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ABSTRACT. In this paper, we generalize Ostrowski’s inequality and Montgomery'’s identity on
arbitrary time scales which were given in a recent papeimnequal. Pure. Appl. Math9(1)
(2008), Art. 6] by Bohner and Matthews. Some examples for the continuous, discrete and the
gquantum calculus cases are given as well.
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1. INTRODUCTION

In 1937, Ostrowski gave a very useful formula to estimate the absolute value of derivation of
a differentiable function by its integral mean. In [9], the so-called Ostrowski’s inequality

0= o= { s o (55

is shown by the means of the Montgomery’s identity (§ée [6, pp. 565]).

In a very recent paper|[2], the Montgomery identity and the Ostrowski inequality were gen-
eralized respectively as follows:

Lemma A (Montgomery's identity) Leta,b € T witha < b and f € C!,([a, b]7, R). Then

0= ([ rwsn+ [ vewrman)
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holds for allt € T, whereV : [a,b]2 — R is defined as follows:

s—a, SE€Ela,t)r;
U(t,s) = :t)1
s—b, seltbr
for s, t € [a, b]r.

Theorem A (Ostrowski's inequality) Leta, b € T witha < band f € C([a, b]r, R). Then

e RN E {p It »}(h?“’@gffﬂ“”)

holds for allt € T. Here, hy(t, s) is the second-order generalized polynomial on time scales.

In this paper, we shall apply a new method to generalize Lemma A, Thgofem A, which is
completely different to the method employedlin [2], however following the routine steps in [2],
our results may also be proved.

The paper is arranged as follows: in| 82, we quote some preliminaries on time scales from
[1]; §3 includes our main results which generalize Lemimpa A and Theprem A by the means
of generalized polynomials on time scales; [in §4, as applications, we consider particular time
scalesR, Z andg'o; finally, in QE we give extensions of the results stateol]n 83.

2. TIME SCALES ESSENTIALS
Definition 2.1. A time scalds a nonempty closed subset of reals.

Definition 2.2. On an arbitrary time scal& the following are defined: thiarward jump op-
eratoro : T — T is defined byo(t) := inf(t,00)r for t € T, the backward jump opera-
tor p : T — T is defined byp(t) := sup(—oo,t)r for ¢t € T, and thegraininess function
p: T — RY is defined byu(t) := o(t) — ¢ for t € T. For convenience, we setf () := sup T
andsup () := inf T.

Definition 2.3. Lett be a pointifT. If o(¢) = ¢ holds, thert is calledright-denseotherwise it
is calledright-scattered Similarly, if p(¢) = t holds, thert is calledleft-densea point which is
not left-dense is callekft-scattered

Definition 2.4. A function f : T — R is calledrd-continuousprovided that it is continuous at
right-dense points of' and its left-sided limits exist (finite) at left-dense pointslof The set
of rd-continuous functions is denoted by, (T, R), andC,(T, R) denotes the set of functions
for which the delta derivative belongs €q,(T, R).

Theorem 2.1(Existence of antiderivatives).et f be a rd-continuous function. Thehhas an
antiderivativeF' such that"> = f holds.

Definition 2.5. If f € C,q(T,R) ands € T, then we define thmtegral

= /tf(n)An fort e T.

Theorem 2.2.Let f, g be rd-continuous functions, b, c € T anda, 5 € R. Then, the following
are true:

(1)f [af(n) + Ba(n )]Anzafbf( )An+ 8 [ g(n)An,

@) [7 f(n)An = —fb 1) A,

(3)f f(n) An—f f(n An+fb An,

@) [ f)g®(m)An = F(b)g(b) — fla)gla) — [T FA(m)g(o(n)An.
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Definition 2.6. Let h;, : T?> — R be defined as follows:
1, k=0
(2.1) hi(t,s) = .
Js bi—a(n,8)An, keN
forall s,t € T andk € N,.
Note that the function, satisfies
0, k=0
(2.2) hot(t,s) =
hi-a(t,s), keN
forall s,t € T andk € N,.
Property 1. Using induction it is easy to see that(¢, s) > 0 holds for allk € Nands,t € T
witht > s and(—1)*h,(t,s) > 0 holds for allk € Nands,t € T witht < s.
3. GENERALIZATION BY GENERALIZED POLYNOMIALS

We start this section by quoting the following useful change of order formula for dou-
ble(iterated) integrals which is employed in our proofs.

Lemma 3.1([8, Lemma 1]) Assume that,b € T and f € C,q(T?,R). Then

/ab /:f(n,f)AnM:/ab /:(n)f(n,g)AfAn,

Now, we give a generalization for Montgomery'’s identity as follows:

Lemma 3.2. Assume that,b € T and f € Cl([a, b]r, R). Define¥, ® € C([a, b]r, R) by

hi(s,a), s € la,t)r
hk(S, b), S € [t,bh‘

hi-1(s,a), s € a,t)r

U(t,s) = and ®(t,s) := {

hi-1(s,0), s € [t,blr
for s,t € [a,b]r andk € N. Then

6D 0=y ([ eenrmans [Cuenrman)

is true for allt € [a,b]y and all k € N.

Proof. Note that we hava/®: = &. Clearly, for allt € [a, b}y and allk € N, from (3.1), [2.1)
and [2.2) we have

/ B(t, 1) f7 () A + / (e, ) fA () Ay

_ / hia(m, @) £ (m) A7 + / ha(, @) f2 () A
t po(n)

_ / / B (1, 0) f2(€) AEAR + f(a)hu(t, a)

(3.2) + / / ! [y, (€, ) fA(n)]AéAfAn.
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Applying Lemmg 3.]L and considering (R.1), the right-hand sidg of (3.2) takes the form

hi—1(n, a) f2(E)AnAE + f(a)hi(t, a) hi-1(€,a) f2 (n) AEAn
[ f

- / / b (1, @) F2(€) AAE + f(a)helt, a)
(33) = f(t)h(t.a),

and very similarly, from Lemmia 3.1, (3.1), (.1) apd {2.2), we obtain
b b
[ etarmsn+ [ weansman
' b ' b
= [ b msn+ [ b4

// Bic1(n, B) FAE)AEAY — F(E)h(t,b) — // hi(€.)f2 ()] > AgAn,

//hkln, (E)AnAE — F(E)hi(t,b) - //hklsbﬂmmn
t)h

(3.4) = VI (t,0).
By summing[(3.B) and (3]4), we get the desired result. O

Now, we give the following generalization of Ostrowski’s inequality.

Theorem 3.3. Assume that, b € T and f € C([a, b]r,R). Then

FO = ey [ At man

hii1(t, @) + (—1)" Ry (8,0)
SM( T (t,a) — h(tb) )

is true for all ¢ € [a,b]yr and all k € N, where® is as introduced in[(3]1) and/ :
A
SUPpe(a,e) |7 ()]

Proof. From Lemma 3.2 andl (3.1), for a@ll € N andt € [a, b]1, we get

g KR

A
= | h(t,a) — hktb/aq;tnf ’
b
A
ireE hktb (/ hui(n )An+/t hi(n,b) f (n)M)‘

b
hk mn,a ‘ / hk(,rlv b)AT/‘) )
t
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and considering Properjty 1 anld (2.1) on the right-hand side df (3.5), we have

hk(t,a)]\fhk(t, b) (/at hi(n, a) An + /tb<—1)khk(77,b)An>
— hk(t,a)j\fhk(t,b) (/at hi(n, a)An + (—1)F /bt hk(n,b)An>

C (he(ta) + (1) g (8,0)
=M < - hk(tva) - hk‘(t7£; ) ’

which completes the proof. O

Remark 1. It is clear that Lemm&3l2 and Theorém]3.3 reduce to Lemma A and Thédrem A
respectively by letting: = 1.

4. APPLICATIONS FOR GENERALIZED POLYNOMIALS
In this section, we give examples on particular time scales for Theorem 3.3. First, we consider
the continuous case.

Example 4.1.Let T = R. Then, we havéy,(t,s) = (t — s)k/k! = (=1)*(s — t)*/k! for all
s,t € Randk € N. In this case, Ostrowski’s inequality reads as follows:

(t—a)k + (f!l)k—l-l(b — 1)k /abq)(t’ U)f(’?)dU’
M ( (t — a)k“ 4 (b _ t)k+1 )
( )

<
SE+1\(t—a)f + (—D)F1(b—t)

ft) =

where M is the maximum value of the absolute value of the derivafivever [a, bjr, and
(t,s) = (s — a)*/k! for s € [a,t)r and®(t, s) = (s — b)* /k! for s € [t, b]g.

Next, we consider the discrete calculus case.

Example 4.2.Let T = Z. Then, we havé(t,s) = (t — s)® /k! = (=1)*(s — t + k)P /E!
forall s, € Z andk € N, where the usual factorial functiofy is defined byn®) := n!/k! for

k € Nandn® := 1forn € Z. In this case, Ostrowski’s inequality reduces to the following
inequality:

k! b—1
f(t) — (t—a)® 4+ (1)1 (b —t + k)® Z o(t,m)f(n+1)

.M (t —a)**+D 4+ (b —t + k)1
Skl \t—a)® (DR (b—t+k)® )

whereM is the maximum value of the absolute value of the differegeover|a, b — 1]z, and
®(t,s) = (s —a)® k! for s € [a,t — 1]z andd(t, s) = (s — b)*¥) /k! for s € [t, b]z.
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Before giving the quantum calculus case, we need to introduce the following notations from

[7]:

-1
[k]q = — for ¢ € R/{1} andk € Ny,

S|
i
=

for k € N,

(t—s)k H (t—¢'s) for s,t € ¢"° andk € Ny.
7=0

It is shown in [1, Example 1.104] that

t — k
hi(t,s) := ( [k]f>q for s, t € ¢"° andk € N,

holds.
And finally, we consider the quantum calculus case.

Example 4.3.Let T = ¢"° with ¢ > 1. Therefore, for the quantum calculus case, Ostrowski’s
inequality takes the following form:

log, (b/(qa))
f(t)—<t _[kjééq__(?f% ; q"®(t, q"a) f(¢" " a)

M (t . )k+1 + (—1)k+1(t _ b)l;—&—l
~ [k+1], (t—a)k —(t—0b)k ’

whereM is the maximum value of the absolute value of thdifferenceD, f over|a, b/q],~o,
and®(t,s) = (s—a)k/[k]! for s € [a,t/q] 5 and®(t, s) = (s —b)*/[k]! for s € [¢,b] v, - Here,
the ¢-difference operatoD, is defined byD, f(t) := [f(qt) — f(t)]/[(q — 1)t].

5. GENERALIZATION BY ARBITRARY FUNCTIONS

In this section, we replace the generalized polynomial($, s) appearing in the definitions
of ®(t, s) and¥(¢, s) by arbitrary functions.

Since the proof of the following results can be done easily, we just give the statements of the

results without proofs.

Lemma 5.1. Assume that, b € T, f € CL([a,b]r,R), and thaty), ¢ € CL ([a,b]r, R) with
»(b) = ¢(a) = 0andy(t) — ¢(t) # 0 for aII t € [a,b]r. Set¥, ® € Ciq([a, blt, R) by
(

(5.1) U(t,s) := {¢ o) s €l and  ®(t,s) == U2 (¢, s)
W(s), s €[t blr
for s,t € [a, blr. Then
f) = ot / [t ] A
U(t) = o(t) Ja ’

= m (/abfb(t’n)f"(n)ﬁn + /ab\If(tm)fA(n)An>

is true for allt € [a, b]7.
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Theorem 5.2. Assume that, b € T, f € CL([a,b]r,R), and thaty, ¢ € CL([a, b]r, R) with
W(b) = ¢(a) = 0 andy)(t) — ¢(t) # 0 forall ¢ € [a, blr. Then

1 b M b
- - 7(n)A - A
ft) ¢(t>_¢(t)/a ®(t,n) f7(n) n‘ SOErOI (/a (W (t,m)| n>
is true for allt € [a, b]r, whereU, ® are as introduced irf (5]1) andl := sup,c (. | /2 (n)l-

Remark 2. Letting ¢(t) = hi(t,a) andiy(t) = hi(t,b) for somek € N, we obtain the results
of §3, which reduce to the results [ri [2, § 3] by letting= 1. This is for Ostrowski-polynomial
type inequalities.

Remark 3. For instance, we may let(t) = e)(t,a) — 1 and(t) = e (t,b) — 1 for some
A € R*([a,b]r, RT) to obtain new Ostrowski-exponential type inequalities.
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