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ABSTRACT. Let p(z) be a hyperbolic polynomial-like function of the forp{z) = (= —
ry)™ - (x — rn)™N, wherems, ..., my are given positive real numbers and < r; <

- < ry. Letx; < 29 < --- < xy_1 be theN — 1 critical points ofp lying in I, =
(rg,m6+1),k =1,2,..., N —1. Define the ratiog, = -2:="= fk =1,2,..., N —1. We prove

Tk41— Tk’
that% <o < W These bounds generalize the bounds given by earlier
authors for strictly hyperbolic polynomlals of degmeeFor N = 3, we find necessary and suffi-
cient conditions fofo, o2) to be a ratio vector. We also find necessary and sufficient conditions
onmy, mso, m3 Which imply thato; < o5. For N = 4, we also give necessary and sufficient
conditions for(o1, 02, 03) to be a ratio vector and we simplify some of the proofs given in an
earlier paper of the author on ratio vectors of fourth degree polynomials. Finally we discuss the
monotonicity of the ratios whefv = 4.
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1. INTRODUCTION AND MAIN RESULTS

If p(x) is a polynomial of degree > 2 with n distinct real roots; < r, < --- < r, and
critical pointszy < x5 < -+ < x,,_1, let

Tk — Tk

op = ——— % k=1,2,....,n—1.
Tk+1 — Tk
(01,...,0,-1) is called theratio vectorof p, andoy, is called thekth ratio. Ratio vectors
were first discussed in[[4] and in/[1], where the inequalities
1 k
— < < — k=1,2,...,n—1
n—k+1 S Er1 el

were derived. Fon = 3 it was shown in[[1] that; and o, satisfy the polynomial equation
3(1 — o1)oo — 1 = 0. In addition, necessary and sufficient conditions were givenlin [5] for
(01,02) to be a ratio vector. For = 4, a polynomial,@, in three variables was given inl[5]
with the property thaf) (o1, 02, 03) = 0 for any ratio vectofo,, 09, 03). It was also shown that
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2 ALAN HORWITZ

the ratios are monotonic—that is, < o0y < o3 for any ratio vector(oy, 05, 03). Forn = 3,
3 <01 < zandj < 0, < 2, and thus it follows immediately that, < 0. The monotonicity
of the ratios does not hold in general for> 5 (see [5]). Further results on ratio vectors for
n = 4 were proved by the author inl[6]. In particular, necessary and sufficient conditions were
given for (o4, 09, 03) to be a ratio vector. For a discussion of complex ratio vectors for the case
n = 3, seel[7].

We now want to extend the notion of ratio vector to hyperbolic polynomial-like functions
(HPLF) of the form

p(x) = (x — T’l)ml .. (:L‘ _ TN)mN,

wheremy, ..., my are given positive real numbers W@fle my, = n andrq,...,ry are real
numbers withr; < ry < -+ < ry. Seel[8] and the references therein for much more about
HPLFs. We extend some of the results and simplify some of the proofs in [5] ahd in [6], and
we prove some new results as well. In particular, we derive more general bounds @n the
(Theoren| 1.2). Even foN = 3 or N = 4, the monotonicity of the ratios does not hold in
general for all positive real numbers,,...,my. We provide examples below and we also
derive necessary and sufficient conditionsmen ms, ms for o1 < o, (Theorenj 1.4). In order

to define the ratios for HPLFs, we need the following lemma.

Lemma 1.1. p’ has exactly one root;, € I, = (1, 7%41), Kk =1,2,..., N — 1.

Proof. By Rolle’s Theoremyp’ has at least one root if, for eachk = 1,2,..., N — 1. Now
2 — YV ™ which has at mosiN — 1 real roots since{ 1 is a Chebyshev
P =1 z—r} 7Tk ) g=1,..,N

system. 0

Now we define théV — 1 ratios

(1.1) op= Tk k192 N-1
Tk4+1 — Tk
(01,...,0n_1) is called theatio vectorof p.

We now state our first main result, inequalities for the ratios defingd ip (1.1).

Theorem 1.2.1f 04, ..., 0y are defined by (1]1), then

m my+---+m
(1.2) b < op < — i
my+ -+ my my + - 4 My

Remark 1. Well after this paper was written and while this paper was being considered for
publication, the paper of Melman|[9] appeared. Theorem 2lof [9] is essentially Thgorem 1.2 of
this paper for the case when thg are all nonnegative integers.

Most of the rest of our results are for the special cases when 3 or N = 4. ForN = 3
we give necessary and sufficient conditionsmon m., ms for (o4, 02) to be a ratio vector. The
following theorem generalizes ([5],Theorem 1). Note that m; + mo + ms.

Theorem 1.3.Letp(x) = (z — r1)"™ (z — r9)™2(x — r3)™3. Then(oy,09) is a ratio vector if
and only ift < gy < 1 i < g, < M2 ando, =

mi+ma’ ma+msg

m2
n(l—o1)"

We now state some results about the monotonicity of the ratios when3. Form; = my =
my = 1, Theore yieldg < o1 < 2andl < o5 < 2, and thus it follows immediately
thato, < 0o. 01 < 05 does not hold in general for all positive real numbers(or even positive
integers)m, ms, andms. For example, itn; = 2, my = 1, m3 = 3, then itis not hard to show
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thato, < oy for all r; < r, < r3(see the example in[§ 2 below). Alsoyif, = 4, m, = 3, and
ms = 6, theno, < o, for certainr; < ry < r3, While oy < o5 for otherr; < ry < r3. For

1 1 6 1 1
4 3
p(z) =2 (z — 1) <x + 53V 3) : o1=02 =3 26\/ 3
One can easily derivsufficient conditions onm;, ms, ms which imply thato; < o, for all
r < 79 < r3. FOr example, ifn;ms < m3, then "f < m”f’ , Which implies that; < o,

by (1.2) with N = 3(see([(2.B) in §2). Also, |fn1 + mg < 3ma, thenn < 4ms, which implies
that

2 > >0
n(l—oy)  41—0y) = '

sincedz(1 — z) < 1 for all realz. We shall now derive necessary and sufficient conditions on
miy, Mo, M3 for o1 < 03.

09 —

Theorem 1.4.0, < oy forall r; < ro < ryif and only ifm3 + my(ms — ms3) > 0 and one of
the following holds:

(1.3) m3 4+ my (my +ms3) — 2myms >0 and  m3 + ms(my —my) >0
or
(14) mg + mo (m1 + m3> —2mims < 0 and 3my — mq —msg > 0.

As noted above, ifn; = mo = m3 = 1, theno; < o0,. The following corollary is a slight
generalization of that and follows immediately from Theofem 1.4.

Corollary 1.5. Suppose thati; = my = m3 =m > 0. Theno; < oy forall ry < ry < r3.

For N = 4 we now give necessary and sufficient conditionsranms, mg, m4 for (oy, 09, 03)
to be a ratio vector. Note that = m; + ms + m3 + my4. To simplify the notation, we use
o1 = u, 09 = v,andos = w for the ratios. The following theorem generalizes ([6],Theorem 3).

Theorem 1.6. Let
n(w —v) —mg n(l —w) —my

D = D(u,v,w) = nu—Dv(l—-—w) n(u—1)vw+my |’

Dy = Dy(u,v,w) = (nu—my) (mg — nvw (1 —u)),
Dy = Dy(u,v,w) = (nu—mq)nv (1 —u) (1 —w),
and
R = R(u,v,w)

nv(1—w) D2+ (nvw—m1—ma) D1 Da+(n(1—u) (w—v—1)+ma+m4) D1 D+(nw(u—1)+ma+ms) D2 D
(nu—m1)(ma—nv(l—u)) ’

which is a polynomial in:, v, andw of degreer. Then(u, v, w) € R? is a ratio vector of
p(a) = (2 =)™ (2 = 7)™ (& = 7)™ (& — )™
if and only if0 < Dy (u,v,w) < Do(u,v,w), D(u,v,w) > 0, and R(u, v, w) = 0.

We now state a sufficiency result about the monotonicity of the ratios when4. We do
not derive necessary and sufficient conditions in generabgmn,, ms, m4 for oy < 03 < o3.

Theorem 1.7. Suppose thaty; + my < min {3my — mg3,3ms — ms}. Theno; < oy < 03.

As with N = 3, we have the following generalization of the case when= my; = m3 =
m4 = 1, which follows immediately from Theorem 1.7

Corollary 1.8. Suppose thatr; = my = m3z = my = m > 0. Theno; < 0y < 03.
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2. PROOFS

We shall derive a system of nonlinear equations in{thg and{c;} using [1.1). Let
p(x) = (x—r)™ - (x —ry)™,

wherem, ..., my are given positive real numbers wi ]kvzl my, = nandry,...,ry are real
numbers withr; < ry < --- < ry. By the product rule,

Pa)= (o —r)™ @ —ry)™Y (mj I1 - >> |

=1 i=1,itj
Since
N-1
p@)=n(x—r)™ " (z—ry)™ ! x H T — )
k=1

as well, we have

(2.1) n 1:[(95 — ) Z (m] H xr — n)) .

j=1 i=1,i#j

Let e, = ex(r1,...,rny) denote thekth elementary symmetric function of the, j =

1,2,..., N, starting witheg(ry,...,7n) = 1, e1(r1,...,ry) = 71 + -+ + ry, and so on.
Let

6}67]'(7“1,...,7"]\[) :ek(Tl,...,Tj_l,T‘j+1,...,7"N),
that is,e ; (71, ..., 7n) equalsey(ry, ..., ry) with r; removedy = 1,..., N. Sincep(z + ¢)

andp(x) have the same ratio vectors for any constamte may assume that
o = 0.

Equating coefficients i (2.1) using the elementary symmetric functions yields

neg(xy, ..., TN_1) = ijek,j(rl,o,rg, S TN, k=1,2,...,N —1.

Since
erj(ri,ms,....ry) if j#2andk < N —2;
€k,j<7’1,0,7’3,...77”N>: ek(’f‘l,T:;,...,TN) I'fj:27
0 if j #£2andk =N —1,
we have
neg(T1, ..., on_1) = maoep(r1, 73, ..., TN) + Z mjer;(ri,rs, ..., rn), k=1,...,N =2
J=1j#2
(22) NnTry-«- " TN_1 = MoT1T3 - TN.

Solving (1.1) forz;, yields
(23) $k:Akgk+rk7 k:1,2,...,N—1,
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whereA; = ry11 — . Substituting[(2.3) intd (2]2) gives the following equivalent system of
equations involving the roots and the ratios.

(2.4) nep((1 —o1)r1,1302, A305 +13,..., Ay_10n_1 +TN_1)
N
= maeg(ry,r3,...,TN) + Z mjek (11,73, ...,rN), k=1,...,N—2,
J=1,j#2
n(l - 01)T17‘302(A3U3 + 7‘3) T (AN—laN 1+ 7rN- 1) = Mmorirg - TN-.
Critical in proving the inequalitlesk—+1 < o < k+1 was the root—dragging theorem (see

[2]). First we generalize the root—dragging theorem. The proof is very similar to the proof in
[2] wherem, = --- = my = 1. For completeness, we provide the details here.

Lemma2.l.Letr; < 25 < --- < xx_1 betheN —1 critical points ofp lying in I, = (rx, ri+1),
k=1,2,...,N—1. Letg(z) = (x—r))™ -+ (x—71))"™,wherer}, > rp,, k=1,2,... ., N—1
and letz]; < x5 < --- < 2/y_, be theN — 1 critical points ofq lying in J, = (r},7},.4),
k=1,2,...,N—1.Thenz}, >z, k=1,2,...,N — 1.

Proof. Suppose that for somexz] < z;. Now

M,
i) =0= =0 and 0= =0
(x;) Z%—Tk q'(x}) klx/_r;C

. > 1, andz; < x; implies that
(2.5) -, <xi—re, k=1,2,...,N—1
Since both sides of (2.5) have the same sign,

Tk MR k=12, ,N-1,

Ty—T, T — Tk
. . N m N m

which contradicts the fact that,_, ;=& and},_, o are both zero. O

Proof of Theorer 1]2To obtain an upper bound far, we use Lemma 2]1. Arguing as in
[1], we can move the critical point, € (rx,rx.1) as far to the right as possible by letting
Ty, Th—1 —>Tkand7’k+2,...,7“N—>OO. Lets:m1—I—---+mk,t:mk+2+---—|—mN,and
let

(7)) = (2 —13)* (2 — )™ (2 = D)
Then
gy(x) = (& = 75)* [(2 = )™z = 0)' ™+ g (2 — rpgn) ™0 (2 — )]
+ 5@ —1)* (& = )™ (7 - b)f
= (& — 7)™ @ — 7)) (@ = b))
X [tz = rea) (@ = 1) + My (@ — 1) (2 = b) + s(z — riga) (z — b))

xy 1S the smallest root of the quadratic polynomial

t(x —ria1) (@ —rg) + mpgr(x —rp)(x = 0) + s(x — rpyq)(x —b)
= (Mpy1 +t+8) 2% + (—trppy — try, — Mgy — Mpg1b — 8T — sb) T
+ tTk+17’k + STk_Hb + mk+1rkb.
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Asb — oo, x} increases and approaches the rogt-efi.; — s)x + sryy1 + mgp17rg. Thus

STky1 + Mi 1Tk STpy1 + Mig1Tk
l’kT :>ng — Tk /(Tk—l—l_rk)
M1+ S Mp41 + S

STyt Mgk — TR(Mpg + 8)

(Mpg1 + 8)(Thg1 — T)
S my + -+ my

Miy1 +8 My + -+ Mgy

Similarly, to obtain a lower bound far,, move the critical point:;, € (ry,7x41) as far to the

left as possible by letting, o, ...,ry — ryy1 @andryq, ..., 1,1 — —oo. By considering
@(x) = (& = 7)™ (& = Trp1)*(x + D),
wheres = myq + - -+ + my andt = my + - - - + my_1, ONe obtaing, | ——L— O

mg+-+my

Proof of Theorem 1|3Letn = my 4+ my + m3. To prove the necessity part, from Theoren 1.2
with N = 3 we have

(2.6) @<01<—, —2<02<
n
With N = 3, (2.4) becomes
(2.7) n((1 —o1)r + r309) = meo (11 + 73) + myrs + mary,
n(l — o1)ri(rsoq) = maryrs.

Sincer; # 0 # r3, the second equation ip (2.4) immediately implies thdt— o1 )0 = mo.
To prove sufficiency, suppose that;, o») is any ordered pair of real numbers with <

o < mln-‘ﬁng andoy = —n(l’f?al). Letr = —ml’fgﬁém and letp(x) = (x + 1)™a™2 (z — r)™s.
Note thatr > 0 sinceno; — m; > 0 and
mo
mi+ mo —Nogy =M1 +Mg — N———
n(l—oy)
_ 01 (m1 + mg) —mq
—1 + 01
_ ml—al(m1+m2) -0
1— 01 '

A simple computation shows that the critical pointspdh (—1,0) and in(0, r), respectively,
arer, = o, — 1 and

Yy — — ™Mo 01(m2+m3)+(01—1)m1
2 m1+m2+m3 (m1+m2)01—m1 )
Thus the ratios of arex; +1 = o, and® = ﬁ = 0,. That finishes the proof of Theorem
1.3 O

Proof of Theorerm 1]4Sincep(cz) andp(x) have the same ratios when> 0, in addition to
ry = 0, we may also assume that= 1. Thusp(z) = 2™ (x — 1)™*(x —r)™3,r > 1. Asimple
computation shows that

01:%<(n—m3)r—n—mg— A(r))—i—l,
(e n s VD)

r—1
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where
A(r) = (my + my)*r? + 2(mamsz — man)r + (my + msz)>.
Let
f(r) = (n—m3)r* + (—n + 2mg — ma) r + 2ms.
Note thatf (1) = mg +m3 > 0, f'(1) = my +m3 > 0, andf”(r) = 2ms + 2m; > 0, which
implies thatf(r) > 0 whenr > 1. Now

%((n—mg)r—n—mri-\/M)

02 — 01 =

oy — o1 > 0 when
r>1 <= VAr> f(r)
— Ar’> ((n —mg3)r® 4 (—n + 2ms — my) 7 + 2777,2)2
< 4(r—1) ((mg + mimg — mlmg) r?+ (mgmg — mymey — mg) r+ mg) >0
< h(r)>0
whenr > 1, where
h(r) = (m3 4+ mi(ma — m3)) r* + ma (mg — my — mq) r + m3.
We want to determine necessary and sufficient conditionsigmn,, ms which imply that
h(r) > 0 for all > 1. A necessary condition is clearly
(2.8) m3 + mq(my —ms) > 0,
so we assume thdt (2.8) holds. Let
1 my + mo — Mg

ro = —m
079 2m§+m1(m2—m3)

be the unique root of’. If r, < 1, then it is necessary and sufficient to havél) > 0. If
ro > 1, then it is necessary and sufficient to have) > 0. Now

ro <1 <— 2(m§+m1(m2—m3)) > my (Mg + my — mg)
<= ma+my (my +ms) — 2myms > 0,

and
h(1) >0 <= mj + mz(my —my) > 0.
That proves[(1]3). If
m3 + mg (my + ms3) — 2myms < 0,
thenry > 1. Itis then necessary and sufficient that

3m2 — mp; — g3

1
h(ro):—mg(m1+m2+m3) >0 <= 3mg— m; —mg > 0.

4 m% + ml(mg — mg)
That proves|(1]4). O

One can also easily derive necessary and sufficient conditions, oms, ms for oy < o7y.
We simply cite an example here that shows that this is possible.
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Example 2.1.Let m; = 2, my = 1, m3 = 3. As noted above, we may assume that) =
2?(x — 1)(z — r)3, r > 1. Then a simple computation shows that

5 1 1
= 4+ r——V25-1 2 n
o=t 12\/5 8r + 9r and oy
Simplifying yields

B 3r—T7++/25—18r 4+ 9r2
n 12 '

—3r2 41— 24125 — 18r + 9r2
12(r — 1) |

09 — 01 =

o9 — o1 < 0,

r>1 <= rvV25—18r+9r2 < 3r? —r +2
= (32 —r+2)° —r?(25- 18-+ 9r%) > 0
= 4(r—1)(3"-1) >0.
Henceo, < o forall r > 1.

Remark 2. For the example above, if we choose= 2, then the roots arequispaced but
oy < oy. Contrast this with {[5, Theorem 6]), where it was shown that for aAhy> 3, if

my = --- = my = 1 and the roots arequispacegdthen the ratios of areincreasing

We now discuss the cagé = 4, so thatn = m; + my + ms + my. Theoreny 1.2 then yields

my my

— < u<< ———,

n mi + msy
ma my -+ me
(2.9) <v< ,
Mo + M3 + My mi + Mo + ms

ms mi + mo + ms
— <w< .
ms + my n

In [6] necessary and sufficient conditions were given(far, o», 03) to be a ratio vector when
my; = mo = ms = 1. We now give a simpler proof than that givenlin [6] which also generalizes
to any positive real numbers,, mo, andms. The proof here forV = 4 does not require the
use of Groebner bases aslin [6].

Proof of Theorem 1]6(<= Suppose first thatu, v, w) is a ratio vector of
p(x) = (x =)™ (x — )™ (x —rs)™ (z —ry)™.

Sincep(z + ¢) andp(z) have the same ratio vectors for any constgnve may assume that
ro = 0, and thus the equatiors (P.4) hold with= 4. In addition, sincey(cz) andp(z) have
the same ratio vectors for any constant 0, we may also assume that= —1. Letr; = r
andr, = s, so that) < r < s. Then[2.4) becomes

(2.10) (n(w —v) —mg)r+ (n(l —w) —my)s = nu —my,

(2.11) nv(1 —w)r* + (nvw —my —ma)rs+ (n (1 —u) (w—v — 1) + my +my) T
+ (nw(u — 1) +ma +m3) s =0,

(2.12) nv(u—1)(1—w)r+ (nvw(u—1)+mg)s=0.
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In particular, [(2.1D) —{(2.12) must be consistent. Eliminatinand s from (2.10) and[(Z.12)
yields

(nv(u—1)(1—w)(n(l —w)—my) — (n(w—2v) —m3) (nvw (u—1) + my)) s
= (nu—mq)nv(u—1)(1—-w),
or
D(u,v,w)s = (nu—mqi)nv (1 —u) (1 —w).
Note thatnu — m; > 0,1 —u > 0,v > 0, and1 — w > 0 by (2.9). ThusD(u,v,w) > 0 and
by Cramer’s Rule,
~ Di(u,v,w) . Dy (u, v, w)

(2.13) "= D(u,v,w)’ -~ D(u,v,w)’
where
_ 1—w) —
Dy (u,v,w) = gu m Zf)w (uwl 1)7147”2 = (nu —my) (my — novw (1 —u)),
and
Dy(u,v,w) = ZE}UEU—_U)D—({H_S w) gu I - (nu—mq)nv(l—u) (1 —w).

(2.13) andD(u, v, w) > 0 imply that D (u, v, w) > 0, andr < s implies thatD; (u, v, w) <
Dy (u,v,w). Now substitute the expressions foands in (2.13) into [2.1]1). Clearing denomi-
nators gives

(2.14) nv(1 —w)D7 + (nvw — my — my) DDy
+(n(1—u)(w—v—1)+mg+my) DD
+ (nw(u — 1) + mg + ms) Do D = 0.
Factoring the LHS of (2.14) yields
(nu—my) (nu(l —u) —mg) R(u,v,w) = 0.
Also, (2.12) and- < s implies that

(2.15) %—vw(l—u)<v(1—u)(1—w)

:>%<vw(1—u)+v(1—u)(1—w):v(l—u)
:>v(1—u)>%.

Thusmy — nv(1 — u) # 0, which implies thatR(u, v, w) = 0.

(= Now suppose that, v, andw are real numbers with < D;(u,v,w) < Dy(u,v,w),

D(u,v,w) > 0, andR(u,v,w) = 0. Letr = %1((:’5’;”) ands = %2((;’“;7;2”)). Then0 < r <'s
and it follows as above thdt, s, u, v, w) satisfies[(2.10) { (2.12). Let = u — 1, 25 = rv,
andz; = (s — r)w + r. Then [2.2) must hold sincg (2.2) and (2.4) are an equivalent system of

equations. Let

p(x) = (z+1)™a™ (x —r)™(x — )™
Working backwards, it is easy to see thjat[2.1) must hold and henee, andz; must be the
critical points ofp. Sinceu = wol_‘((_‘ll)), v =20 andw = &', (u,v,w) is a ratio vector of
p. 0]
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Remark 3. As noted in [6] for the case when; = my = m3 = my4 = 1, the proof above
shows that if(u, v, w) is a ratio vector, then there asaiquereal number$ < r < s such that
the polynomial

p(a) = (z 4+ 1)™ e (o — )" — )™
has(u, v, w) as a ratio vector. For general we make the following conjecture.
Conjecture 2.2. Let

p(z) = (x+ )™z (z —1r3)™ - (x —ry)",

q(z) = (z+ 1)™a™(x — s3)™ -+ (x — sy)™V,

where) < r3 < --- < ryand0 < s3 < --- < sy. Suppose thgt and ¢ have the same ratio
vectors. Themp = q.

As with N = 3, it was shown in[[5] thatn; = my = m3 = m4 = 1 implies thato; < 03 <
o3. Not suprisingly, this does not hold for general positive real numbgtsn,, ms, andm,.
For example, ibp(z) = (z + 1)>2x(z — 4)V2(z — 6)2, theno, > o3 > 05.

Proof of Theorerﬂ]%nl +my < < 3my — mg = n < 4m,. By (2.13) in the proof of Theorem
,v(l —u) > 1. Thus? > ;- > 1sinceu(l —u) < L. By lettingr; =7 <7y = —1 <
r3 =0 < ry = s,0ne can derive equations similar fo (2.2) with= 4. The third equation
becomes

nwu(l —v)

(mg —nw (1 —u) (1 =v))rdnwu(l—v) =0=r="wm—va— =

1
r<-—-1=->-1
r

w(l—v)(1—u)—
(1-v)
(
(

= s 1

nwu
= nw (1 —v) (1 —u)—m3>—nwu(l —v)

= nw (1 —v) (1 —u) +nwu(l —v) >mg

ms
no(l —v)’
Now m; + my < 3mz — mg = n < 4mg. Thus? >

(

(
:>nw(1—v)>m3

> —

:>

1
4v(1—v) > 1. O
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