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Denote byL,, the projection operator obtained by applying the Lagrange inter-
polation method, weighted kit —z2)'/2, at the zeros of the Chebyshev polyno-

mial of the second kind of degree+ 1. The norm||L,| = H;ﬁla)il | Ln flloo
where|| - ||~ denotes the supremum norm pnl, 1], is known to be asymptot-

ically the same as the minimum possible norm over all choices of interpolation

nodes for unweighted Lagrange interpolation. Because the projection forces the

interpolating function to vanish at1, it is appropriate to consider a modified

projection norm|| Ly ||y = max | Ln flloo, Wherey € C[—1,1] is a given

function (acurved majorantthat satisfie®) < ¢(z) < 1 andy(£1) = 0. In

this paper the asymptotic behaviour of the modified projection norm is studied
in the case wheg () is the circular majorani(z) = (1 — 22)'/2. In particu-

lar, it is shown that asymptoticallyL., ||.. is smaller tharj| L, || by the quantity
2771 (1 — log 2).
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1. Introduction

Suppose: > 1 is an integer, and for any, letd, = 6,,, = (s + 1)7/(n + 2). For
1=0,1,...,n, putx; = cosf;. Thex; are the zeros of the Chebyshev polynomial
of the second kind of degree+ 1, defined byl (z) = [sin(n + 2)6]/ sin §# where
x = cosf and0 < § < 7. Also letw be the weight functiom(z) = v/1 — 22, and

denote the set of all polynomials of degreer less byP,,. Weighted Interpolation
In the paper%], J.C. Mason and G.H. Elliott introduced the interpolating projec- of Functions
tion L,, of C[—1, 1] on{wp, : p, € P,} thatis defined by Simon J. Smith
vol. 10, iss. 2, art. 33, 2009
(1.1) (Lo f)(x Z l;(x
Title Page
where/; () is the fundamental Lagrange polynomial S
) Uni1(2) «“ »»
1.2 li(z) = = :
(1-2) =11 zi—zp  Upp(@) (e — )
o « g
Mason and Elliott studied the projection norm Page 3 of 20
L,|| = max || L, f]c, Go Back
IZall = ma L]
. . Full Screen
where|| - ||, denotes the uniform norg||., = max_;<,<; |g(z)|, and obtained
results that led to the conjecture Close
2 2 4 ' | of inequalities
1 Il =2 “ 1oe = 1 journal of inequ
(1.3) 12l s ogn + T ( 08 s * 7) +o(l) asn — oo, in pure and applied
mathematics

wherey = 0.577... is Euler's constant. This resuli (3) was proved later by
Smith [8].
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As pointed out by Mason and Elliott, the projection norm for the much-studied
Lagrange interpolation method based on the zeros of the Chebyshev polynomial of
the first kind7,,.1(z) = cos(n + 1)8, wherez = cos# and0 < 0 < 7, is

2 2 8
—logn + — (log— +v) +o(1).
™ ™ ™

(See Luttmann and Rivlird] for a short proof of this result based on a conjecture that
was later established by Ehlich and Zell&}.] Therefore the norm of the weighted
interpolation method1( 1) is smaller by a quantity asymptotic far—!log 2. In ad-
dition, (1.3 means thatL,,, which is based on a simple node system, has (to within
o(1) terms) the same norm as the Lagrange method of minimal norm over all pos-
sible choices of nodes — and the optimal nodes for Lagrange interpolation are not
known explicitly. (See Brutmar?] Section 3] for further discussion and references
on the optimal choice of nodes for Lagrange interpolation.)

Now, an immediate consequence of1j is that for all f, (L, f)(£1) = 0. Thus
L, is particularly appropriate for approximations of thgsér which f(4+1) = 0.
This leads naturally to a study of the norm

(L4) IZalls = max (1Ll
wherey € C[-1,1] is a given function (ecurved majorant that satisfied) <
Y(z) < 1andy(£1) = 0. Evidently || L, |, < ||L,]||. In this paper we will look
at the particular case whef(z) is the circular majorantv(x) = +/1 — z2. Note
that studies of this nature were initiated by P. Turan in the early 1970s, in the con-
text of obtaining Markov and Bernstein type estimates)foif p € P, satisfies
Ip(z)| < w(z) for x € [—1,1] — see Rahmar®t] for a key early paper in this area.

Our principal result is the following theorem, the proof of which will be devel-
oped in Sectiong and3.

Weighted Interpolation
of Functions

Simon J. Smith

vol. 10, iss. 2, art. 33, 2009

Title Page
Contents
44 44
< >
Page 4 of 20
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:s.smith@latrobe.edu.au
http://jipam.vu.edu.au

Theorem 1.1. The modified projection normhL,||.,, defined by 1.4) with w(x) =
V1 — 22, satisfies

2 2 8
(1.5) | Ln|lw = —logn + — (log— + 7 — 1) +o(1) asn — oc.
T s T

Observe that(.5) shows|| L, ||., is smaller than| L,, || by an amount that is asymp-
totic to 27~ 1(1 — log 2).

Before proving the theorem, we make a few remarks about the method to be used.

By (1.1),

Ll = max <w<x>z |&-<x>|> .

Since ther; are arranged symmetrically about 0, thefx) """ |¢;(x)| is even, and
so by (L.2),

|Ln|lw = max F,(6),
0<6<m/2

where

(1.6) Fn(f) = — —5

| sin(n + 2)0] sin? 0
Z | cos
Figure 1 shows the graph of a typicdl,(0) if n is even, and it suggests that
the local maximum values df,(#) are monotonic increasing &smoves from left
to right, so that the maximum af,,(9) occurs close tor/2. Forn odd, similar
graphs suggest that the maximum occurs precisety at These observations help
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2. Some Lemmas

This section contains several lemmas that will be needed to prove the theorem. The
first such lemma provides alternative representations of the funeligh that was
defined in (..6).

Lemma 2.1. If j is an integer with) < j <n 4+ 1, andd,;_; < 0 < §;, then

j—1 n .
sin(n +2)0 (3 sin® 0; sin? 6,
2.1 F,00)=(-1)) ————— _ _
(21) n(0) = (=1) n -+ 2 (ZCOSQi—COSQ+ZCOSQ—COSQi
2.2) (—1) |sin(n+ 10 + 2sin(n + 2)0 i sin? 6;
' B S n -+ 2 — cos 0; —cosO |

Proof. The result £.1) follows immediately from {.6). For (2.2), note that the La-
grange interpolation polynomial far, (z) based on the zeros 6f,.;(x) is simply
U, () itself, so, with/;(z) defined by (.2),

n

Un(a) = 3 ti(e)Un (1) = Uni1(z) > L}

n+2 T —x;

(This formula appears in Rivlin7| p. 23, Exercise 1.3.2].) Therefore

sin(n + 2)0 —
_ sin( )Z

. 9
sin” 6;
i 1)0 = ‘
sin(n + 1) ——

cosf) — cosb;’

If this expression is used to rewrite the second sun?if)( the result £.2) is ob-
tained. O

J
|l\;|m

P
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We now show that on the intervél, = /2], the values ofF},(0) at the midpoints
between consecutiveénodes are increasing — this result is established in the next
two lemmas.

Lemma 2.2. If j is an integer with) < j < n, then

A, = (n+2) (Fn(0j+1/2) — Fn(Qj_l/g)) = 2sind;sinf_y 5 x A;‘W-,

Weighted Interpolation

Where of Functions
Simon J. Smith
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J
(23) A;j = (] —-—n— 1) + Z cot 9(2]‘4_22'_3)/4 cot G(Qj_gi_l)/4

i=1
1 Title Page
+ cot 0]‘_1/4 cot 6_1/2 + —csc Hj_1/4 CSC 9j+1/4'
2 Contents
Proof. By (2.2), <« >
Apj=—2(n+2)sin6;sind_, < 4
J .. 9 7j—1 .. 92
sin“ 6; sin” 0; Page 8 of 20
21> -2 -
= cosl —coslji1 4= cos; —costj1p Go Back
From the trigonometric identity Full Screen
(2 4) sin2 A Close
' cos A — cos B journal of inequalities
1 . B-A B+ A in pure and applied
=3 sin B [cot <T) + cot ( 5 )} —cos A — cos B, mathematics
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it follows that

J sin? 6, ! sin? 6,
; cos t; — cos 0412 B ; cos )y —cost;_1/o
1 2j+2 1 2j
= 5 sin 9j+1/2 Z cot e(gi_g)/4 — 5 sin 9]'_1/2 Z cot 9(21‘_3)/4
i =
— COS 0]‘ — (] + 1) COS 6]'-}—1/2 + j COS 0]'_1/2
2j
= cosf;sinf_j Z cot Oai—gy/4 + (25 4+ 2) sin6; sin6_ 5
i=1

L.
+ 5 S 9j+1/2 (COt 9j71/4 + cot 0j+1/4) .

Therefore
2
(25) Am]’ = (4] — 271) sin Qj sin 0_1/2 + 2 cos Qj sin 0_1/2 Z cot 9(%_3)/4
=1

Next consider

2j
j sin 9]' -+ cos 0]' Z cot 9(21',3)/4
=1

J
= Z [sin 8; + cos0; (cot 0(2i—3)/4 + cot 6(4j_2,~_1)/4)}
i=1
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J

0.

= sin6; Z [1 + co8 7
i=1

sin 9(%—3)/4 sin 9(4j—2i—1)/4

J
= sin Qj Z cot 6(4j—2i—1)/4 cot 0(21'_3)/4

=1
J Weighted Interpolation
(26) = sin (9j E cot 9(2]'4_21'_3)/4 cot (9(21'_22'_1)/4. of Functions
=1 Simon J. Smith
Also vol. 10, iss. 2, art. 33, 2009

sin 6j+1/2 (COt 0]‘_1/4 + cot 9j+1/4)

. qj , Title Page
— 9ding. cost;sinf; /o 9
= J

sin@;_y/45in 0114 Contents

2c0o8 0417480054174 +sin0_y )9 <« >

= sin 6; 0. 0.
sin@;_y/48in 0114

2 cos 9j+1/4 b d

=sinf;sinf_; 5 | — - +cschi_q1ac8¢0;, 14
/ /2 | sin 0;_1/48in0_1 )5 =1/ i+l Page 10 of 20

(2.7) = sin@;sinf_; ) [—2 +2cot0;_1/4cot@_y/5 + cscl;_y/qcsc 49j+1/4] . Go Back
The lemma is now established by substitutiigh( and ¢.7) into (2.5). O =l S

Lemma 2.3.If j is an integer with) < j < (n — 1)/2, then

F.(0; F.(0._ .
n(01/2) > Ful03-172) journal of inequalities

Proof. By LemmaZ2.2we need to show thak;, . > 0, whereA} . is defined by £.3). in pure and applied
Now, if 0 < a < w/4 and0 < b < a, then mathematics
issn: 1443-575k
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Also, x csc? z is decreasing of0, 7/4), socsc? z > 7/(2z) if 0 < z < 7/4. Thus

J J
J+ Z cot 0(2j42i—3)/4 ot O(2j_2i—1)/a > J + Z cot? 0i-1)/2

=1 =1
. n+2)j
= jesc® Oij—1)2 > <.—)j,
J + 1 Weighted Interpolation
d of Functions
ana so Simon J. Smith
1 2 .10, iss. 2, art. 33,
A:J’j > 1+ cot Gj_1/4 cot 0_1/2 + 5 CSC 8j—1/4 CSC 9j+1/4 — n i vol. 10, fss. 2, art. 33, 2009
J+1
1 2
> csc? O0(4j-3)/8 + 5 csclj_1j4cscOj1/s — 7;::: T Title Page
. . ) . . ) Contents
Because) 4,35 < /4, the first term in this expression can be estimated using
csc? x > m/(2x), while the second term can be estimated usig: > 1/x. There- 4 4
fore < N
2
- n+2 n+2 (n+2) Page 11 of 20
T lg+5/4 g+1 2m2(7 +3/4)(5 + 5/4)
. n+2 L, n+2 Go Back
(] + 1)(] + 5/4) 4 272 Full Screen
This latter quantity is positive it > 3. Since0 < j < (n—1)/2, the only unresolved Close
cases are when= 0 andn = 1, 2, and it is a trivial calculation usin@’(3) to show , s .
thatA* . > 0 in these cases as well. O jodrna’ of Inequaltiies
d in pure and applied
We next show that in any interval between successimedes F,, () achieves its mathematics
maximum in the right half of the interval. issn: 1443-575k
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Lemma 2.4.If j is an integer with) < j < (n+1)/2,and0 < t < 1/2, then

(2-8) Fn<9j—1/2+t) > Fn(ej—1/2—t)'

Proof. If j = (n+1)/2, thend;_, , = /2, so equality holds in4.8) because, (f)
is symmetric aboutr/2. Thus we can assumge < n/2. For convenience, write
a=j—1/2—t,b=j—1/2+t. Sincesin(n +2)f, = sin(n+2)0, = (—1)’ costn,

it follows from (2.1) that £}, (6,) — F,(6,) has the same sign as

n

Gn’j<t> — Z ( sin 91

— (cos 0, — cos b;)(cos b, — cosb;)

SiIl2 GZ

j-1
< (cos 0; — cos O)(cos b; — cosb,)

If 7 = 0 this is clearly positive, and otherwise

Siﬂ2 Gz

Gn,j(t) > ; (COS eb — CoSs 91-)(008 ea — COS 91)

j—1

_ Z Sin2 el
(cos 0; — cosby)(cosB; — cosb,)

J

o Z SiIl2 ng_i_l
4 (cos by, — cosbzj_;_1)(cos b, — cosby;_;_1)

—1
=0
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We will show that each term in this sum is positive. Becasis®,;_;_; > sin0;,
this will be true if for0 <i < j — 1,
sin 0g;_;_1(cos 6; — cos6)(cos B; — cosb,)
— sin@;(cos @, — cos bzj_;_1)(cos b, — cosby;_;_1) > 0.

By rewriting each difference of cosine terms as a product of sine terms, it follows
that we require

Sin O ;18I0 0(j4i-1/2+44)/2 5N O(j1i_1/2-1) /2
— sin 92 sin ‘9(3j—i—3/2+t)/2 sin 6(3j—i—3/2—t)/2 > 0.

To establish this inequality, note that

SIN 02 —i—1 810 O yi1/240)/2 810 0ji-1/2-0)2
— sin 6; sin ‘9(3j7i73/2+t)/2 sin 9(3;'7@'73/24)/2
1

5 [cos ;-1 (sinOy;_;—1 — sinb;) — sin ;1 cos 041/ + sinb; cos 93j,@-,1/2]

: L. :
= COS Qt—l Sin gj_i_g/g COS 9]'_1/2 — = [sm 9j—2i—5/2 + sin 93]'_22‘_3/2]

4

: L.
= COS Qj_l/g COS Ht_l Sin 6)]‘_2‘_3/2 — 5 Sin 923'_21'_2

= cosfj_1/28in0;_;_3/2 [COS 0;_1 — cos 9]-_2-_3/2} > 0,

and so the lemma is proved. O

The final major step in the proof of the theorem is to show that in each interval

between successiv¥enodes, the maximum value &f,(0) is achieved essentially at
the midpoint of the interval.
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Lemma 2.5. If n, j are integers with > 2 and0 < j < (n+ 1)/2, then
(2.9) max  F,(0) = F,(0;_12) + O ((logn)™"),

0, 1<0<0;
where theO ((logn)~!) term is independent gt

Proof. By Lemma2 .4, itis sufficientto show thatr,, ;; := F,,(0;-1/24+) —F(0;-1/2)
is bounded above by af ((logn)~!) term that is independent gfandt for 0 <
t<1/2.

Now, by (2.2) we have

2 ! cos tmsin? 0; sin? 6,
2.10) G, = . — .
( ) TP 42 ; Los 0; —cosbj_i/24+ cosb; — cos 6)]‘_1/2:|

+ 9sin (n+ 1)tm “in ((2]' +1)r (n+ 1)t7r) ‘

2(n+2) 2n+2)  2(n+2)

Sincecostm < 1 —4t?if 0 <t < 1/2, then each summation term can be estimated
by

cos tm sin? 6; sin? 6, —4t? sin? 6,

costh —cost_1/244 cost —cost;_i15 — cosbt — cos Hj_1/2+t'

From(2z)/m <sinz < zfor 0 < x < /2, it follows that

sin2 (91 SiIl2 81

COS 92 — COS 9]'_1/24_15 2sin 9(j+i—1/2+t)/2 sin H(j_i_5/2+t)/2
8(i + 1)?
m2(j—i)(j+i+2)
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and so

—

.

cos tm sin? 6; sin® 6,
cost —coslj_1/24+ cost —cosl;_i/o

s
I
o

3217 S (i + 1)

2 _
™ .] Z Z + 2) Weighted Interpolation
. of Functions
. 25+1
2 J
__32t _]_1+‘7+1 § :l Simon J. Smith
2 2 2 e~ k vol. 10, iss. 2, art. 33, 2009

16¢2
' < 167 : _

(2.11) < ——5 (7 +1) (log(y +1) — 1), Title Page
where the final inequality follows from Contents

2j+1

. <« >
D> > 1+log(j+1).
k
k=1 < >

Also, Page 15 of 20
(2.12) sin (n 4 Ditm ((2] +r — (n + l)tﬂ-) < sin tm sin (2j +m Go Back

26n+2) "\ 2n+2)  2n+2) 2 MM 1 2)
9/ . Full Screen
tr(j +1)
- 2(n+ 2) ) Close
We now return to the characterizatiod.10) of G, ;,. By (2.129, Gno; < journal of inequalities
72/(2(n + 2)). Forj > 1, it follows from (2.11) and ¢.12) that in pure and applied
, ‘ thematics
22t (5 + 1) 16t 7 j+1 ma

213) G i < ————2 |1 — —l 1 issn: 1443-575k
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where the latter inequality follows by maximizing the quadrati¢.i@n the interval
1<j<(n+1)/2,the maximum ofj + 1)/log(j + 1) occurs at an endpoint, so

J+1 2 n-+3
2.14 — < .
(2.14) log(j+1) = maX{logZ’ 210g((n—|—3)/2)}
The result 2.9) then follows from £.13 and ¢.14). O
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3. Proof of the Theorem

Since|| L, |l = maxo<g<x/2 F,(0), it follows from Lemmas?.3and2.5that

F, (%) + O ((logn)™) if n is odd,

HLn”w =

F, (”("“))) + O ((logn)™") if niseven.

2(n+2

To obtain the asymptotic resuit.¢) for || L, ||, we use a method that was introduced
by Luttmann and Rivlin 4, Theorem 3], and used also by Mason and Elli&it [
Section 9].

If nis odd, then byZ.2) with n = 2m — 1,

(3.1) I (7‘(‘) B 2 mz_lsirf@i

' "\2 _2m+1i:0 cos 0;
2 & (k—1/2)r |
_2m+1;[csc om+1 o

where the second equality follows by reversing the order of summation. Now,

(k — 1/2)71 |

2m +1

— (k=1/2)m

" om 1
T = (k—1/2)r 2m + 1 1
_2m+1;[csc 9m + 1 (k—1/2)7r}+;k—1/2‘

The asymptotic behaviour as — oo of each of the sums in this expression is given
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k=1
4
= log —
and
m 1 2m 1 m 1
) YR N P 1
Zk—l/Q T D7 =log(m) + 7+ 0(1)
k=1 k=1 k=1
Also,
N (k—1/2)r T .o mmT 2m+1
—_— = = O(1).
Zsm —— csc4m+2s1n ymo—— - + O(1)

Substituting these asymptotic results intolf yields the desired resuli. (%) if n is
odd.
On the other hand, it = 2m is even, then by4.2) and @.4),

. s n 1 Z sin“ 0,
= sin
dm+4  m+1 cos 0; — cos (QZLTF

2m+2

1 1 T 22—1
32) —=— |- 0,
(32) m+1<2COS4m+4;CO Sm+ 8 ZCOS >+O ).
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The sum of the cotangent terms can be estimated by a similar argument to that above,

using
w/2 2
/ (cotz — ™) dr = log —,
0 m
to obtain
2m+2
1 (20— D7 2 6
=—|1 1
2m+22:: 8m + 8 W(Og J”)“’()
Also,

_2 -1
—7T+(’)(m ).

If these asymptotic results are substituted @), the result {.5) is obtained ifn
is even, and so the proof of Theoréni is completed.
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