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1. Introduction

In 1937, Ostrowski gave a very useful formula to estimate the absolute value of

derivation of a differentiable function by its integral mean. 8j, [the so-called
Ostrowski’s inequality

-5 [ ronn] < { i} (=552 57)

is shown by the means of the Montgomery’s identity (€@p. 565]).
In a very recent papeB], the Montgomery identity and the Ostrowski inequality
were generalized respectively as follows:

Lemma A (Montgomery's identity). Leta,b € Twitha < bandf € CL ([a, b]t, R).

Then , ,
s =52 ([ romans [Cwensoman)

holds for allt € T, whereV : [a, b3 — R is defined as follows:

W(ts) {s —a, sE€lat)r;

s—b, seltbr

for s,t € [a, b].
Theorem A (Ostrowski’s inequality). Leta, b € Twitha < bandf € C([a, b]r, R).
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holds for allt € T. Here, hy(t, s) is the second-order generalized polynomial on
time scales.

In this paper, we shall apply a new method to generalize LerhipgheoremA,
which is completely different to the method employed3h however following the
routine steps ing], our results may also be proved.

The paper is arranged as follows: ii,8ve quote some preliminaries on time
scales from 1]; 83 includes our main results which generalize Leminand The-
oremA by the means of generalized polynomials on time scales#jra§ appli-
cations, we consider particular time scalesZ and ¢"°; finally, in 85, we give
extensions of the results stated in 8
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2. Time Scales Essentials

Definition 2.1. Atime scales a nonempty closed subset of reals.

Definition 2.2. On an arbitrary time scal& the following are defined: thimrward
jump operatow : T — T is defined bys(¢) := inf(¢, o)y for ¢ € T, thebackward
jump operatorp : T — T is defined by(t) := sup(—oo,t)r for ¢t € T, and the : :
graininess function: : T — R{ is defined byu(t) := o(t) —t fort € T. For Ostrowsils eauetty on
convenience, we satf () := sup T andsup () := inf T.

B. Karpuz and U.M. Ozkan

Definition 2.3. Lett be a pointinT. If o(¢) = ¢ holds, thert is calledright-dense vol. 9, iss. 4, art. 112, 2008
otherwise it is calledight-scattered Similarly, if p(t) = ¢ holds, thent is called
left-densea point which is not left-dense is callésft-scattered

Title Page
Definition 2.4. A functionf : T — R is called rd-continuousprovided that it is

continuous at right-dense points @fand its left-sided limits exist (finite) at left-
dense points off. The set of rd-continuous functions is denoted(hy(T,R), <« »
and C4(T,R) denotes the set of functions for which the delta derivative belongs

Contents

to Coa(T, R). ) ¢
Theorem 2.5 (Existence of antiderivatives)Let f be a rd-continuous function. Page 5 of 15
Thenf has an antiderivativé” such thatF> = f holds. Go Back
Definition 2.6. If f € C.4(T,R) ands € T, then we define thiategral Full Screen
Close

= /tf(n)An fort e T.

. . journal of inequalities
Theorem 2.7.Let f, g be rd-continuous functions, b,c € T anda, 5 € R. Then, in pure and applied

the following are true: mathematics

L) [af(n) + Ba(m)] Ay = o [} F)An+ 3 [ g(n)An,
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2. [} F(m)An = — [ f(n)An,

3. [ f(n) An=fa F(m)An+ [£ f(n)An,

a. [7 F()g®(m)An = f(b)g(b) — f(a)g(a) — [ FA(n)g(o(n))An.
Definition 2.8. Leth;, : T? — R be defined as follows:

1, k=0
(21) hk(t,s) = .
fs hi—1(n,s)An, k€N

forall s,t € T andk € Nj.

Note that the function, satisfies

0, k=0
(2.2) hit(t,s) =
hi-1(t,s), k€N

forall s,t € T andk € Nj.

Property1. Using induction it is easy to see that(¢,s) > 0 holds for allk € N
ands, t € T with ¢t > s and(—1)*h(t,s) > 0 holds for allk € N ands, ¢ € T with
t <s.
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3. Generalization by Generalized Polynomials

We start this section by quoting the following useful change of order formula for
double(iterated) integrals which is employed in our proofs.

Lemma 3.1 (8, Lemma 1]). Assume that,b € T and f € C,4(T? R). Then

b b b () Ostrowski’s Inequality on
/ /5 f(nv f)AT}Af = / / f(T/a f)AfAU Time Scc;les ’
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Now, we give a generalization for Montgomery'’s identity as follows:
Lemma 3.2.Assume that,b € Tandf € CL([a, b]1, R). Define¥, ® € CL([a, b]1, R)

vol. 9, iss. 4, art. 112, 2008

by Title Page
hi(s,a), s € la,t)r hg—1(s,a), s € [a,t)r
U(t,s) = and ®(t,s) = Contents
hi(s,0), s €[t blr hi—1(s,b), s €[t blr «“ >
for s,t € [a,b]y andk € N. Then < >
1 b b Page 7 of 15
@Y f(t) - ([ otmrmans [oenrman)
hk(t7 a) - hk(ta b) a a Go Back
is true for allt € [a,b]y and all k € N. Full Sereen
Proof. Note that we hava®: = ®. Clearly, for allt € [a, b]r and allk € N, from
(3.1), (2.1) and @.2) we have Close
t t . . A
o journal of inequalities
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t po(n)
(3.2) _ / / B (0, ) () AEAY + f(a)ha(t, a)
s [ e m]acay

Applying Lemmas3.1 and considering4.1), the right-hand side of3(2) takes the
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AEA
/ / i 57 ) 6 " Title Page
/ / bt (1,)F2 () AnAE + f(a)hu(t.a) Contens
(3.3) (H)ha(t, @), « »
< 4
and very similarly, from Lemma.1, (3.1), (2.1) and ¢.2), we obtain
, b Page 8 of 15
[ etormans [ venrman e
¢ t
b b A Full Screen
— [ b s+ [ mm b A man
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&//hkw, AE)ARAE — F(B)hn(t,b)

//hklgb () AEA

(3.4) = —f(t)hk(t, D).
By summing 8.3) and (3.4), we get the desired result. [
Now, we give the following generalization of Ostrowski’s inequality.

Theorem 3.3. Assume that, b € T and f € C([a, b]r,R). Then

10 = =iy, P A

|
<oy (Lt UZ b))

is true for allt € [a,b]r and all k € N, where® is as introduced in{.1) and
M = Supne(a,b) |fA(77)‘

Proof. From Lemma3.2and 3.1), for all £ € N andt € [a, b]t, we get

Pw—h<)1 tb/b@mfm i
" | hi(t, a) — hktb / A”’
| ha(t,a) hk (t,0) (/ P )AWJF/tbhk(n, b)fA(n)An)‘
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M t b
_ <
69 <o (| oo +| [ mona),
and considering Properfyand @.1) on the right-hand side oB(5), we have
M t b .
s ) moas+ [0t na)

= e, a)]\f T, 0) (/t s @)+ (=1 /bt Pl b)An)

(e (@) (S Ry ()
_M ( hk(t,(l)—hk(t,b) ) ’

which completes the proof. ]

Remarkl. It is clear that Lemma&.2 and Theorens.3 reduce to Lemmad and
TheoremA respectively by letting = 1.
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4. Applications for Generalized Polynomials

In this section, we give examples on particular time scales for The@rantirst,
we consider the continuous case.

Example4.1 LetT = R. Then, we havéy,(t,s) = (t — s)k /k! = (=1)*(s — t)*/k!
forall s,t € R andk € N. In this case, Ostrowski’s inequality reads as follows:

k! b

e R

_ M ( (t—a)k“—i—(b—t)kﬂ )

Tk+1\(t—a)f+ (-1)Fb—1t)k )
whereM is the maximum value of the absolute value of the derivafivever|a, b|r,
and®(t,s) = (s —a)*/k! for s € [a,t)r and® (¢, s) = (s — b)*/k! for s € [t, b].

Next, we consider the discrete calculus case.

Example4.2 LetT = Z. Then, we havéy,(t,s) = (t — s)® /k! = (=1)F(s — t +
k)*) /k! for all s, € Z andk € N, where the usual factorial functidk is defined

by n®) := n!/k! for k € N andn(® := 1 forn € Z. In this case, Ostrowski's
inequality reduces to the following inequality:

k! —
0 = (t—a)®) + (—1)F (b —t + k)® ; (t,m) f(n+1)

o M (t — a)* ) 4 (b — t 4 k) =+
T E+1\(t—a)® + (=1)F(b—t + k)R

ft) =
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where M is the maximum value of the absolute value of the differeAgéover
[a,b— 1]z, and®(t, s) = (s —a)®) /k! for s € [a,t — 1]z and®(t, s) = (s — b)*) /k!
for s € [t,b]z.
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Before giving the quantum calculus case, we need to introduce the following
notations from]:

k
—1
K]y = q . for ¢ € R/{1} andk € Ny,
q —
k
k)l=T]ljly  forkeN,,
j=1 Ostrowski’s Inequality on
o1 Time Scales
k. : N B. Karpuz and U.M. Ozkan
(t N S)q T Ho(t N qjs) fors,t € ¢ andk € No. vol. 9, iss. 4, art. 112, 2008
j:
It is shown in fL, Example 1.104] that the following holds:
( _ S)k Title Page
hy(t,s) == a fors,t € ¢"° andk .
w(t: ) [&]! Sred < No Contents
And finally, we consider the quantum calculus case. ” N
Example4.3. Let T = ¢" with ¢ > 1. Therefore, for the quantum calculus case,
Ostrowski’s inequality takes the following form: < >
log, (b/(ga)) Page 12 of 15
[k]'<q _ ]‘)a n n q7+1 9
) = o=t~ > q"(t,q"a)f(q" a) o Back
q q n=0
M (t _ a)k+1 + (_1)k+1 (t _ b)k+1 Full Screen
< q q
~ [k+1], (t—a)k—(t—0b)k ’ Close
where) is the maximum value of the absolute value of theifferenceD, f over journal of inequalities
[CL, b/q]qNO, and<I>(t, S) = (S — a)’;/[k:]' fors € [CL, t/q]qNO andCID(t, 8) = (S — b)k/[/{}]' in pure and applied
for s € [t, b]qNO. Here, the;-difference operatab, is defined byD,, f(t) := [f(qt) — mathematics
f(t)]/[(q - 1)15]_ issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

5. Generalization by Arbitrary Functions

In this section, we replace the generalized polynomialg, s) appearing in the
definitions of®(¢, s) and ¥ (¢, s) by arbitrary functions.

Since the proof of the following results can be done easily, we just give the state-
ments of the results without proofs.

Lemmab.1.Assumethat,b € T, f € C4([a,blr, R), and thaty), ¢ € Cry([a, b]r, R) Ostrowsils eauetty on
with (b)) = ¢(a) = 0 and¢(t) — ¢(t) # 0 for all ¢t € [a,b]r. Set¥,d € R
Cra(la, b]r, R) by vol. 9, iss. 4, art. 112, 2008
o(s), s€la,t
(5.1) U(t,s) = (®) a:0)r and  ®(t,s) := U2 (t,s) S
¢(3)> s € [ta b]T ?
for s,t € [a, blr. Then Contents
. , <« »
A
ty=—— [ [U(, A
10 = s | Vs Ay <
1 (/b (I)(t )f ( )A /b\p(t )fA( )A ) Page 13 of 15
= TN ) 7 + Y
w(t) - ¢(t> a ! 1 a ! K Go Back
is true for allt € [a, b]r. Full Screen
Theorem 5.2.Assumethai,b € T, f € C([a, b]r,R), and thaw), ¢ € C([a, b]r, R) Close
with ¢(b) = ¢(a) = 0 andip(t) — ¢(t) # 0for all t € [a, b]r. Then
1 b M b journal of inequalities
- — = O(t,n)fo (A < ———— U (t,n)|A in pure and applied
10~ g7 g | 2] < gy ([ 1ecmian) A

istrue for all# € [a, b]r, wherew, ® are as introduced inf. 1) and M := sup, . [FA)].
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Remark2. Letting ¢(t) = hi(t,a) andip(t) = hy(t,b) for somek € N, we obtain
the results of §, which reduce to the results i@,[§ 3] by lettingk = 1. This is for
Ostrowski-polynomial type inequalities.

Remark3. For instance, we may let(t) = e\(t,a) — 1 andi(t) = e,(t,b) — 1 for
some\ € R*([a, b]T,RT) to obtain new Ostrowski-exponential type inequalities.
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