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ABSTRACT. In this paper we first establish a lower bound and an upper bound féy, ti@ms
of the Khatri-Rao product of Cauchy-Hankel matrices of the féfp[1/ (g + (i + j)h)]ZjZ1
for g = 1/2 andh = 1 partitioned as

H’r(Lll) H7(112)
Hy = 21 22
2V HP
where H\"? is theijth submatrix of ordern; x n; with H{"") = H,_;. We then present a
lower bound and an upper bound for the spectral norm of Khatri-Rao product of these matrices.
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1. INTRODUCTION AND PRELIMINARIES

A Cauchy-Hankel matrix is a matrix that is both a Cauchy matrix ((B.(x; — y;))7,=1,
r; # y;) and a Hankel matrix (i.6(h; ;)7 ,—-,) such that

1 n
g+ (i+j)h ij=1
whereg andh # 0 are arbitrary numbers and'h is not an integer.
Recently, there have been several papers on the norms of Cauchy-Toeplitz matrices and
Cauchy-Hankel matrices|[2]) 3,112,121]. Turkmen and BozKurt [20] have established bounds
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2 Hacl Civclv AND RAMAZAN TURKMEN

for the spectral norms of the Cauchy-Hankel matrix in the fdim)]) by takingg = 1/k and
h = 1. Solak and Bozkurt [17] obtained lower and upper bounds for the spectral norm and
Euclidean norm of théZ,, matrix that has giveifL.1]). Liu [9] established a connection between
the Khatri-Rao and Tracy-Singh products, and present further results including matrix equali-
ties and inequalities involving the two products and also gave two statistical applications. Liu
[10] obtained new inequalities involving Khatri-Rao products of positive semidefinite matrices.
Neverthless, we know that the Hadamard and Kronecker products play an important role in
matrix methods for statistics, see e.g. |[18, 11, 8], also these products are studied and applied
widely in matrix theory and statistics; see, e.qg.,/[18],![11],[]1, 5, 22]. For partitioned matri-
ces the Khatri-Rao product, viewed as a generalized Hadamard product, is discussed and used
in [8], [6], [13, 14,[15] and the Tracy-Singh product, as a generalized Kronecker product, is
discussed and applied inl [7], [19].

The purpose of this paper is to study the bounds for the spectral anfj ttegms of the
Khatri-Rao product of twa x n Cauchy-Hankel matrices of the forfi.1]). In this section, we
give some preliminaries. In Sectiph 2, we study the spectral norm ang trrms of Khatri-
Rao product of twa: x n Cauchy-Hankel matrices of the forfi.1]) and obtain lower and upper
bounds for these norms.

Let A be anym x n matrix. Thel, norms of the matrixA are defined as

(1.2) 1All, = (Z > |%’!p) I<p<oo

i=1 j=1
and also the spectral norm of matrixis

Al =, /max X,

where the matrixd is m x n and)\; are the eigenvalues of A and A is a conjugate transpose
of matrix A. In the case = 2, the/, norm of the matrixA is called its Euclidean norm. The
|A|l, and||A]|, norms are related by the following inequality

1
1.3 — |A]l, < ||A]]..
(1.3) \/ﬁ\l s < [[All
The Riemann Zeta function is defined by
=1
(s)=) —
n:ln

for complex values ot. While converging only for complex numbegswith Res > 1, this
function can be analytically continued on the whole complex plane (with a single pole &j.
The Hurwitz’'s Zeta functior{(s, a) is a generalization of the Riemann’s Zeta functigr)
that also known as the generalized Zeta function. It is defined by the formula
= 1
C(S,CZ) = kZ:O (k+a)s
for R[s|] > 1, and by analytic continuation to other# 1, where any term wittk + a = 0 is
excluded. Fow > —1, a globally convergent series fQfs, a) (which, for fixeda, gives an
analytic continuation of (s, a) to the entire complex - plane except the point= 1) is given

by
o= S S (3 )
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see Hasse [4]. The Hurwitz’s Zeta function satisfies

()50

=2 i (2k+1)7°

k=0

. l< o
(o)
(L.4) ¢ ( %) (2~ 1)C(s).

The gamma function can be given by Euler’s integral form

F(Z)E/ t=te~tdt.
0

The digamma function is defined as a special function which is given by the logarithmic
derivative of the gamma function (or, depending on the definition, the logarithmic derivative of
the factorial). Because of this ambiguity, two different notations are sometimes (but not always)
used, with

d ~I'(2)
() = ) =
defined as the logarithmic derivative of the gamma funcli¢n), and

F(z) = dizln (21

defined as the logarithmic derivative of the factorial function. &ttederivativel(z) is called
the polygamma function, denotddn, z). The notation¥(n, z) is therefore frequently used as
the digamma function itself. i > 0 andb any number anad € Z™ is positive integer, then

(1.5) lim ¥ (a,n + b) = 0.

Consider matrices! = (a;;) andC' = (¢;;) of orderm x n andB = (by,) of orderp x gq.
Let A = (A;;) be partitioned with4,; of orderm,; x n; as the(i, j)th block submatrix and let
B = (By;) be partitioned withBy, of orderp, x ¢, as the(k, [)th block submatrix ¥~ m,; =
m,y.n; = mn,> pr = pand) ¢ = ¢). Four matrix products oA and B, namely the
Kronecker, Hadamard, Tracy-Singh and Khatri-Rao products, are defined as follows.

The Kronecker product, also known as tensor product or direct product, is defined to be

A® B = (a;B),
whereq;; is theijth scalar element oft = (a;;), a;; B is theijth submatrix of ordep x ¢ and

A ® B is of ordermp x ng.
The Hadamard product, or the Schur product, is defined as

A ® C= (aijcij),

whereaq;;, ¢;; anda;;c;; are theijth scalar elements of = (a;;), C' = (¢;;) andA ® C respec-
tively, andA, C'andA © C are of ordem x n.
The Tracy-Singh product is defined to be

Ao B = (Ai]- o B) with AjjoB = (Aij ® By)
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where4,; is theijth submatrix of ordern; x n;, By, is thekith submatrix of ordep; x ¢,
A;; ® By, is the kith submatrix of ordern;p, x n;q, A;; o B is theijth submatrix of order
m;p x n;qandA o B is of ordermp x ng.

The Khatri-Rao product is defined as

where 4;; is theijth submatrix of order, x n;, B;; is theijth submatrix of ordep; x g¢;,
A;; ® B;; is theijth submatrix of ordem;p; x n;q; andAx B is of order(}_ m;p;) x (>_n;q;) -

2. THE SPECTRAL AND /, NORMS OF THE KHATRI -RAO PRODUCT OF TWO n X n
CAUCHY-HANKEL MATRICES

If we substitutey = 1/2 andh = 1 into the H,, matrix (1.1)), then we have

1 n
&) = { e +:/>L:1

Theorem 2.1. Let the matrixH,,(n > 2) given in(2.1]) be partitioned as
HOD g2
(2.2) H, = ( eV e )

whereH? is theijth submatrix of ordern; x n; with H{'") = H,_,. Then

1
I, <l <2 |24 (527 ) co- )

2

_; (1—277)¢(p) — 1n2} 2 + 27731 —1n2)” + (5)21,‘

and

1 3 2 2\ %
| Hr e Hal = 27 {(5 - 2p> Cp—1) -5 (1-27) ¢ + 1} +2 (?) .
is valid where||-||, (3 < p < o0) is ¢, norm and the operation#” is a Khatri-Rao product.

Proof. Let H,, be defined by2.1|) partitioned as in2.2)). H, x H,, , Khatri-Rao product of two
H,, matrices, is obtained as

HOD o gt 02 o pa2)
H,*«H, =
HED o gy g o g2
Using thel, norm and Khatri-Rao definitions one may easily complifte, * H, ||, relative to

the abov#‘H,(fj) ® HW

as shown in(2.3))
p

2
2.3) |Hox Hyllp = D ||HS @ HID|Y

ij=1
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We may use the equalityl.2)) to write

n—1
1
Hr(Lll) _ -
o - |5 ot
|k LNe kol i
= (2k+3)" = (2n+2k+ 1)

2
i k—1 N n—k—1
(2k+1)" & (2n+2k+1)

oI 1 1
(4) =7 ot ((% Pt 2k 1)”)

= 2% (
L \k
1
2

n—2
n—k—1
1
2k:+ ”+; (2n + 2k + 1)° *

From (|1.4)), we obtain

> 1 1 _ ol-p 1 —-p l
;((2k+1)“_(2k+1)”)_2 g<p_1’5)_2 g(p’Q)
(2.5) =(1-2"7)C(p—1) — (1—=277)(p).
Also, since
n—2 o ]{I -1 07 p > 2
(2.6) lim . 5=
naookz:;(Zn—l—Qk—i-l) %(1_1112)7 p=2

and from [[1.4),[(2}4)[(2]5) (2.6), we have
7 |EHY H(”)H < 2% K% - 2‘?) C(p—1) —g (1-2"")C(p)+2— 1n2} :

Using (2.3) and (2.7 we can write

IIHn*Hnll,’;§22p{2+(%—2‘1”)C(p—l)—2(1—2‘p)C(p)—1n2r
n—1 1 2 1 2
(2.8) <o {2 n (% - 2p) Cp-1) —3 (1-27)¢(p)~n 2}2
21 | N 1 n—i 2 1
2 [Z:; on + 2i + 1)? +(%+2n)2p
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Thus, from(2.6) and we obtain an upper bound f4,, + H,, || such that

@9) [H,xH <2 |24 (5 -27) -1

—g (1—-277)¢(p) - 1n2} 2 +2%73 1 —In2* + (3)2,9.

For the lower bound, if we consider inequality

i n—1
K
(11) (11)[|P )
1727 & 2V, = _2,, 2 {2k 137
-2
_ 2
=17 ; 2k+

_221’4{( ) 1)—%(1—21”)§(p)+1]2

and equalitieq (2]3)| (2.5), then we have

@) el 2t (G2 o

—2(1—2_”)C(p)+1r+2 (;)%.

This is a lower bound foff ,, * H,,||". Thus, the proof of the theorem is completed u.
and (2.10).

Example 2.1. Let

04—22”{24-(——2’”) —1)

1 3 2 2\
g =2 [(5—2"’) C(p—l)—§(1—2_p)é(p)+1} +2 (;)
and order of H,, « H,, matrix is N. Thus, we have the following values:

N3 [H, 7T, a
2 10.19326809010.1943996774 2.034031369
5 10.1932680901 0.2486967434 2.034031369
101 0.1932680901 0.2949003201 2.034031369
17| 0.1932680901 0.3250545239 2.034031369
261 0.1932680901 0.3460881969 2.034031369
)
)
)
)

371 0.1932680901 0.3615449198 2.034031369
50| 0.1932680901 0.373365715% 2.034031369
65| 0.1932680901 0.382691423( 2.034031369
81| 0.1932680901 0.3902333553 2.034031369
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N3 [+ 0, |
2 10.1347849117 0.1654942693 2.294793856
5 10.1347849117 0.2041337591 2.294793856
10| 0.1347849117 0.2215153273 2.294793856
1710.1347849117 0.2305342653 2.294793856
261 0.13478491170.2357826204 2.294793856
37| 0.13478491170.2390987777 2.294793856
50| 0.1347849117 0.2413257697 2.294793856
65| 0.1347849117 0.2428929188 2.294793856
81]0.13478491170.2440372508 2.294793856

N B [H,+ B, o
2 10.12183817590.1622386787 2.554705355
5 10.12183817590.1845312641 2.554705355
10| 0.1218381759 0.1920519007 2.554705355
17]0.1218381759 0.1952045459 2.554705355
26 0.12183817590.1967458182 2.554705355
3710.12183817590.1975855071 2.554705355
50 0.12183817590.1980810422 2.554705355
651 0.12183817590.1983919845% 2.554705355
81]0.1218381759 0.1985968085 2.554705355

- —H-H -G IH GGG

Now, we will obtain a lower bound and an upper bound for spectral norm of the Khatri-Rao
product of twoH,, as in(2.1)) and partitioned as if.2).

To minimize the numerical round-off errors in solving systdm = b, it is normally conve-
nient that the rows ofi be properly scaled before the solution procedure begins. One way is to
premultiply by the diagonal matrix

. aq (&%) (67%
2.11 D = dia , s ,
(10) : {mA) A T A) }
wherer;(A) is the Euclidean norm of théh row of A and oy, as, ..., «,, are positive real
numbers such that
(2.12) Ad+aj+-+ad=n.
Clearly, the euclidean norm of the coefficient matix= D A of the scaled system is equal to
vnandifa; = as = -+ =, = 1 then each row o83 is a unit vector in the Euclidean norm.
Also, we can defind3 = AD,
. aq %) (079
2.13 D = dia , R, ,
(@13 : { a(A) &(A) " en(A) }
wherec;(A) is the Euclidean norm of théh column of A. Again, | B||, = v/n and ifa; =
oy = --- = «,, = 1 then each column aB is a unit vector in the Euclidean norm.
We now that
(2.14) By < [|D]l, - | Al

for B matrix above (see O. Rojo [16]).
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Theorem 2.2. Let the matrixH,(n > 2) given in(2.1)) be partitioned as
HOD (2)
H, = ( HCY g2 )
where ") is theijth submatrix of ordern; x n; with H\'"") = H,_, anda;'s (i = 1,...,n)
be as in(2.12). Then,
1, 259]2 16

yuu*ﬂuggw?+w[ﬂr———

8" T 225] T 6561
n—1 &2 —2
[ Hy ox Hyl|, > ; :
; —\Il(l,n+%—z)+\ll(1,%+@)
1 2591° 16
ol -p2 20 L
3 {sﬂ' 225} 6561

is valid where]|-||, is spectral norm and the operatior* is a Khatri-Rao product.

Proof. Let H,, be defind by(2.1)) and partitioned as i. H, x H,, the Khatri-Rao product
of two H,, matrices, is obtained as

H’r(Lll) ® HT(LH) H7(L12) ® H7(L12)
H,*«H, =
H7(121) ® H’r(L21) H7(L22) ® H’I(L22)
Using the/,, norm and Khatri-Rao definitions one may easily complftg,  H,,|, relative to

the abov%‘H,Sij) ® H)

as shown in(2.3))
p

2
y P
|Hy x Hally = > | HS @ H?||?
3,j=1
First of all, we must establish a functigijz) such that
1 [7 ’ 1
hs - ST (] — ’
o /_7r f(z)e x T

whereh, are the entries of the matri{,, . Hence, we must find values esuch that

s=2,3,...,2n.

1 i < < 1
- ce((1/2)+s)zxefzs:pdl, = - )
2m J_, 5 +s
Thus, we have
< o (/2 +s p—ise 10 _ 2c
2 J_. i
and
. T
2(5+5)
Hence, we have
T .
f(z) == e((1/2)+s)iz
2(3+3)

The functionf(z) can be writtten as

f(x) = fi(z) f2(),
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where f,(x) is a real-valued function anf}(z) is a function with perio®r and|f.(x)| = 1.

Thus, we have
T

f1($):m

and

Since||H,,_+||, < sup fi(x),
-1
1 1
——W(Ln+§)+~w2—%§
£ 2k 457 4
and from(2.3)), we have

3

1., 259 16
8" 225

1 )
H,«H,|. <7*+32|—-V |1, S —— —.
|Hy x Hy ||, <7+ { 1 < n+2)+ =T 5561

Thus, from(1.5) and({2.12)) we obtain an upper bound for the spectral norm Khatri-Rao product
of two H,(n > 2) as in({2.1)) partitioned as in2.2|) such that

1 25972
H,x H,|| <72+32|=-n%—- =2
I« 1l < 724 32 o - 22

16
6561

Also, we have

n—1 2 %
o
D|, = .
121, (leun+l—@+wL§wJ

=1

for D a matrix as defined b2.13). Since| B||, = v/n — 1 for B matrix above and fron{l.3)
we have a lower bound for spectral norm Khatri-Rao product of My > 2) as m. and
partitioned as in2.2) such that

n—1 2 2
Q;
H,| . > § :
| H,, * n||3_<v \1,(17”+%_i)+\11(1,%+i))

=1
1 2591% 16
32 | —p2 - 222 .
* { 8 } 6561

8 225

This completes the proof. O

Example 2.2. Let

1 25917 16
a =7+ 32 {—7#——]

8" T 225| " 6561
al — O{Q — et — an_l — 1’
3 Sif 1 [l 2O, 16
pu— _ﬂ_ =77
— —V(l,n+35—1)+ V(1,5 +1) 8" 225| ' 6561

and order of H,, * H,, matrix is N. We have known that the bounds faf = oy = --- =
an_1 = 1 are better than those fag’s (i = 1,...,n) such thab? + a3 + - - + a2
we have the following values for the spectral normif « H,, :
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B [ Hn * H, ||, a
0.2279281696 0.3909209269 10,09031555
10| 0.2234942988 0.5703160868 10,09031555
17| 0.2220047678 0.7282096597 10,09031555
26| 0.2213922974 0.8664326411 10,09031555
371 0.2211033668 0.988380328% 10,09031555
501 0.2209527402 1.097039615| 10,09031555

o=

H-H-GH-H GG
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