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Abstract

In this paper we consider some classes of a-preinvex and a-invex functions.
We study some properties of these classes of a-preinvex (a-invex) functions.
In particular, we establish the equivalence among the a-preinvex functions, a-
invex functions and an-monotonicity of their differential under some suitable
conditions.
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In recent years, several extensions and generalizations have been considered
for classical convexity. A significant generalization of convex functions is that
of invex functions introduced by Hanson]] Hanson's initial result inspired
a great deal of subsequent work which has greatly expanded the role and ap-
plications of invexity in nonlinear optimization and other branches of pure and
applied sciences. Weir and Mond, Jeyakumar and Mond:] and Noor [, 7]
have studied the basic properties of the preinvex functions and their role in op- . .

L. . . . . On Generalized Preinvex
timization and mathematical programming problems. It is well-known that the  Functions and Monotonicities
preinvex functions and invex sets may not be convex functions and convex sets.

In recent years, these concepts and results have been investigated extensively.
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in[6, 7,8, 11, 17]. Itis noted that some of the results obtaineddhdre incor- _
rect and misleading. The main purpose of this paper to suggest some appropri- Title Page
ate and suitable modifications. We also consider some classes of preinvex and Contents

invex functions, which are called-preinvex anda-invex functions. Several

new concepts ofin-monotonicity are introduced. We establish the relationship K D
between these classes and derive some new results. As special cases, one can < >
obtain some new and correct versions of known results. Results obtained in this

. . . Go Back
paper present a refinement and improvement of previously known results.
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Let K be a nonempty closed set fii. We denote by(-, -) and|| - || the inner
product and norm respectively. Lét: K — H andn(-,-) : K x K — R be
continuous functions. Let; K x K — R\{0} be a bifunction.

First of all, we recall the following well known results and concepts.

Definition 2.1. Let«w € K. Then the sef{ is said to bea-invex atu with
respect to(-, -) anda(-,-) , if , forall u,v € K, ¢ € [0,1],

u+ ta(v,u)n(v,u) € K.

K is said to be anv-invex set with respect tp and «, if K is a-invex at each

u € K. Thea-invex setK is also calledwn-connected set. Note that the convex
set witha(v, u) = 1 andn(v, u) = v — w is an invex set, but the converse is not
true. For example, the séf = R\ (—3, 3) is an invex set with respect tpand
a(v,u) = 1, where

v —u, for v>0,u>0 or v<0,u<O0
n(v,u) =
u—v, for v<0,u>0 or v<0,u<0.
It is clear thatK is not a convex set.

Remark 2.1. (i) If a(v,u) = 1, then the sei( is called the invexi{-connected)
set, seef, 7,12, 14].

(i) If n(v,u) = v—wand0 < a(v,u) < 1, then the set is called the
star-shaped.
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(iii) If a(v,u) =1 andn(v,u) = v —u, then the sef( is called the convex set.

From now onwards is a nonempty closed-invex set inH with respect to
a(-,-) andn(-, -), unless otherwise specified.

Definition 2.2. The functionF’ on thea-invex setk is said to bea-preinvex
with respect tay, if

F(u+ta(v,u)n(v,u)) < (1 —t)F(u) +tF(v), Yu,ve K, tel0,1].

The function/” is said to bex-preconcave if and only i F' is a-preinvex. Note

that every convex function is a preinvex function, but the converse is not true.

For example, the functio#’'(u) = —|u| is not a convex function, but it is a
preinvex function with respect ipanda(v, u) = 1, where

v —u, if v<0,u<0 and v>0,u>0
n(v,u) = .
u—v, otherwise.

Definition 2.3. The function/’ on thea-invex setk is called quasik-preinvex
with respect tax and, if

F(u+ta(v,u)n(v,u)) < max{F(u), F(v)}, Vu,ve K, tel0,1].

Definition 2.4. The functionF’ on thea-invex setk is said to be logarithmic
a-preinvex with respect ta andy, if

F(u+ta(v,u)n(v,u)) < (Fu)""(F@))", wveK, telo,1],

whereF'(-) > 0.
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From the above definitions, we have
F(u+ ta(v, u)p(v,u)) < (F(u)*~ <F<v>>t
<(1—=t)F(u)+t
< max{F(u), F(v

< max{F(u), F(

Fort = 1, Definitions2.2and2.4 reduce to:
Condition A.

Fu+a(v,u)n(v,u)) < F(v), Vu,ve€ K,

which plays an important part in studying the properties of dhpreinvex (-
invex) functions. Some properties of th@reinvex functions have been studied

in[7,11].

For a(v,u) = 1, ConditionA reduces to the following for preinvex func-
tions.
Condition B.
Fu+n(v,u)) < F(v), VYu,ve K.
For the applications of ConditioB, see [/, 11, 17].

Definition 2.5. The functionF’ on thea-invex setK is said to be pseuda-
preinvex with respect ta and, if there exists a strictly positive functiax, -)
such that

F(v) < F(u)

= F(u+ta(v,u)n(v,u)) < F(u) +t(t — 1)b(u,v), u,v € Kt €0,1].
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Lemma 2.1. If the functionF" is a-preinvex function with respect t@ andn,
thenF' is pseudaxv-preinvex function with respect toandr.

Proof. Without loss of generality, we assume th&) < F(u), Yu,v € K.
For everyt € [0, 1], we have

F(u+ta(v,u)n(v,u)) < (1 —t)F(u) + tF(v)
Fu) +t(t = D{F(u) — F(v)}
F(u)+t

(u) +t(t — 1)b(v, u),

ANVAN
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whereb(v,u) = F(v) — F(u) > 0.

Thus it follows that the functiorF' is pseudax-preinvex function with re- Muhammad Aslam Noor
spect to andn, the required result. O
Definition 2.6. The differentiable functio’ on thea-invex setk is said to be Ve PagE
an a-invex function with respect to(-, -) andn(-, -), if Contents
F(v) = F(u) > (a(v,u)F'(u),n(v,u)), Vu,v €K, “« | »
where F'(u) is the differential ofF" at u. The concepts of the-invex and < >
a-preinvex functions have played a very important role in the development of Go Back
convex programming, seé,[3].
o . . Close
Definition 2.7. An operator] : K — H is said to be: o
ul
(). stronglyan-monotone, iff, there exists a constant- 0 such that Page 7 of 20
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(ii).

(i)

(@iv).

(V).

(vi).

(vii).

an-monotone, iff,
(a(v,w)Tu,n(v,u)) + (a(u,v)Tv,n(u,v)) <0, Yu,vekK.
stronglyan-pseudomonotone, iff, there exists a constant 0 such that

({0, )T, (0, ) + (e )] > 0
= —(a(u,v)Tv,n(u,v)) >0, Yu,v € K.

strictly n-monotone, iff,
(a(v,u)Tu,n(v,u)) + (a(u,v)Tv,n(u,v)) <0, VYu,ve K.

an-pseudomonotone, iff,

(a(v,u)Tu,n(v,u))y >0 = (a(u,v)Tv,n(u,v)) <0, VYu,ve K.

guasian-monotone, iff,
(a(v,u)Tu,n(v,u)) >0 = (a(u,v)Tv,n(u,v)) <0, Vu,veK.
strictly n-pseudomonotone, iff,

(a(v,u)Tu,n(v,u)) >0 = (a(u,v)Tv,n(u,v)) <0, Yu,veK.
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Note fora(v,u) = 1, Yu,v € K, the a-invex setK becomes an invex
set. In this case, DefinitioA.7 is exactly the same as in,[11]. In addition,
if a(v,u) =1andn(v,u) = v — u, then thea-invex setk is the convex set
K and consequently Definition.7 reduces to the one ir¥] for the convex set
K. This clearly shows that DefinitioR.7 is more general than and includes the
onesin|, 9, 17] as special cases.

Definition 2.8. A differentiable function/” on ana-invex setk is said to be
strongly pseudawn-invex function, iff, there exists a constant- 0 such that

On. Generalized Preinye_x
(a(v, U)F’(u% 77(1;7 “)>+M||77(U7 U)HQ >0 = F(U) _F(u) >0, Vu,veK. Functions and Monotonicities

e . . . . . ) Muhammad Aslam Noor
Definition 2.9. A differentiable function®' on thea-invex setK is said to be

strongly quasiv-invex, if there exists a constant> 0 such that

) Title Page
/
F(v) < F(u) = (a(v,u)F'(u),n(v,u) + p||n(v,u)||* <0, Vu,ve K. F—
Definition 2.10. The functionF' on thea-invex setk is said to be pseudo- <« NS
invex, if
< | 2
(a(v,u)F'(u),n(v,u)) >0, = F(v)>F(u), Yu,veK.
Go Back
Note that ifa(v,u) = 1, then thea-invex setK is exactly the invex sek’ Close
and consequently Definitioria8 — 2.10 are exactly the same same as M [ _
In particular, ifn(v,u) = —n(v,u),Vu,v € K, that is, the functiom(-,-) is Quit
skew-symmetric, then Definitiorts7— 2.10reduce to the ones i] 11]. This Page 9 of 20
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We also need the following assumption regarding the functigns), and
a(--).
Condition C. Letn(-,-) : K x K — H anda(-,-) : K x K — R\{0}
satisfy the assumptions

n(u, u + ta(v, u)n(v,u)) = —tn(v, u)
n(v,u+ ta(v,u)n(v,u)) = (1 —t)n(v,u), Yu,v e K, te]|0,1].

Clearly fort = 0, we haven(u,v) = 0, if and only ifu = v,Vu,v € K. One
can easily show11] that

n(u+ ta(v,u)n(v,u),u) = tn(v,u), VYu,v € K.

Note that fora(v,u) = 1, Condition C collapses to the following condition,
which is due to Mohan and Neog¥][

Condition D. Letn(-,-) : K x K — H satisfy the assumptions

n(u, u+tn(v,u)) = —tn(v, u)
n(v,u+tn(v,u)) =1 —t)n(v,u), Yu,ve K, tel0,1]

For the applications of Conditio®, see [/, 11, 17] and the references therein.
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In this section, we study some basic properties-gdreinvex functions on the
a-invex setk.

Theorem 3.1. Let F' be a differentiable function on the-invex setX” and let
ConditionC hold. Then the functio is a a-preinvex function if and only i’
is aa-invex function.

Proof. Let F' be aa-preinvex function on thew-invex setK. Then,Vu,v €
K,t€[0,1], wu+ ta(v,u)n(v,u) € K and

F(u+ ta(v,u)n(v,u)) < (1 —t)F(u) +tF(v), Yu,veK,

which can be written as

F(u+ ta(v,u)n(v,u)) — F(u)
; .

Lettingt — 0 in the above inequality, we have

F(v) = F(u) 2 {a(v,u) F'(u),n(v, u)),

which implies thatf" is aa-invex function.

Conversely, letF' be aa-invex function on thex-invex function K. Then
Vu,v € K,t € [0,1], v = u+ ta(v,u)n(v,u) € K and using ConditiotT,
we have

F(”) - F(U + tOé(U, U)U(U’ U))
> (v, u) F'(u -+ te(v, wn(v,w)), n(v, u+ talv, w)n(v, u)))
(1 - t) <O{(’U, U)F/(U + tOz(v, u)n(va U)), 77(,07 U)>

F(v) — F(u) >

(3.1)
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In a similar way, we have

F(u) — F(u + ta(v,u)n(v,u))
> (a(v,u) F'(u + ta(v, u)n(v,u)), n(u, u + ta(v, u)n(v,u)))
(3.2) = —t{a(v,u)F' (u+ ta(v,u)n(v,u)),n(v,u))).

Multiplying (3.1) by t and @.2) by (1 — ¢) and adding the resultant, we have
F(u+ ta(v,u)n(v,u)) < (1 —t)F(u) + tF(v).
showing thatF' is a«a-preinvex function. O

If «(v,u) = 1, then Theoren8.1reduces to the following result, which is
mainly due to Mohan and Neogy][for the preinvex and invex functions on the
invex set.

Theorem 3.2. Let I’ be a differentiable function on the invex 9€tand let
ConditionD hold. Then the functiof is a preinvex function if and only ' is
an invex function.

Theorem 3.3.Let F' be differntiable function on the invex gt If F' is a-invex
(a-preinvex) function, then its differenti@l’(«) is an-monotone.

Proof. Let F' be aa-invex function on thev-invex setk. Then
(3.3) F() — F(u) > {a(v,u)F' (u),n(v,u)), Yu,ve K.
Changing the role o& andv in (3.3), we have

(3.4) F(u) — F(v) > {a(u,v)F'(v),n(u,v)), Vu,v e K.
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Adding (3.3) and (3.4), we have
(o0, u) F'(u), n(v, w)) + (o(u, ) F'(v), n(u, v)) <0,
which shows thaf” is an-monotone. O

We now prove the converse of Theoré for the casex(v, u) = a(u,v),
that is, the functionx(v, ») is a symmetric function. However, in general, the
converse of Theorer®.3is an open problem.

Theorem 3.4. Let ConditionsA and C hold and the functiomx(v, u) be sym-
metric. If the differentialF”(u) of a functionF'(u) is an-monotone, then the
function F'(u) is a-invex @-preinvex) function.

Proof. Let F’(u) be an-monotone, that is,
{a(u,v)F'(v),n(u,v)) + {a(v,u) F'(u),n(v,u)) <0, Vu,veK,

which implies that

(3.5) (F"(v), n(u, v)) < —=(F'(w), n(v, w)),

sincea(v, u) is a positive symmetric function.
SinceK is aa-invex setyu,v € K,t € [0, 1], v; = u+ta(v,u)n(v,u) € K.
Takingv = v, in (3.5) and using ConditiorC, we have

—t(F (u + ta(v,un(v,u)),n(v, u)) < —t(F"(u),n(v, u)),
which implies that

(3.6) (F'(u+ ta(v,u)n(v,u), n(v,u)) = (F'(u), n(v, u)).
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Let
g(t) = F(u+ ta(v,u)n(v,u)), Yu,ve K tel0,1].

Then, using §.6), we have

g'(t) = {a(v, u) F'(u+ ta(v, u)n(v, u), n(v, w))
(v, w)F'(u), (v, u)).

Integrating the above relation betwegand1, we have

9(1) = 9(0) = (a(v, w) F'(u), n(v,u)),

v

that is,
Fu+ a(v,u)n(v,u)) = F(u) = {a(v,u) F'(u),n(v,v)),
which implies, using ConditioA,
F(v) = F(u) = {a(v,u) F'(u),n(v,u)),

which shows that the functiof'(u) is aa-invex (a-preinvex) function, the re-
quired result. O

Fora(v,u) = 1, thea-invex setK becomes the invex set and consequently
from Theorem3.3 and Theoren3.4, we have the following result for preinvex
and invex functions.

Theorem 3.5. Let ConditionsB and D hold and letK be an invex set. Then
the differential F’(u) of a functionF'(u) is n-monotone if and only if'(u) is a
preinvex(invex) function on the invex gét
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We now give a necessary condition for strongly-pseudo-invex functions,
which is also a generalization and refinement of a result proved ini].

Theorem 3.6. Let the differentialF” (u) of a functionF'(u) on thea-invex setk’
be stronglynn-pseudomonotone. If ConditioAsand C hold, thenF' is strongly
pseudaxn-invex function.

Proof. Let F’(u) be stronglyan-pseudomonotone. Then

(v, u)F'(u), n(v, w) + pln(v, w)lI* >0, Vu,v e K,

On Generalized Preinvex
Functions and Monotonicities

implies that
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(3.7) —{a(u,v)F'(v),n(u,v)) >0, Yu,ve K.
. . . Title Page
SinceK is ana-invex setVu,v € K, t € [0, 1], v; = u + ta(v, u)n(v,u) € K.
Takingv = v, in (3.7) and using ConditiorT, we have Contents
(a(vg, u) F'(u + ta(v,u)n(v,u)),n(v,u)) >0, VYu,veK, 4 dd
< 4
which implies that
Go Back
(3.8) (F'(u+ ta(v,u)n(v,u)),n(v,u)) >0, VYu,veK. Close
Let Quit
g(t) = F(u+ta(v,u)n(v,u)), \V/U,U S Kat € [07 1] Page 15 of 20
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Integrating the above relation betwe@and1, we have

9(1) = g(0) > 0,

that is,

F(“ + O‘(%“)U(@“)) - F(U’) 20,
which implies, using ConditioA, that

F(v) — F(u) >0,

showing that the functio®'(u) is strongly pseudan-invex function. O
As special cases of Theore#rt, we have the following:

Theorem 3.7.Let the differentialF” (u) of a functionF'(u) on thea-invex setk’
be an-pseudomonotone. If ConditioAsand C hold, thenF' is pseudaxn-invex
function.

Theorem 3.8.Let the differentialF” (u) of a functionF'(u) on thea-invex setk’
be stronglyn-pseudomonotone. If ConditioAsandC hold, thenF' is a strongly
pseuday-invex function.

Theorem 3.9. Let the differentialf” (u) of a functionF’(u) on the invex sek’
be stronglyn-pseudomonotone. If ConditioBsandD hold, thenF' is a strongly
pseuda;-invex function.

Theorem 3.10.Let the differentialF” () of a functionF'(u) on the invex sek’
be n-pseudomonotone. If Conditiofsand D hold, thenF' is a pseudo invex
function.
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Theorem 3.11.Let the differentialt” () of a differentiablex-preinvex function
F(u) be Lipschitz continuous on theinvex setk” with a constant > 0. If
ConditionA holds, then

F(v) = F(u) < {a(v,u) F'(u),n(v,u)) + gHa(U,u)n(U,u)HQ, Vu,v € K.

Proof. Vu,v € K,t € [0,1], u+ta(v,u)n(v,u) € K, sinceK is ana-invex
set. Now we consider the function

o(t) = F(u+ ta(v,u)n(v,u)) — F(u) — t{a(v,u) F'(u),n(v,u)).

from which it follows thaty(0) = 0 and

3.9 ¢(t) = {av,u) F'(u+ tav,u)n(v,u)), (v, u))
— {a(v, u) F" (u), n(v, u)).

Integrating 8.9) betweer) and1, we have

p(1) = Fu+a(v,u)n(v, v)) = Fu) = (a(v,u) F'(u), n(v, u))

/ ' (t)|dt

:/0 [{a(, u) F'(u + ta(v, u)n(v, w)), n(v, w)) — (v, u) F'(u), (v, u))| di

1
<5 [ thatv.wm(w.u) it = Jlate a0
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which implies that
(3.10) F(u+ a(v,u)n(v,u)) — F(u)
< {e(v, u) F'(u),n(v,u)) + §||04(U>U)77(v, w)|.

from which, using Conditio\, we obtain

F(v) = Fu) < {a(v,u) F'(u), n(v,u)) + glla(MU)ﬁ(v,U)llz~

]

Remark 3.1. For n(v,u) = v — v anda(v, u) = 1, thea-invex setk’ becomes
a convex set and consequently Theofefiri reduces to the well known result
in convexity, seell].
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