, ; > 0, whereA; ; is defined by[(2]3). Now, if
0<a<m/4and0 < b < a, then

cot(a + b) cot(a — b) > cot? a.
Also, z csc? z is decreasing of0, 7/4), socsc? x > «/(2x) if 0 < x < w/4. Thus

J J
J+ Z cot 024 2i-3)/4 Ot O(2_2i—1)/4 > J + Z cot? 012
i=1 =1
(n+2)j
Jj+1

Y

= jcsc? Oi—1)/2 >
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and so
. 1 n+ 2
An,j > 1+ cot Qj_1/4 cot 6_1/2 + 5 CSC 6]‘_1/4 CSC 6j+1/4 — j 1
1 n+2
> csc? O4j—3)/8 + 5 csclj_1/acscliiryy — g

Because)4;_s,s < 7/4, the first term in this expression can be estimated using§z >
7/(2z), while the second term can be estimated usitg: > 1/x. Therefore

. {n—I—Q _n+2} (n+2)?
w7 G 45/4 G410 272(5 +3/4)(j +5/4)
n—+ 2 1 n+2
G+ DG +5/4) h*ﬁ]

This latter quantity is positive if. > 3. Since0 < j < (n — 1)/2, the only unresolved cases
are whenj = 0 andn = 1,2, and it is a trivial calculation using (3.3) to show tha} ; > 0 in
these cases as well. O

We next show that in any interval between succesginedes F, (f) achieves its maximum
in the right half of the interval.

Lemma 2.4.If j is an integer with) < j < (n+1)/2, and0 < ¢t < 1/2, then
(2-8) Fn<6j—1/2+t> > Fn(ej—1/2—t>~

Proof. If j = (n 4 1)/2, thend;_, ), = 7/2, so equality holds i (2]8) becausg(f) is sym-
metric aboutr /2. Thus we can assume< n/2. For convenience, write = j — 1/2 — ¢,

b=j—1/2+t. Sincesin(n + 2)f, = sin(n + 2)8, = (—1)? costr, it follows from (2.1) that
F,.(0y) — F,(0,) has the same sign as

J

sin? 6, ! sin? 6,
njlt) == — .
Gl (t) Z (cos B, — cos 6;)(cos b, — cos ;) Zo (cosB; — cosby)(cosb; — cosb,)

=7 %

If 5 = 0 this is clearly positive, and otherwise

n

%1 sin? 6,
Gn,j(t) > ; (COS (91) — oS Hi)(COS Ha — COS 91)

—

sin2 91

jf
P (cos 0; — cos by)(cosB; — cosb,)

—_

j_

SiIl2 ng_i_l
(cos by, — cosbaj_;_1)(cos by — cosba;_;_1)

(2

Il
=)

sin2 (91

 (cosb; — cos B)(cosb; — cosb,) |

We will show that each term in this sum is positive. Becais®,;_;_; > sin 6;, this will be
true iffor0 <i <j—1,

sin @y;_;_1(cos 8; — cos 6y)(cos B; — cosb,)

— sin @, (cos 6, — cos bzj_;_1)(cos O, — cosby;_;_1) > 0.
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By rewriting each difference of cosine terms as a product of sine terms, it follows that we require

sin egjfifl sin 9(j+i71/2+t)/2 sin e(jJri,l/Q,t)/Q — sin 91 sin 9(3j7i73/2+t)/2 sin ‘9(3]'71'73/2715)/2 > 0.

To establish this inequality, note that

Sin Oy ;180545 1/244)/25M 0(j15-1/2-4)/2 — SINO; SIN O35 5 _3/244)/2 510035 _3/2-1)/2

1
= 5 [COS Qt_l(SiIl ng_i_l — sin 02) — sin 6)2j—i—1 COS 0j+i+1/2 + sin 92 COS ‘93j—i—1/2}

. 1. .
= cosf;_ysint;_;_3/5cos0;_1/5 — 1 [sm 0 —2i—5/2 + sin 93;'—21'—3/2]

= COS 6]‘_1/2 COS Gt,l sin 09]'_1‘_3/2 — 5 sin ng,%,z
= cosfj_y28in0;_;_3/ [Cos 0;_1 — cos Qj_i_g/Q] > 0,
and so the lemma is proved. O

The final major step in the proof of the theorem is to show that in each interval between
successiv@-nodes, the maximum value &f,(¢) is achieved essentially at the midpoint of the
interval.

Lemma 2.5. If n, j are integers witlm > 2 and0 < j < (n+ 1)/2, then

(2.9) max  F,(0) = F,(0;-12) + O ((log n)_l) ,

0;_1<0<0;
where theO ((logn)~!) term is independent gt

Proof. By Lemma[ 2.4, it is sufficient to show that, ;; = F,(0,_1/24:) — Fu(0;-1/2) is
bounded above by af? ((logn)~!) term that is independent gfandt for 0 < ¢ < 1/2.
Now, by (2.2) we have

9 X cos tsin? 6; sin® 6;
2.10) G, = . — .
( ) T 2 ; {cos 0; —cosl;_1/24+ cos; — cos Qj_1/2:|

+92sin (n+ tr . ((Qj + 1) (n+ 1)t7r>

on+2) "\ 212 " 2m+2)

Sincecostm < 1 —4t%if 0 <t < 1/2, then each summation term can be estimated by

cos tr sin? 6; sin? 6, < —4t? sin® 6,

cost; — cos ;1244  cos 0; —cost;_1/2 — cost); — cos Qj,l/gﬂ'
From(2z)/m <sinz < z for 0 <z < 7 /2, it follows that

SiIl2 92 Sil’l2 91

COS (91 — COS Gj_1/2+t n 2sin 9(j+i—1/2+t)/2 sin 9(j—i—5/2+t)/2
8(i +1)2
-0 +i+2)
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and so
f cos trsin® 6; B sin? 6, 32t2 i (¢ + 1)
“— | cos 0; —cosOj_1/o4¢ costy—cosb;_ysp| — w2 = =) +i+2)
3212 1 1301
=T 2 |T)Tg5 " Z k
16t* :
(2.11) < —— G+ 1) (og(j +1) — 1),
where the final inequality follows from
2j+1
ZE > 1+log(y+1).
k=1
Also,
. (n+tr . ((2j+1)7  (n+1)tr ot (24 D)7
2.12 — —sin ————
@12) sy M Sy 2mr2) ) ST Sy
< tr?(j + 1).
~ 2(n+2)

We now return to the characterizatin (2.10Y%f ;. By (2.12),G,0: < 7%/(2(n+2)). For
j > 1, itfollows from (2.11) and[(2.712) that

272t (j + 1) 16t 7 jt1
2.13 I L= 1
(13) G { U] = 5019 s+ 1))

where the latter inequality follows by maximizing the quadrati¢.i©n the intervall < j <
(n+1)/2, the maximum of j + 1)/log(j + 1) occurs at an endpoint, so

J+1 2 n-+3
2.14 — < :
(2.14) log(j +1) _max{log2’210g((n+3)/2)}
The result[(2.9) then follows from (2.113) and (2.14). O

3. PROOF OF THE THEOREM
Since|| Lyl = maxo<o<r/2 F5(6), it follows from Lemmas 23 arld 2.5 that

F, (%) + O((logn)™) if n is odd,
[ Lnlw =

F, (’T((Zi; ) + O ((logn)™Y) if nis even.

To obtain the asymptotic result (1.5) fdi,||,, we use a method that was introduced by
Luttmann and Rivlin[[4, Theorem 3], and used also by Mason and Ellibtt [5, Section 9].
If n is odd, then by[(2]2) with = 2m — 1,

(3.1) I (71') B 2 mz_:l sin? 6;
' "\2 _2771—1—12:0 cos b;
- —1/2) . (k—1/2)7
1 ; [CSC — sin 1 |
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where the second equality follows by reversing the order of summation. Now,

T (k—1/2r 7 (k—1/2)7 2m+1
2m+1;CSC om + 1 _2m+1;{csc om+1 (k- 1/2)r Zk—l/Q'

The asymptotic behaviour as — oo of each of the sums in this expression is given by

m

, T (k—1/2)7  2m+1 /”/2 1
1 . - ~ |4
mtoo 2m + 1 Z_; {CSC om+1 (k- 1/2)74 A v

4
= log —
T
and
m 2m m
1 1 1
> Py k > p = log(dm) + 7 +o(1)
k=1 k=1 k=1
Also,
o (k—1/2)r s .o MmT 2m +1
= = O(1).
Zsm — csc4m+2s1n yP—— - +0(1)

Substituting these asymptotic results iffto {3.1) yields the desired riesuilt (&.5) ddd.
On the other hand, it = 2m is even, then by (2]2) and (2.4),

P m(n+1) Csin T 1 mz_:l sin? 6;
2(77/ + 2) 4m + 4 m + 1 COS Q — COS —(2m+1)7r

Am+4
2m+2 m—1
1 1 T (2i = Dm
3.2 =— | = 0; O(m
(3.2) m+1<20084m+4;c0 .- Zcos >+ 1.

The sum of the cotangent terms can be estimated by a similar argument to that above, using

w/2 )
/ (cotx — 1) dr = log =,
0 T

to obtain
2m—+2 .
1 (20— )m 2 16m
t——m— = — |1 1).
2m+2;“’ 8m + 8 w(og +7>+0()
Also,
1wl 1 mm T
_ E cosl) = ——— | cos csce — \/§

2 -1
- % + O(m )
If these asymptotic results are substituted ifto|(3.2), the résult (1.5) is obtaméléfen, and
so the proof of Theorein 1.1 is completed.
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