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1. INTRODUCTION

In a recent paper [1], B.G. Pachpatte proved the foIIov@aa@yéhev type inequalities:

Theorem 1.1.Let f,g : [a,b] — R be absolutely continuous functions @nb| with ', ¢ €
Ls[a, 0], then,
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Theorem 1.2.Let f, ¢ : [a,b] — R be differentiable functions so thgt, ¢’ are absolutely
continuous ona, b}, then,
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P(a, B, f,g) and|[f; a, ] are as defined i (1}3) anf (1.4), and

[flloo = sup [f(?)] < oc.
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In [2], B.G. Pachpatte presented an additicBaby3ev type inequality given in Theorém|1.3
below.

Theorem 1.3.Let f,¢g : [a,b] — R be absolutely continuous functions whose derivatives
1, ¢ € Lyla,b], p > 1, then we have,
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In this paper, we provide some generalizations of the above three theorems.

2. STATEMENT OF RESULTS

We use the following notation to simplify the detail of presentation. For suitable functions
f,g : |a,b] — R and real numbef € [0, 1] we set,
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where[f; a, b] is as defined irf (1]4).
We also use”(a, 3, f, g) as defined in3), where andj are real constants.
The results are stated as Theoréms[2.1, 2.2 and 2.3.

Theorem 2.1. Let the assumptions of Theorem|1.1 hold, then foréaayl0, 1],

(2.1) |P(Ty, N, f,9)| < (b 12@2 [0° + (1 —6)]

=
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Theorem 2.2. Let the assumptions of Theorem|1.2 hold, then foréaayl0, 1],
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Theorem 2.3. Let the assumptions of Theorem|1.3 hold, then fortaay(0, 1],
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3. PROOF OF THEOREM [2.1
Define the function,

t—(a+60%2), t€la, 2,
(3.1) K(6.t) = {
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and we obtain the following identities:

(32) 9———1/f O(f:a,b:0),
1 b

(3.3) Ap — b —al g(t)dt = O(g; a,b;0),
where

O(f: a,b:6) / / V(0. 1) — k(0. 5) dt ds.
Multiplying the left sides and rlght sides ¢f (B.2) and (3.3) we get,
(3.4) P(Lo, Ag, f,g9) = O(f;a,b;0)0(g; a,b; 0).
From (3.4),
(3.5) [P(Lo, Do, f,9)| = |0(f; a,b;0)||0(g; a, b; 0)].

Using the Cauchy-Schwarz inequality for double integrals,

(36)  |0(f:a.h:0)| < / / () — F($)|k(0.) — k(8. 5)| i ds

[bﬂz// ““r

) 3
X {—Z(b Q)Q/a /a (k(6,t) — k(0,s)) dtds] .
By simple computation,

B7) ——— b— / / )2dtds = bia/ab(f’(t))gdt— (ﬁ/abf’(t)dt)Q,

an
(3.8) ﬁ/ / (h(0,1) — K(0,5)) dtds = I;) 0% + (1 — 0)°).
Using (3.7), [(3:B) in[(316),

[NIES

69 10U b < T2 (1= 0% [ - (0]
Similarly,
@10 O(ga b0 < LA+ (-0 Lol (o]

Using (3.9) and[(3.10) in (3.5), (2.1) follows.

Remark 3.1. If # = 1 and@ = 0 in (2.1), the inequalities (1.1) and (1.2) are recaptured. Thus
Theorenj 2]l may be regarded as a generalization of Th¢orém 1.1.
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4. PROOF OF THEOREM [2.2
Define the function
%(t —a)[t — (1 —6)a—0b], tE€la, “TH’],
o= {
Lt =b)[t —ba—(1—0)0], te (%20
It is not difficult to find the following identities:

b
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where ,
/ 1! ]‘ " /
Qf fiah) = ;= [ 1O - (50} de.
Multiplying the left sides and right sides ¢f (4.1) apd (4.2), we get,

(43) P(T%ZG? f7 g) = Q(fla f”; a, b)Q(gla g//; a, b)
From (4.3),
(4.4) |P(To,Dg, f.9)| = 1QUf, f"50,0)[|Q(d, ¢"; a, D).
By simple computation, we have,
b
(45) Qf a0 < g [LODI ) - (50 d
1 1" /. b
<0 - bl [ 11601
and similarly,
b
(4.6) Q50D £ 5870 - el [ 126.0)]de
where
b 0 _ 0 L oo<o<l
@.7) / \L(G,t)|dt:(b—a)3><{ 7 st D020
: -1, <0<t

Consequently, the inequalitigs (P.2) apd |(2.3) follow from|(4.4) 4 (4.7).

Remark 4.1. If 6 = 1 in (2.7) with (2.3), the inequality (15) is recaptured. Thus Thegrein 2.2
may be regarded as a generalization of Thedrein 1.2.

5. PROOF OF THEOREM [2.3

From [3.1), we can also find the following identities:

b
(5.1) 9——/ f(t) bia/ K(0,t)f'(t)dt

1
(5.2) =
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Multiplying the left sides and right sides ¢f (5.1) apd {5.2) we get,

53)  P(Ty Ay frg) = (b——la)Z (/abk:(e,t)f’(t) dt) (/abk:(é,t)g’(t) dt) .

From (5.3) and using the properties of modulus and Hélder’s integral inequality, we have,

64 1Pl < o ([ G0N |dt)(/ 0, )llg' ()]t
(] '“t'”t)q(/ 'f"pd’f)p]
o for
o ([ w e,t|th) 17119

A simple computation gives,

(5.5) / (0, )7 dt
a+b
bh— q b
t— (a+9 a) dt—i—/
2 =
a+b

/2
a+65¢ _ q ah A\ ¢
:/ (a+9b—a—t> dt+/ (t—a—eb a) dt
a 2 at+62=2 2

2

b—pb=a q b q
b— b—
+/ ’ (b—e—a—t> dt+/ (t—b+9—a> dt
ot 2 b—0t5 2

() e (5 o

qg+1
gatl (1-— 9>q+1
B (g +1)2¢
Consequently, the inequality (2.4) wifh (R.5) follow from (5.4) and](5.5).

Remark 5.1. If we take¢ = § in (2.4) with (2.5), we recapture the inequality (1.6) with {1.7).
Thus Theorem 2|3 may be regarded as a generalization of Thgorem 1.3.

Remark 5.2. If we takep = 2 in Theorenf 2.3, and replag&t) andg(t) by f(t) — [f;a,b]t
andg(t) — [g; a, bt in (2.4), respectively, then inequalify (2.1) is recaptured.
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