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Abstract: In this note, we give an elementary proof of Blundon’s Inequality. We make mathematics

use of a simple auxiliary result, provable by only using the Arithmetic Mean -
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For a given triangled BC' we shall consider that, B, C' denote the magnitudes
of its angles, and, b, c denote the lengths of its corresponding sides. Ret and
s be the circumradius, the inradius and the semi-perimeter of the triangle, respec-
tively. In addition, we will occasionally make use of the symbpIgcyclic sum)
and] [ (cyclic product), where

Y fa)=fla)+ f0)+ flo),  [[fa) = fl@)f®)f(e).

In the AMERICAN MATHEMATICAL MONTHLY, W. J. Blundon 1] asked for the
proof of the inequality
s < 2R+ (3v3 —4)r

which holds in any trianglel BC'. The solution given by the editors was in fact a
comment made by A. Makowsk8], who refers the reader t@], where Blundon
originally published this inequality, and where he actually proves more, namely that
this is the best such inequality in the following sense: if, for the numbearsdh the
inequality

s < kR + hr
is valid in any triangle, with the equality occurring when the triangle is equilateral,

then
2R+ (3V3 — 4)r < kR + hr-

In this note we give a new proof of Blundon’s inequality by making use of the
following preliminary result:
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Lemma 1. Any positive real numbets, y, = such that
rT+y+z=2xyz
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satisfy the inequality
(z—1)(y—1)(z—1) < 6vV3—10.

Proof. Since the numbers are positive, from the given condition it follows immedi-
ately thatr < zyz < yz > 1, and similarlyzz > 1 andyz > 1, which shows that

it is not possible for two of the numbers to be less than or equal to 1 (neither can all
the numbers be less than 1). Because if a number is less than 1 and two are greater
than 1 the inequality is obviously true (the product from the left-hand side being
negative), we still have to consider the case when 1,y > 1,z > 1. Then the
numbersy = x — 1,v = y — 1 andw = z — 1 are positive and, replacing= u + 1,

y =v+ 1, z=w+ 1in the condition from the hypothesis, one gets

uvw + uv + vw + vw = 2.
By the Arithmetic Mean - Geometric Mean inequality
uvw+3m§ wVW + uv + uw + vw = 2,
and hence fot = Yuvw we have
P +32—2<0e (t+1)E+1+V3)(t+1—-+3) <0.
We conclude that < v/3 — 1 and thus,
(z—1)(y—1)(z —1) < 6v3 - 10.
The equality occurs when= y = z = /3. This proves Lemma. O

We now proceed to prove Blundon’s Inequality.
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Theorem 2. In any triangleABC', we have that

s < 2R+ (3v3 — 4)r.

The equality occurs if and only # BC'is equilateral.

Proof. According to the well-known formulae

oA s B \/i L \/ (5 — Sty
(

2 (s =b)(s—c) 2 s—a)(s—b)’ C. Pohoata and M. Tetiva
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we deduce that

t— = t A =

€0 2 €0 P Title Page

and A B s AR + 7 Contents
0 2 0 2 Z s—a r <« »»

In this case, by applying Lemniato the positive numbers = cot 4, y = cot 5 < N

andz = cot £, it follows that
Page 4 of 6
A B C
(cot 3 1) (cot o5~ 1> <cot 5~ 1) < 6v3 — 10, Go Back
and therefore Full Screen
Close

A A B
|| - E l Z) < —9.
2 Cot2 ( cot200t2) _6\/§ 9
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This can be rewritten as in pure and applied
mathematics
2_5 _ AR+ 7 < 6\/3 -9, issn: 1443-575k
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and thus
s < 2R+ (3v3 — 4)r.
The equality occurs if and only 'tfotg =

= cot £ = cot &, i.e. when the triangle
ABC'is equilateral. This completes the proof of Blundon’s Inequality. O
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