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ABSTRACT. We give two proofs of the arithmetic-algebraic mean inequality by giving a char-
acterization of symmetric means.
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1. INTRODUCTION

Let (ai,...,a,) € R" be ann-tuple of positive real numbers. The inequality of arithmetic-

algebraic means states that
a+ - +ay

" :
The left-hand side of the inequality is called the geometric mean and the right-hand side the
arithmetic mean. We will refer to this inequality ag~, to specify the size of the-tuple.
This inequality has been known in one form or another since antiquity and numerous proofs
have been given over the centuries. Bullen’s book [1], for example, gives over seventy proofs.
We give two proofs based on a characterization of symmetric means as the smallest among the
means constructed by homogeneous symmetric polynomials. The main result is

na1a2...an<

Theorem 1.1.Let (ay,...,a,) € R™ be ann-tuple of positive real numberg|z, ..., z,) be
a homogenous symmetric polynomial of dedgree < k < n, having positive coefficients, and

let sg(z1, . .., x,) be thek-th elementary symmetric polynomial. Then
si(ar, ... a,) _ flag,...,a,)
) - f(,.0

There is equality if and only if th€s are all equal.
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Note that(Z) = s,(1,...,1). Similarly we note that if the coefficents gfare all equal to
one, thenf(1,...,1) is the number of monomials comprisiffg Thus it is reasonable to think

of f;zll—“)) as a mean forf as in the theorem. The theorem implies the arithmetic-algebraic
mean inequality by taking = n, f(z1,...,z,) = (z1 + -+ + z,)" so thatf(1,...,1) = n",
and then taking-th roots.

We shall give two proofs of Theorei 1.1. The first depends on Muirhead’s Theorem. The

second proveslG,, and Theorer 1]1 in one induction step.

2. FIRST PROOF OF THEOREM

For any functionf(z4, ..., z,), the symmetric groug,, acts on ther;’s, and so we set
Z! flxy, ... x,) = Z f(@o1), - s Tagm))-
ogESh
In particular, for am-tuple of nonnegative real numbets= (o, as, . .., «,), when
flzy,. .o x,) = 2% = af"ag? - ahm,
we set
Zl T2
Note that[1,0,...,0] is the arlthmetlc mean whilg, L. E] is the geometric mean.

Leta = (a1, o, ..., an), 8= (01, P2, - . ., Bn) De twon-tuples of nonnegative real numbers.
Muirhead’s theorem gives conditions under which an inequality exists of the form

1 1
= = taag el < (8] = — Y laltad ol

valid for all positvez;’s. To do this we first note thaty] is invariant under permutations of the
«;'s and so we introduce an eqivalence relation as follows. We write if some permutation
of the coordinates af and satisfies

ay+ay+ -t ay =01+ B+ ..+ B,
ap >y > > apandfy > Gy > . > B,
oo+ o <GS +0+...+0.fork=1,2...,n
Muirhead’s Theorem states

Theorem 2.1. The inequality

E « o « §
— n n
E !52111}22 - < ‘ ':L’l IQ c

is valid for all positver;’s if and only ifa < . There is equality only whem = 3 or the z;’s
are all equal.

We refer to [2] for the proof of this theorem and further discussion. Before giving the first
proof of Theoren 1]1 we need a lemma.
Lemma 2.2. Let (ay;,...,a,,;) € Rv forj = 1,...,m, and letcy, ..., c, be positive real
numbers. Suppose< "’ for eachj. Then
J
cilanr + -+ 4 an1) + c2(ar2 + - 4 Qpg2) + - + @ + -+ + Qnpum)

Ny + cang + - -+ + CpNiyy
There is equality if and only if the original inequalities are all equalities.

a
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, . e, :
Proof. For eachj we rewritea < ““— """ asn;a < ay; + - - - + a,,;. We then multiply bye;

J
to obtainc;n;a < cj(ay; + - - - + an,;). We now add over alf to obtain

(c1my + cang + -+ - + cppm)a

<c(an + -4 ang1) Fealarn+ - A any) + oo+ Cnl(@im o+ Qnm)-

By dividing by the coefficient of: we get the lemma. Note that if at least one of the original
inequalities is strict, then the argument shows the final inequality is also strict. O

Proof of Theorern I}1Let f(zy,...,z,) be a homogenous symmetric polynomial of degree
with positive coefficients. The monomials ¢gfbreak up into orbits under the action of the
symmetric groupS,, and so we may writgf = ¢, f1 + -+ + ¢ fm, ¢; > 0 Where eacly; is

a homogenous polynomial with all non-zero coefficients equal to one and for whiettts
transitively. In view of Lemma 2|2, for the proof of Theorm|1.1 we may assfiog . . ., z,,)
itself is a homogenous polynomial of degre&vith all non-zero coefficients equal to one and
for which S,, acts transitively.

For such anf, it follows that there exists an such thatf(z,...,x,) = tla], where
t = f(1,1,...,1) is the number of monomials comprisirfg We note that,(xy, ..., x,) =
()[1,1,...,1,0,...,0] with k I's andn — k 0’s. Since[1,1,...,1,0,...,0] < a, Theorem
[2.7 gives the result. O

3. SECOND PROOF OF THEOREM [1.1

The inequality of arithmetic-geometric means can be stated in polynomial form in two ways.
By takingn-th powers we get

a o o o an n
m”%%g(ii__i_)‘
n

Alternately, if we leta; = A? we get

doa < M AL

n

We will refer to these equivalent inequalities also/s,,.

Let f(z,...,z,) be a homogenous symmetric polynomial. The monomialg bfeak up
into orbits under the action of the symmetric gragipand so we may writ¢ = ¢, f; + -+ - +
cm fmy ¢; € R Where eacly; is a homogenous polynomial with all non-zero coefficients equal
to one and for whictb,, acts transitively. In view of Lemnia 3.2, for the proof of Theofen) 1.1
we may assumg(zy, . . ., x,) itself is a homogenous polynomial with all non-zero coefficients
equal to one and for which, acts transitively.

Proposition 3.1. AssumedG,,. .. AG,_;. Letf(z1,...,x,) be ahomogenous symmetric poly-
nomial of degreé:, 1 < k£ < n, with all non-zero coefficients equal to one and for whith
acts transitively. Assumg(z1,...,,) # 27 + --- + 2. Then the conclusion of Theor¢m|1.1
holds.
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Proof. The polynomialf(z1,...,z,) has a monomial of the form!'z% ... 2% wherek =

deg f = {1 +--- +{;and0 < ¢; < n. By AG/, for eachj we have

¢ ¢
bixyxg - gy <2y -+ T,

12 {2
booy 11 T0y 42 Ty, ST+ T,

0 ls
Cobp oot 11T ol 42 " Tty S Tgiyge, 1 T T84
Sincek = deg f = {1 + - - - + {,, we multiply the inequalities to obtain
4 l ls ls
(3.1) Oy by -y S (o) A ) (T g T T )

Inequality [3.1) now yields

(32) D M- lgwye e <Y V@ a8 T ),

Since) !z, - - - x;, consists ofi! monomials with coefficient one, we get

!
Z!xl---xk = (nT)sk(a:l,...,xn).

k

Similarly since(z{ +- - 42! ) -+ (xF 4.y 1+ T, ) CONSists OF; - - - £, monomi-
. . . . ¢ 14 Ls Ls
als with coefficient one, it follows that}! ((z}' +---+x,}) - (2 p 1t 204 1)

consists of; - - - £,n! monomials with coefficient one. Thus we have

ly---lgn!

; flz1, ... x),

¢ ¢ . s _
Z! (@) 4 Faygy) - (x§i+--~+€571+1 oot xﬁl+~--+es> =

wheret = f(1,...,1) is the number of monomials g¢f. Plugging this into[(3]2), then we see
that if thez,’s are not all equal then at least one permutation of| (3.1) is a strict inequality and
hence inequality| (3]2) is also strict. O

By the previous proposition and the discussion preceding it, in order to prove Thofem 1.1,
it suffices to provedG,, for all n > 2.

Theorem 3.2. AG,, is true for alln > 2.

Proof. The proof is by induction om. The case: = 2 is standard. Fot,y € R, z,y > 0 we
have(y/z — ,/y)* > 0 with equality if and only ifx = y. Expanding we get.

x—=2/zy+y >0,
r+y > 2/xy,

r+vy

5 > Jxy.

We now assumélG,, . .., AG, and we provedG,, ;. To this end, it suffices to show that

I1+"'+$n+1 ntl
n+1 '

xl...xn+1§<
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Now, by AG, andAG,, we have for eacl,

T+ /T1 Th1Tht1** Tnt
\/xk YT Tp1Thg1 T S 5

_ Tt kT

- 2n
s+ (n—1)xy
N 2n '
Where we have set= z; + - - - + z,,1. Multiplying these inequalities ovetr, we get
n+1
s+ (n—1)xg
Ty Tpay < HT
k=1
1 n+1
k=1
Multiplying through by(2n)"*! and expanding we get,
n+1
(3.3) (2n)" My m < Z(n — 1)¥sp(zy, ..., gy )s™ R
k=0
We now use Propositign 3.1 and the discussion preceding it to conclude
n+1 sk
R < —_—
Sk(xb y & +1) — ( k )(n+ 1)k»

for 0 < k < n + 1. Plugging this into[(3]3), we get,

- 1 - 1\*
(34) (2n)n+1$1 M o | S Z <n_]: ) (n ) Sn+1 + (n — 1)n+18n+1(£(:1, .. 7.'L'n+1).
k=0

n+1

Moving
(n— 1)n+13n+1($1a ey Tpy1) = (0 — 1)n+1931 © Tt
to the other side, we get

ez 1) (52

k=0

RG]
= — S
= k n+1 n+1
i n+1 n+1
_ n—1+1 _(n—1 gnt1
n—+1 n+1

n+1 n+1
_ 2n _ n—1 g+l
n+1 n-+1

n+1
= ((2 n+l -1 n+1 S—
(( n) (Tl ) ) (n—l— 1)n+1
Cancelling((2n)"* — (n — 1))""", we get
n+1
T+ Ty
(3.5) $1"'$n+1§< - nal +1) )
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as desired. We note that if thg’s are distinct, then by Propositipn 8.1, the inequalites used in
equation[(3.4) are strict. It follows that in this case inequdity|(3.5) is also strict. O

To recap our argument, Lemma 2.2 reduces the proof of Theprgm 1.1 to the case where
f(z1,...,x,) is @ homogenous polynomial with all non-zero coefficients equal to one, for
which S, acts transitively. Propositiqn 3.1 further reduces the proof ta46g. Finally, the
proof of AG,, is achieved in Theorefn 3.2.
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