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ABSTRACT. Denote byLn the projection operator obtained by applying the Lagrange inter-
polation method, weighted by(1 − x2)1/2, at the zeros of the Chebyshev polynomial of the
second kind of degreen + 1. The norm‖Ln‖ = max

‖f‖∞≤1
‖Lnf‖∞, where‖ · ‖∞ denotes the

supremum norm on[−1, 1], is known to be asymptotically the same as the minimum possible
norm over all choices of interpolation nodes for unweighted Lagrange interpolation. Because the
projection forces the interpolating function to vanish at±1, it is appropriate to consider a modi-
fied projection norm‖Ln‖ψ = max

|f(x)|≤ψ(x)
‖Lnf‖∞, whereψ ∈ C[−1, 1] is a given function (a

curved majorant) that satisfies0 ≤ ψ(x) ≤ 1 andψ(±1) = 0. In this paper the asymptotic be-
haviour of the modified projection norm is studied in the case whenψ(x) is the circular majorant
w(x) = (1 − x2)1/2. In particular, it is shown that asymptotically‖Ln‖w is smaller than‖Ln‖
by the quantity2π−1(1− log 2).

Key words and phrases:Interpolation, Lagrange interpolation, Weighted interpolation, Circular majorant, Projection norm,
Lebesgue constant, Chebyshev polynomial.
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1. I NTRODUCTION

Supposen ≥ 1 is an integer, and for anys, let θs = θs,n = (s + 1)π/(n + 2). For i =
0, 1, . . . , n, put xi = cos θi. Thexi are the zeros of the Chebyshev polynomial of the second
kind of degreen+1, defined byUn+1(x) = [sin(n+2)θ]/ sin θ wherex = cos θ and0 ≤ θ ≤ π.
Also letw be the weight functionw(x) =

√
1− x2, and denote the set of all polynomials of

degreen or less byPn.
In the paper [5], J.C. Mason and G.H. Elliott introduced the interpolating projectionLn of

C[−1, 1] on{wpn : pn ∈ Pn} that is defined by

(1.1) (Lnf)(x) = w(x)
n∑
i=0

`i(x)
f(xi)

w(xi)
,
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2 SIMON J. SMITH

where`i(x) is the fundamental Lagrange polynomial

(1.2) `i(x) =
n∏
k=0
k 6=i

x− xk
xi − xk

=
Un+1(x)

U ′
n+1(xi)(x− xi)

.

Mason and Elliott studied the projection norm

‖Ln‖ = max
‖f‖∞≤1

‖Lnf‖∞,

where‖·‖∞ denotes the uniform norm‖g‖∞ = max−1≤x≤1 |g(x)|, and obtained results that led
to the conjecture

(1.3) ‖Ln‖ =
2

π
log n+

2

π

(
log

4

π
+ γ

)
+ o(1) asn→∞,

whereγ = 0.577 . . . is Euler’s constant. This result (1.3) was proved later by Smith [8].
As pointed out by Mason and Elliott, the projection norm for the much-studied Lagrange in-

terpolation method based on the zeros of the Chebyshev polynomial of the first kindTn+1(x) =
cos(n+ 1)θ, wherex = cos θ and0 ≤ θ ≤ π, is

2

π
log n+

2

π

(
log

8

π
+ γ

)
+ o(1).

(See Luttmann and Rivlin [4] for a short proof of this result based on a conjecture that was
later established by Ehlich and Zeller [3].) Therefore the norm of the weighted interpolation
method (1.1) is smaller by a quantity asymptotic to2π−1 log 2. In addition, (1.3) means that
Ln, which is based on a simple node system, has (to withino(1) terms) the same norm as the
Lagrange method of minimal norm over all possible choices of nodes — and the optimal nodes
for Lagrange interpolation are not known explicitly. (See Brutman [2, Section 3] for further
discussion and references on the optimal choice of nodes for Lagrange interpolation.)

Now, an immediate consequence of (1.1) is that for allf , (Lnf)(±1) = 0. ThusLn is partic-
ularly appropriate for approximations of thosef for which f(±1) = 0. This leads naturally to
a study of the norm

(1.4) ‖Ln‖ψ = max
|f(x)|≤ψ(x)

‖Lnf‖∞,

whereψ ∈ C[−1, 1] is a given function (acurved majorant) that satisfies0 ≤ ψ(x) ≤ 1 and
ψ(±1) = 0. Evidently‖Ln‖ψ ≤ ‖Ln‖. In this paper we will look at the particular case when
ψ(x) is the circular majorantw(x) =

√
1− x2. Note that studies of this nature were initiated

by P. Turán in the early 1970s, in the context of obtaining Markov and Bernstein type estimates
for p′ if p ∈ Pn satisfies|p(x)| ≤ w(x) for x ∈ [−1, 1] — see Rahman [6] for a key early paper
in this area.

Our principal result is the following theorem, the proof of which will be developed in Sec-
tions 2 and 3.

Theorem 1.1. The modified projection norm‖Ln‖w, defined by (1.4) withw(x) =
√

1− x2,
satisfies

(1.5) ‖Ln‖w =
2

π
log n+

2

π

(
log

8

π
+ γ − 1

)
+ o(1) asn→∞.

Observe that (1.5) shows‖Ln‖w is smaller than‖Ln‖ by an amount that is asymptotic to
2π−1(1− log 2).
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Figure 1.1: Plot ofF12(θ) for 0 ≤ θ ≤ π/2

Before proving the theorem, we make a few remarks about the method to be used. By (1.1),

‖Ln‖w = max
−1≤x≤1

(
w(x)

n∑
i=0

|`i(x)|

)
.

Since thexi are arranged symmetrically about 0, thenw(x)
∑n

i=0 |`i(x)| is even, and so by (1.2),

‖Ln‖w = max
0≤θ≤π/2

Fn(θ),

where

(1.6) Fn(θ) =
| sin(n+ 2)θ|

n+ 2

n∑
i=0

sin2 θi
| cos θ − cos θi|

.

Figure 1.1 shows the graph of a typicalFn(θ) if n is even, and it suggests that the local
maximum values ofFn(θ) are monotonic increasing asθ moves from left to right, so that the
maximum ofFn(θ) occurs close toπ/2. Forn odd, similar graphs suggest that the maximum
occurs precisely atπ/2. These observations help to motivate the strategy used in Sections 2
and 3 to prove the theorem — the approach is akin to that used by Brutman [1] in his inves-
tigation of the Lebesgue function for Lagrange interpolation based on the zeros of Chebyshev
polynomials of the first kind.

2. SOME L EMMAS

This section contains several lemmas that will be needed to prove the theorem. The first such
lemma provides alternative representations of the functionFn(θ) that was defined in (1.6).

Lemma 2.1. If j is an integer with0 ≤ j ≤ n+ 1, andθj−1 ≤ θ ≤ θj, then

Fn(θ) = (−1)j
sin(n+ 2)θ

n+ 2

(
j−1∑
i=0

sin2 θi
cos θi − cos θ

+
n∑
i=j

sin2 θi
cos θ − cos θi

)
(2.1)

= (−1)j

[
sin(n+ 1)θ +

2 sin(n+ 2)θ

n+ 2

j−1∑
i=0

sin2 θi
cos θi − cos θ

]
.(2.2)
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Proof. The result (2.1) follows immediately from (1.6). For (2.2), note that the Lagrange inter-
polation polynomial forUn(x) based on the zeros ofUn+1(x) is simplyUn(x) itself, so, with
`i(x) defined by (1.2),

Un(x) =
n∑
i=0

`i(x)Un(xi) =
Un+1(x)

n+ 2

n∑
i=0

1− x2
i

x− xi
.

(This formula appears in Rivlin [7, p. 23, Exercise 1.3.2].) Therefore

sin(n+ 1)θ =
sin(n+ 2)θ

n+ 2

n∑
i=0

sin2 θi
cos θ − cos θi

.

If this expression is used to rewrite the second sum in (2.1), the result (2.2) is obtained.�

We now show that on the interval[0, π/2], the values ofFn(θ) at the midpoints between
consecutiveθ-nodes are increasing — this result is established in the next two lemmas.

Lemma 2.2. If j is an integer with0 ≤ j ≤ n, then

∆n,j := (n+ 2)
(
Fn(θj+1/2)− Fn(θj−1/2)

)
= 2 sin θj sin θ−1/2 ×∆∗

n,j,

where

(2.3) ∆∗
n,j := (j − n− 1) +

j∑
i=1

cot θ(2j+2i−3)/4 cot θ(2j−2i−1)/4

+ cot θj−1/4 cot θ−1/2 +
1

2
csc θj−1/4 csc θj+1/4.

Proof. By (2.2),

∆n,j = −2(n+ 2) sin θj sin θ−1/2 + 2

[
j∑
i=0

sin2 θi
cos θi − cos θj+1/2

−
j−1∑
i=0

sin2 θi
cos θi − cos θj−1/2

]
.

From the trigonometric identity

(2.4)
sin2A

cosA− cosB
=

1

2
sinB

[
cot

(
B − A

2

)
+ cot

(
B + A

2

)]
− cosA− cosB,

it follows that
j∑
i=0

sin2 θi
cos θi − cos θj+1/2

−
j−1∑
i=0

sin2 θi
cos θi − cos θj−1/2

=
1

2
sin θj+1/2

2j+2∑
i=0
i6=j+1

cot θ(2i−3)/4 −
1

2
sin θj−1/2

2j∑
i=0
i6=j

cot θ(2i−3)/4

− cos θj − (j + 1) cos θj+1/2 + j cos θj−1/2

= cos θj sin θ−1/2

2j∑
i=1

cot θ(2i−3)/4 + (2j + 2) sin θj sin θ−1/2

+
1

2
sin θj+1/2

(
cot θj−1/4 + cot θj+1/4

)
.
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Therefore

(2.5) ∆n,j = (4j − 2n) sin θj sin θ−1/2 + 2 cos θj sin θ−1/2

2j∑
i=1

cot θ(2i−3)/4

+ sin θj+1/2

(
cot θj−1/4 + cot θj+1/4

)
.

Next consider

j sin θj + cos θj

2j∑
i=1

cot θ(2i−3)/4

=

j∑
i=1

[
sin θj + cos θj

(
cot θ(2i−3)/4 + cot θ(4j−2i−1)/4

)]
= sin θj

j∑
i=1

[
1 +

cos θj
sin θ(2i−3)/4 sin θ(4j−2i−1)/4

]

= sin θj

j∑
i=1

cot θ(4j−2i−1)/4 cot θ(2i−3)/4

= sin θj

j∑
i=1

cot θ(2j+2i−3)/4 cot θ(2j−2i−1)/4.(2.6)

Also

sin θj+1/2

(
cot θj−1/4 + cot θj+1/4

)
= 2 sin θj

cos θj sin θj+1/2

sin θj−1/4 sin θj+1/4

= sin θj
2 cos θj+1/4 sin θj+1/4 + sin θ−1/2

sin θj−1/4 sin θj+1/4

= sin θj sin θ−1/2

[
2 cos θj+1/4

sin θj−1/4 sin θ−1/2

+ csc θj−1/4 csc θj+1/4

]
= sin θj sin θ−1/2

[
−2 + 2 cot θj−1/4 cot θ−1/2 + csc θj−1/4 csc θj+1/4

]
.(2.7)

The lemma is now established by substituting (2.6) and (2.7) into (2.5). �

Lemma 2.3. If j is an integer with0 ≤ j ≤ (n− 1)/2, then

Fn(θj+1/2) > Fn(θj−1/2).

Proof. By Lemma 2.2 we need to show that∆∗
n,j > 0, where∆∗

n,j is defined by (2.3). Now, if
0 < a < π/4 and0 < b < a, then

cot(a+ b) cot(a− b) > cot2 a.

Also,x csc2 x is decreasing on(0, π/4), socsc2 x > π/(2x) if 0 < x < π/4. Thus

j +

j∑
i=1

cot θ(2j+2i−3)/4 cot θ(2j−2i−1)/4 > j +

j∑
i=1

cot2 θ(j−1)/2

= j csc2 θ(j−1)/2 >
(n+ 2)j

j + 1
,
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and so

∆∗
n,j > 1 + cot θj−1/4 cot θ−1/2 +

1

2
csc θj−1/4 csc θj+1/4 −

n+ 2

j + 1

> csc2 θ(4j−3)/8 +
1

2
csc θj−1/4 csc θj+1/4 −

n+ 2

j + 1
.

Becauseθ(4j−3)/8 < π/4, the first term in this expression can be estimated usingcsc2 x >
π/(2x), while the second term can be estimated usingcsc x > 1/x. Therefore

∆∗
n,j >

[
n+ 2

j + 5/4
− n+ 2

j + 1

]
+

(n+ 2)2

2π2(j + 3/4)(j + 5/4)

>
n+ 2

(j + 1)(j + 5/4)

[
−1

4
+
n+ 2

2π2

]
.

This latter quantity is positive ifn ≥ 3. Since0 ≤ j ≤ (n − 1)/2, the only unresolved cases
are whenj = 0 andn = 1, 2, and it is a trivial calculation using (2.3) to show that∆∗

n,j > 0 in
these cases as well. �

We next show that in any interval between successiveθ-nodes,Fn(θ) achieves its maximum
in the right half of the interval.

Lemma 2.4. If j is an integer with0 ≤ j ≤ (n+ 1)/2, and0 < t < 1/2, then

(2.8) Fn(θj−1/2+t) ≥ Fn(θj−1/2−t).

Proof. If j = (n + 1)/2, thenθj−1/2 = π/2, so equality holds in (2.8) becauseFn(θ) is sym-
metric aboutπ/2. Thus we can assumej ≤ n/2. For convenience, writea = j − 1/2 − t,
b = j − 1/2 + t. Sincesin(n + 2)θa = sin(n + 2)θb = (−1)j cos tπ, it follows from (2.1) that
Fn(θb)− Fn(θa) has the same sign as

Gn,j(t) :=
n∑
i=j

sin2 θi
(cos θb − cos θi)(cos θa − cos θi)

−
j−1∑
i=0

sin2 θi
(cos θi − cos θb)(cos θi − cos θa)

.

If j = 0 this is clearly positive, and otherwise

Gn,j(t) >

2j−1∑
i=j

sin2 θi
(cos θb − cos θi)(cos θa − cos θi)

−
j−1∑
i=0

sin2 θi
(cos θi − cos θb)(cos θi − cos θa)

=

j−1∑
i=0

[
sin2 θ2j−i−1

(cos θb − cos θ2j−i−1)(cos θa − cos θ2j−i−1)

− sin2 θi
(cos θi − cos θb)(cos θi − cos θa)

]
.

We will show that each term in this sum is positive. Becausesin θ2j−i−1 > sin θi, this will be
true if for 0 ≤ i ≤ j − 1,

sin θ2j−i−1(cos θi − cos θb)(cos θi − cos θa)

− sin θi(cos θb − cos θ2j−i−1)(cos θa − cos θ2j−i−1) > 0.
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By rewriting each difference of cosine terms as a product of sine terms, it follows that we require

sin θ2j−i−1 sin θ(j+i−1/2+t)/2 sin θ(j+i−1/2−t)/2 − sin θi sin θ(3j−i−3/2+t)/2 sin θ(3j−i−3/2−t)/2 > 0.

To establish this inequality, note that

sin θ2j−i−1 sin θ(j+i−1/2+t)/2 sin θ(j+i−1/2−t)/2 − sin θi sin θ(3j−i−3/2+t)/2 sin θ(3j−i−3/2−t)/2

=
1

2

[
cos θt−1(sin θ2j−i−1 − sin θi)− sin θ2j−i−1 cos θj+i+1/2 + sin θi cos θ3j−i−1/2

]
= cos θt−1 sin θj−i−3/2 cos θj−1/2 −

1

4

[
sin θj−2i−5/2 + sin θ3j−2i−3/2

]
= cos θj−1/2

[
cos θt−1 sin θj−i−3/2 −

1

2
sin θ2j−2i−2

]
= cos θj−1/2 sin θj−i−3/2

[
cos θt−1 − cos θj−i−3/2

]
> 0,

and so the lemma is proved. �

The final major step in the proof of the theorem is to show that in each interval between
successiveθ-nodes, the maximum value ofFn(θ) is achieved essentially at the midpoint of the
interval.

Lemma 2.5. If n, j are integers withn ≥ 2 and0 ≤ j ≤ (n+ 1)/2, then

(2.9) max
θj−1≤θ≤θj

Fn(θ) = Fn(θj−1/2) +O
(
(log n)−1

)
,

where theO ((log n)−1) term is independent ofj.

Proof. By Lemma 2.4, it is sufficient to show thatGn,j,t := Fn(θj−1/2+t) − Fn(θj−1/2) is
bounded above by anO ((log n)−1) term that is independent ofj andt for 0 ≤ t ≤ 1/2.

Now, by (2.2) we have

(2.10) Gn,j,t =
2

n+ 2

j−1∑
i=0

[
cos tπ sin2 θi

cos θi − cos θj−1/2+t

− sin2 θi
cos θi − cos θj−1/2

]
+ 2 sin

(n+ 1)tπ

2(n+ 2)
sin

(
(2j + 1)π

2(n+ 2)
− (n+ 1)tπ

2(n+ 2)

)
.

Sincecos tπ ≤ 1− 4t2 if 0 ≤ t ≤ 1/2, then each summation term can be estimated by

cos tπ sin2 θi
cos θi − cos θj−1/2+t

− sin2 θi
cos θi − cos θj−1/2

≤ −4t2 sin2 θi
cos θi − cos θj−1/2+t

.

From(2x)/π ≤ sinx ≤ x for 0 ≤ x ≤ π/2, it follows that

sin2 θi
cos θi − cos θj−1/2+t

=
sin2 θi

2 sin θ(j+i−1/2+t)/2 sin θ(j−i−5/2+t)/2

≥ 8(i+ 1)2

π2(j − i)(j + i+ 2)
,
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and so
j−1∑
i=0

[
cos tπ sin2 θi

cos θi − cos θj−1/2+t

− sin2 θi
cos θi − cos θj−1/2

]
≤ −32t2

π2

j−1∑
i=0

(i+ 1)2

(j − i)(j + i+ 2)

= −32t2

π2

[
−j − 1

2
+
j + 1

2

2j+1∑
k=1

1

k

]

≤ −16t2

π2
(j + 1) (log(j + 1)− 1) ,(2.11)

where the final inequality follows from

2j+1∑
k=1

1

k
≥ 1 + log(j + 1).

Also,

sin
(n+ 1)tπ

2(n+ 2)
sin

(
(2j + 1)π

2(n+ 2)
− (n+ 1)tπ

2(n+ 2)

)
≤ sin

tπ

2
sin

(2j + 1)π

2(n+ 2)
(2.12)

≤ tπ2(j + 1)

2(n+ 2)
.

We now return to the characterization (2.10) ofGn,j,t. By (2.12),Gn,0,t ≤ π2/(2(n+2)). For
j ≥ 1, it follows from (2.11) and (2.12) that

(2.13) Gn,j,t ≤
2π2t(j + 1)

n+ 2

[
1− 16t

π4
log(j + 1)

]
≤ π6

32(n+ 2)

[
j + 1

log(j + 1)

]
,

where the latter inequality follows by maximizing the quadratic int. On the interval1 ≤ j ≤
(n+ 1)/2, the maximum of(j + 1)/ log(j + 1) occurs at an endpoint, so

(2.14)
j + 1

log(j + 1)
≤ max

{
2

log 2
,

n+ 3

2 log((n+ 3)/2)

}
.

The result (2.9) then follows from (2.13) and (2.14). �

3. PROOF OF THE THEOREM

Since‖Ln‖w = max0≤θ≤π/2 Fn(θ), it follows from Lemmas 2.3 and 2.5 that

‖Ln‖w =


Fn
(
π
2

)
+O ((log n)−1) if n is odd,

Fn

(
π(n+1)
2(n+2)

)
+O ((log n)−1) if n is even.

To obtain the asymptotic result (1.5) for‖Ln‖w we use a method that was introduced by
Luttmann and Rivlin [4, Theorem 3], and used also by Mason and Elliott [5, Section 9].

If n is odd, then by (2.2) withn = 2m− 1,

Fn

(π
2

)
=

2

2m+ 1

m−1∑
i=0

sin2 θi
cos θi

(3.1)

=
2

2m+ 1

m∑
k=1

[
csc

(k − 1/2)π

2m+ 1
− sin

(k − 1/2)π

2m+ 1

]
,
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where the second equality follows by reversing the order of summation. Now,

π

2m+ 1

m∑
k=1

csc
(k − 1/2)π

2m+ 1
=

π

2m+ 1

m∑
k=1

[
csc

(k − 1/2)π

2m+ 1
− 2m+ 1

(k − 1/2)π

]
+

m∑
k=1

1

k − 1/2
.

The asymptotic behaviour asm→∞ of each of the sums in this expression is given by

lim
m→∞

π

2m+ 1

m∑
k=1

[
csc

(k − 1/2)π

2m+ 1
− 2m+ 1

(k − 1/2)π

]
=

∫ π/2

0

[
csc x− 1

x

]
dx

= log
4

π

and
m∑
k=1

1

k − 1/2
= 2

2m∑
k=1

1

k
−

m∑
k=1

1

k
= log(4m) + γ + o(1).

Also,
m∑
k=1

sin
(k − 1/2)π

2m+ 1
= csc

π

4m+ 2
sin2 mπ

4m+ 2
=

2m+ 1

π
+O(1).

Substituting these asymptotic results into (3.1) yields the desired result (1.5) ifn is odd.
On the other hand, ifn = 2m is even, then by (2.2) and (2.4),

Fn

(
π(n+ 1)

2(n+ 2)

)
= sin

π

4m+ 4
+

1

m+ 1

m−1∑
i=0

sin2 θi

cos θi − cos (2m+1)π
4m+4

=
1

m+ 1

(
1

2
cos

π

4m+ 4

2m+2∑
i=1

cot
(2i− 1)π

8m+ 8
−

m−1∑
i=0

cos θi

)
+O(m−1).(3.2)

The sum of the cotangent terms can be estimated by a similar argument to that above, using∫ π/2

0

(cotx− x−1) dx = log
2

π
,

to obtain
1

2m+ 2

2m+2∑
i=1

cot
(2i− 1)π

8m+ 8
=

2

π

(
log

16m

π
+ γ

)
+ o(1).

Also,

1

m+ 1

m−1∑
i=0

cos θi =
1√

2(m+ 1)

(
cos

mπ

4m+ 4
csc

π

4m+ 4
−
√

2

)
=

2

π
+O(m−1).

If these asymptotic results are substituted into (3.2), the result (1.5) is obtained ifn is even, and
so the proof of Theorem 1.1 is completed.
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