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Abstract

This paper studies optimization for inner products of real vectors assuming
monotonicity properties for the entries in one of the vectors. Resulting inequal-
ities have been useful recently in bounding reciprocals of power series with
rapidly decaying coefficients and in proving that all symmetric Toeplitz matrices
generated by monotone convex sequences have off-diagonal decay preserved
through triangular decompositions. An example of an application of the theory
to global optimization for inner products is also provided.

2000 Mathematics Subject Classification: 15A63, 39A10, 26A48.
Key words: Inner Products, Recurrence, Monotonicity, Discretization, Global Opti-
mization.
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This paper studies inequalities for inner products of real vectors assuming mono-
tonicity and boundedness properties for the entries in one of the vectors. In
particular, forr € (0, 1], we consider inner producgs - g, for vectorsp =

(p1:p2,---,pa) @ANdq = (q1, G2, - - -, ¢u), Satisfyingp, g € R, p; € [A, B] for
1 < ¢ < n, and one of the following properties

1. (r-quasi-monotonicityp; ., > rp;for1 <i <n — 1.
Maximization for Inner Products

- i icitv, .. > 1in, < i< m_ Under Quasi-Monotone
2. (r-geometric monotonicityp; 1 > -p; for1 <i <n — 1. v

3. (monotonicity)p;,, > p; for1 <i <n —1.

Kenneth S. Berenhaut,
John D. Foley, and

For discussion of various classes of sequences of monotone type, see for in-  Pipankar Bandyopadhyay
stance, Kijima 7], and Leindler [.5, 14].

Our method involves, for each of the three cases mentioned, obtdinitey Title Page
setsP,, = P,(A, B,r) such that

Contents
min{v-q:veP,}<p-gq<max{v-q:v eEP,} pp b
for all p satisfying the respective monotonicity assumption, above. 4 >
The paper proceeds as follows. In Sectinve consider obtaining the sets T BeEk
P, corresponding to PropertyL), above. An application to linear recurrences,
which has been useful in the recent literature is also given. In Set;tiva con- Cless
sider the case of-geometric monotonicity. The paper includes examples which Quit
provide an application of the theory to global optimization for inner products, Page 3 of 23

for a specific vectoy.
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In this section we consider the assumption-gjuasi-monotonicityf the entries
inp = (p1,pe,-..,pn) (@s defined inX), above), i.e.

(2.2) Dit1 = TPi

for 1 <i < n — 1. The motivation for consideration of such a condition arose
in a probability related context of investigating a monotone sequépé¢evith
a geometric bound, i.e.

g < Ar’

WhereA > 0 andr < 1 (see P]). In this case the sequenge,} defined by
¢; = %, satisfied) < ¢; < A, and
b, = 4 - qi+1

rt Tyl

= ¢i+17“~

For a given vectot = (to,t1,1s,. .., t;) satisfyingt, > 0,¢; > 1 for 1 <
1 < kand

(2.2) > ti=N

define the vectoro, via

to
JP——
0 .1 t1—1,
L0, ;

0 .1 to—1...0 1 tr—1
T, T e )

23) v A(0,0
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In addition, define the set of vectors
(2.4) Pn = Pn(A,0,7) = {vy : t satisfies2.2) }.
We have the following result regarding inner products.

Theorem 2.1. Suppose thap = (p1,...,p,) andq = (q1,...,q,) are n-
vectors wherg satisfies?.1),for1 <i<n—1land0 < p; < Afor1 <i <n.
We have,

(2.5) min{fw-q:weP,} <p-q<max{w-q:weP,}
wherep - g denotes the standard dot proddgt”_, p;¢;.

The value in Theorer.1lies in the fact that for any given, P, is a finite
set.

For a vectorp = (p1, ps, - - -, pn), We Will use the notatiop® to indicate
the vector consisting of th&" through;*" entries inp, i.e.

(26) pZJ - (pivpi-f—la s ap])

Proof of Theoren2.1 First, suppos@-q > 0, and note that the lower bound in

(2.5), for such vectors, follows from the fact thaf = 0 for t = (n,0,...,0).
We will obtain a sequence of vectofp, } '}, satisfying
0<p-q=P, 1 4<P, q<- <P -q,

such thaip, € P,.
In particular, consider the vectofs = (p;(1),p;(2),...,p;(n)) € R", i =
1,...,n + 1 defined recursively according to the following scheme.
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1.ﬁn+1:p.
2. Forl <i<n,set
Si={s:i+1<s<n

v; = min (Si U{n + 1}) :

3. For1 <i < n, definep, (a function ofp, ;) via

and p,.,(s)=A}, and

By = (Bur (1), Bisa(2), - Brsali = 1), B (i), €y (i + 1),

e 7Ciﬁi+1(vi - 1)7 A7ﬁi+1(vi + 1)7 e 7ﬁi+1(n)>
2.7 = (w}+15 Ciw?ﬂ; w?—l—l)a

say, where; is given by

( A .
177 if wzz+1 gt >0
(2.8) c=q Pt w?,, gt <0andi > 1
Di
0, otherwise

\

~ 1 2 3
Note thatpiH = (wi+17wz‘+1a wi—l—l)'

It is not difficult to verify by induction tha’wfﬂ, j =1,2,3, are of the form

(2.9) wzl—i-l = ﬁzllfl = (p1,p2:- -+ Di-1)
(210) w?Jrl = ﬁz’j_)ilil = (pw TPi, T2pi7 s 77’1%7271171‘)
(2.11) Wi, = PYT € Pyt

Maximization for Inner Products
Under Quasi-Monotone
Constraints

Kenneth S. Berenhaut,
John D. Foley, and
Dipankar Bandyopadhyay

Title Page

Contents
44 44
| | 2
Go Back
Close
Quit
Page 6 of 23

J. Ineq. Pure and Appl. Math. 7(5) Art. 158, 2006

I 7 L P TR


http://jipam.vu.edu.au/
mailto:
mailto:berenhks@wfu.edu
mailto:
mailto:
mailto:folejd4@wfu.edu
mailto:
mailto:bandyopd@musc.edu
http://jipam.vu.edu.au/

We have that4.7) and @.8) imply
Pi"q— D1 q=(ci— 1)(wz2+1 : qn_i’vi_l) > 0,

and, forl <i<n+1,

(2.12) 51 € {(p1>p2> <oy Di-1,TPi-1, 7“2171'—1, 7"3]91'—17 cee 7rvi_ipi—1; wf’+1),

<p17p27 ce oy Di—1, A7 TA) 72147 L 77/'%71'7114; w?+1)}'
Thusv;_; € {v;,i}, and in particular, foi = 2, we have

vo—2 . 3
P1; w3)7

(p1, A, rA 72 A, ... r2 3 A; 'wg)}

(2.13) p, € {(p1,7p1, 7?1, rp1, ..

The vectorp, then satisfies

~ o3 24 .3 va—2 4.3
- 1 ) AR Y 3/ J 9 Y AR Y ?
(2.14) p, € {(0,0 0;w3), (A, rA, 1A, 1" A 2T A wy)
(A A rA P2 A L r B A wd),
(0, A, 7 A r?A, ... r=3A; 'wg)} Cc P,

and the theorem is proven in this case. The proof follows similarjy; § < 0,
and the proof of the theorem is complete. O

The following example provides an application of Theor&rh to global
optimization for inner products, for a specific vectpr
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Example 2.1. Consider the vectay € R'® given by

(2.15) q = (0.4361725,0.6454718,2.0226176,
— 4.1395363, 0.9749134, 4.3806500, —4.0035597,
0.6773984, —3.7420053, —2.7051776, 3.8209032,
0.6327872, 1.4719490, 1.2277661, 4.1026365).

The entries iny are depicted in Figuré. Now, consider optimizing - q
over allp = (p1,po, ..., p15) € R, satisfyingd < p; < 1 and @.1) for some
0 < r < 1. Theorem2.limplies that we need only compute and compare inner
products withg over the finite seP;5(1, 0, r) as given in 2.4).

The results of the computations fok {.1,.3,.7,.9}, are given in Figure.

It is possible to apply Theore®1in sequence to obtain bounds for linear
recurrences, as is shown by the following theorem.

Theorem 2.2. Suppose thafb; } and{«; ;} satisfy

—_

0

B
Il

whereb, = 1 and
(2.17) an i € [0, A],
for0<k<n-1andn>1,and

(2.18) Tk < Qg
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q_i

q vector

Figure 1: The vectog in (2.15.

14

Maximization for Inner Products
Under Quasi-Monotone
Constraints

Kenneth S. Berenhaut,
John D. Foley, and
Dipankar Bandyopadhyay

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 9 of 23

J. Ineq. Pure and Appl. Math. 7(5) Art. 158, 2006
J P

I 7 1L P TR


http://jipam.vu.edu.au/
mailto:
mailto:berenhks@wfu.edu
mailto:
mailto:
mailto:folejd4@wfu.edu
mailto:
mailto:bandyopd@musc.edu
http://jipam.vu.edu.au/

Figure 2: Maximal and minimal values for inner products under the constraint

in (2.1)
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Then, there existb; } and{q; ;} such that

|| < [0,
and
n—1
(2.19) V= (~an b, =1,
k=0
. Maximization for Inner Products
with each vector Under Quasi-Monotone
a; = (ag’o, 04271’ . 7@[;7%1) ePp; Constraints
for 1 <i < n,whereP; is asin @.4). NEMIELD 2 EEEIEE
. . . John D. Foley, and
In fact, there exists a séi}, o), . . ., & }, with &, € P;, such that), is as Dipankar Bandyopadhyay
large as possible (with its inherent sign) givienb’, b;, ..., 0 _,.
Remark 1. While Theoren2.2looks relatively simple, it has proven indispens- Title Page
able recently in two quite unrelated interesting contexts. The theorem was cru- EaiETE
cial, in proving a recent optimal explicit form of Kendall's Renewal Theorem
(see Berenhaut, Allen and Fraset]] stemming from bounds on reciprocals 4« 4
of power series with rapidly decaying coefficients. In a quite unrelated con- < >
text, a simpler version of Theoretn2 was also employed in Berenhaut and )
Go Bac

Bandyopadhyay-] in proving that all symmetric Toeplitz matrices generated
by monotone convex sequences have off-diagonal decay preserved through tri- Close
angular decompositions. Quit

Proof of Theoren2.2. The proof, here, involves applying Theoreéi to suc- Page 11 of 23
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cessively “scale” the rows of the coefficient matrix

_al,O O o e . 0

—Qg0 —Q271

[~ ] =
0
| —Qno —Qna —Qpn—1 |
while not decreasing the value @f,| at any step.
First, define the sequences

del- = (Cki’o, ce ,Oéi’i,1> and

b = (b, ..., b;),

for0<k<j<n-—1landl <i<n.
Suppose that, > 0. Expanding viaZ.16), b, can be written as

(2.20) b, = Cby + O} by,
whereCY andC] are constants, which depend fm; ;}. If C1 > 0, then select
a) = (o) € P so that—aj - b”° is maximal, via Theorer@.1. Similarly, if
Ct < 0, selecta; = (o) € Py so that—a/ - " is minimal. In either case,
replacinga; o by o, in (2.16) will result in a larger (or equal) value far{ o,
and in turn, referring to4.20), a larger (or equal) value d4,,|.

Now, suppose that the first through — 1) rows of thea matrix are of the
form described in the theorem (i.e. resulting in maxifatalues forl < i <
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k — 1 with respect to the preceeding 0 < j < ¢ — 1), and express,, in the
form

(2.21) by = Cbg + Cpby + -+ + Cyby,

via (2.16). If C} > 0, then select, € Py so that—a,, - b>* ' is maximal, via
Theoren?.1 Similarly, if Cf < 0, select@,, € P, so that-&),-b™° is minimal.
In either case, referring t®(21), replacing the values i, by those ina;, in
(2.16 will not decrease the value ¢f,|. The result follows by induction for o

Maximization for Inner Products

this case. The cade < 0 is similar and the theorem is proven. [ Under Quasi-Monotone
Constraints

For further results along these lines in the case1 andB = 0, see {]. Cenneth S, Berenhaut

Note that, recurrences with varying or random coefficients have been studied John D. Foley, and
by many previous authors. For a partial survey of such literature see Viswanath ~ P'Pankar Bandyopadhyay
[27] and [23], Viswanath and Trefetherz{], Embree and Trefethen ], Wright

and Trefethen 6], Mallik [ 16], Popenda 1¢], Kittapa [1Z], Odlyzko [17], Title Page
Berenhaut and Goedhaf [/], Berenhaut and Mortort], Berenhaut and Foley PE—
[5], and Stewvt [19, 20, 21] (and the references therein). For a comprehensive ontents
treatment of difference equations and inequalities, c.f. AgarWal [ <44 44
We now turn to consideration of the remaining cases-géometric decay < >
and monotonicity mentioned in the introduction.
Go Back
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Quit
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In this section we consider the assumption-a@feometric monotonicity of the
entries inp = (p1,pa, ..., Pn), 1.€.

1
Dit1 = —Di
r
forl1 <i<n-—1.

First, for a given integed < t < n, define the vectov, viav, = 0, and

n—t
ef , " ——
v, & (0,0, 0, ArtH AP A, A).

In addition, define the set of vectors
(3.2) P2 =P2A,0,r)={vg: 0<t<n}.
Here, we have the following theorem.

,qn) are n-

Theorem 3.1. Suppose thap = (p1,...,p,) andq = (qi, ...

vectors where satisfies

1
(3.2) Pit1 = i

forl <i<n-—1,and0 < p; < Afor1 <i < n.We have,

min{fw-qg:weP,} <p-qg<max{w-q:weP,}
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Proof. First, suppose - ¢ > 0, and note that the lower bound iB.) follows
from the fact thaw, = 0 for ¢ = 0. As in the proof of Theorem.1, we will,
again, obtain a sequence of vectégs} ', satisfying
0<P q=Pp1' 4<P, q< - <pP;-q,
such thap, € P2.
In particular, consider the vectogs = (p;(1),p;(2),...,p;(n)) € R", i =
1,2,...,n+ 1 defined recursively according to the following scheme.

~ o Maximization for Inner Products
1. pn—i-l = P. Under Quasi-Monotone
. . ~ Constraints
2.Forl1 <i<mn,setS; ={s:i+1<s <nandp,,,(s) = Ar"*}, and
v; = min(S; n+1Y). Kenneth S. Berenhaut,
t ( ' U{ * }) John D. Foley, and
3. For1 <i< n, set Dipankar Bandyopadhyay

B = (Bia(1:Bia (D) Biali = 1), By (0), By (i + 1)

Title Page
(3.3) = (wi;qwig;wi,), « "
wherec; is given by p R
( Arnfi . '
) If w12+1 : q%vi_1 >0 Go Back
1 . Close
3.4 P = ~Di— . . _ . .
( ) & 'r'p 1’ if w22+1 . qz,vifl S 0andi > 1 Quit
yZi
i P 15 of 23
L 0, otherwise age 15 0
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It is not difficult to verify by induction tha’wzﬂ, j =1,2,3, are of the form

(3.5) 'wilJrl pH’fl ! = (p1,p2,- -, Di-1)
(3.6) wl,=p)i" <pi, %pz-, %pi, o } 1pz)
(3.7) wi =Pt = (Ar" AT Ar  A) € Py
Now, note that from{.2), and the boung, < A, we have that
pi < Art

for1 <i <mn,andp;,_;/r < p; for2 < i < n. Hence, 8.3) and @.4) imply
that

P q—D; - q=(ci—1)(w Wiy g ) >0,
and that,

- 1 1 1
(3.8) p; € { (Phpm ey P2y Dic1, ;pi—h T_Qpi—b ces

T‘Ui_i_l pi—l?

Apnvi Apnm et Ay A) , (pl,pg, e Pi, ArnTE

L Ar A)}

Arn= D A i) g gpne (i),

Thusv;_; € {v;,i}, and fori = 2, we have

~ 1 1 1
(39) Do € {(pla_pb_Qpl””J lpz le,r,n v A’f’ v2+1)7
T T rU2—is
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oo Ary A) , (pl, Ar™"T2 Arn T3 Ar? Ar, A) }

The vectorp, then satisfies

(3.10) p, € {(0,0,...,0, Ar"=2, Ayn= (=¥ Ap A),
(Ar™=1 Ar=2 Ap™3 L Ar? A, A),
(O, Arn=2 A3 Ar? Ar, A) } C P2,
and the theorem is proven in this case. The proof follows similarjy; i < 0,
and the proof of the theorem is complete. O
Now, for a given integet < t < n, define the vectoo, viav, = 0, and
n—t t

A A\

v, (B,B,...,B,/A,A,..  A).

In addition, define the set of vectors
(3.11) P3=P3A B 1)={v,: 0<t<n}.

For the case = 1 in either .1) or (3.2), we can similarly prove the follow-
ing result. ForB = 0 the theorem follows directly from either Theoréiri or
Theorem3.1(see also Lemma 2.2 if])). For0 < B < A, the proof is similar
to that for Theorem&.1and3.1, and will be omitted.

Theorem 3.2 (Monotonicity). Suppose thags = (p1,...,p,) andq = (q1, - -, qn)

are n-vectors where satisfies

Ditv1 = Di
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forl<i<n-—1,and0 < B <p; < Afor1 <i<n.We have,
min{w-q:weP} <p-qg<max{w- q:w e P}

We conclude with a return to global optimization for inner products for the
vectorq as given in Examplé. L

Example 2.1 (revisited). Consider the vectay € R as given in 2.15).

The entries iny are depicted in Figuré. Now, consider optimizing - g
over allp = (p1,ps,...,p15) € R, satisfyingd < p; < 1 and @.2) for
somel < r < 1. Theorem3.2 implies that we need only check over the
finite setP%(1,0,r) as given in 8.11). The results of the computations for
red{.1,.3,.7,.9}, are given in Figuré.
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Figure 3: Maximal and minimal values for inner products under the constraint

in (3.2).
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