journal of inequalities in pure and
applied mathematics

http://jipam.vu.edu.au
issn: 1443-5756

Volume 10 (2009), Issue 1, Article 17, 7 pp. © 2009 Victoria University. All rights reserved.

THE ALEXANDER TRANSFORMATION OF A SUBCLASS OF SPIRALLIKE
FUNCTIONS OF TYPE

!QINGHUA XU AND '2SANYA LU

1SCHOOL OFMATHEMATICS AND INFORMATION SCIENCE
JIANGXI NORMAL UNIVERSITY
JIANGXI, 330022, GINA

xughster@gmail.com

2DEPARTMENT OF SCIENCE,
NANCHANG INSTITUTE OF TECHNOLOGY
JIANGXI, 330099, GIINA

yasanlu@163.com

Received 13 August, 2008; accepted 27 December, 2008
Communicated by G. Kohr

ABSTRACT. Inthis paper, a subclass of spirallike function of typgenoted b)é’g is introduced
in the unit disc of the complex plane. We show that the Alexander transformation of cl&§s of
is univalent whereos 8 < ﬁ which generalizes the related results of some authors.
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1. INTRODUCTION

Let A denote the class of analytic functiorison the unit diskD = {2 € C : |z| < 1}
normalized byf(0) = 0 and f'(0) = 1, S denote the subclass of consisting of univalent
functions, ands* denote starlike functions oR. Obviously,5* C S C A holds.

In [1], Robertson introduced starlike functions of ordeon D.

Definition 1.1. Leta € [0,1), f € S and
Re {Z]{((Zj)} >a, z€D.

We say thatf is a starlike function of ordet. Let.S*(«) denote the whole starlike functions of
ordera onD.
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Spaek [2] extended the class 6f,and obtained the class of spirallike functions of type
In the same article, the author gave an analytical characterization of spirallikeness gfdgpe
D.

Theorem 1.1.Letf € Sandf € (-7, §). Thenf(z) is a spirallike function of typg on D if

and only if
Re e’ﬂm] >0, ze€D.
G
We denote the whole spirallike functions of typen D by S”ﬁ.

From Definition 1.1 and Theorejm 1.1, it is easy to see that starlike functions of @t
spirallike functions of type? have some relationships on geometry. Spirallike functions of type
£ map D into the right half complex plane by the mappla’ﬁ 2 (z , While starlike functions
of ordera mapD into the right half complex plane whose real part is greater thdny the

mapping? f Slncehr% eih ij((j) — ¢, we can deduce that if we restrict the image of the

mapplngelﬂ% in the right complex plane whose real part is greater than a certain constant,
then the constant must be smaller tkagn3. According to this, we introduce the functions class

SPonD.
Definition 1.2. Leta € [0,1), 8 € (—Z

), f € S, thenf € SZ if and only if

E)%e[e J{(())}>acosﬁ, z€eD.

Obviously, whens = 0, f € S*(a); while o = 0, f € S;.

Example 1.1.Let f(2) = ——55=—, # € D. The branch of the power function is chosen
(1_2) 1+itan 3

such that o
(1= 2))ims| =1,

2=0

It is easily proved thaf € Sg. We omit the proof.

For our applications, we sét=(J,, 57.
In this paper, we first establish the relationships améﬁgand some important subclasses
of S, then investigate the Alexander transformatiortdfpreserving univalence. Furthermore,

some other properties of the classétﬁfare obtained. These results generalize the related works
of some authors.

2. INTEGRAL TRANSFORMATIONS AND LEMMAS

Integral Transformation 1. The integral transformation

is called the Alexander Transformation and it was introduced by Alexand@il inAlexander
was the first to observe and prove that the Integral transformatioraps the class*of starlike
functions onto the clas&™ of convex functions in a one-to-one fashion.

In 1960, Biernacki conjectured thdf.S) C S, but Krzyz and Lewandowski disproved it in
1963 by giving the examplé(z) = z(1 —iz)"~!, which is a spirallike function of typé& but is
transformed into a non-univalent function Byf4]. In 1969, Robertson studied the Alexander
Integral Transformation of spirallike functions of type The author showed thalt(S”@) cS
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holds wheng satisfies a certain condition, thatdss 3 < z, (a constant). Robertson also
noticed thatr, cannot be replaced by any number greater E}1and asked about the best value
for this [3]. In 2007, Y.C. Kim and T. Sugawa proved thk(t%) C S holds precisely when
cos 3 < %Orﬁ =0 [4].

Integral Transformation 2. Lety € C, f(z) € A be locally univalent, and the Integral
transformation/, [S] be defined by

L[f](z) = /0 Z[f’(C)]%zc =z /0 [f/(t2)]7dt.

Based on the definition df,, we may easily show thdt o I, = I...

Let A(F) ={ye C:L,(F) C S}, FF C Abe locally univalent. According to the definition
of the A(F), J(SP) c S'is equivalent ta € A(J(S%)).

For the proof of the theorems in this paper, we need the following lemma, which establishes
the relationships amon@ and some important subclassessof

Lemma2.1.Fora € [0,1), 3 € (=%, %), c = e " cos 3, the following assertions hold:

() ([6,17]) f € S*(a) if and only if
f) _ [Mra, 2eD.

z z

-«
whereu(z) € S*. The branch of the power function is chosen such {ﬁﬁgﬂ

2=0

(i) f e 57 ifand only if
) _[] e,

z z

whereg(z) € S*(«). The branch of the power function is chosen such {ﬁ(}é&] ’
(iiy f e SPifand only if

z=0

z €D,

’
z z

) [ﬁ} (1-a)e

=1.
z2=0

(1—-a)c
wheres(z) € S*. The branch of the power function is chosen such Eﬁ?ﬁ

Now we give the proof of (ii) and (iii).
eiﬁ
Proof. (ii). First, assume thaf(z) € S°. Settingg(z) = = [f(j)] “*? "through simple calcula-
tions we may obtain the equality

2f'(2)
f(2)

29'(2)
9(2)
Therefore the following inequality holds,
zg'(z)] 1 ip2f'(2) acosf
%‘{g(z)}‘cosﬁ%e [ 1)) s "

— i tan f3.

= (1+itanf3)

namelyg(z) € S*(«).
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Conversely, supposg(z) € S*(«), then according to the above calculation, we have the

inequality
1 w2l (2)] _ o [29(2)
el G el R e R
This implies
Re {ew ZJJ;;S) > acos 3,
i.e., f(z) e S8,

(iii). It is easy to see from (i) thaf € 57 if and only if g € S*(a) such thatf [g(z ]C, here
c=e"" cos 3. Noting thatg(z) € S*(«) if and only if s(z) € S* such thatﬁ [ )] " which
holds in (i), we may obtain an important relationship between the clas§ ahd the class of
(1-a)c
. f e SPif and only if there existss(z) € S* such that% = [@] . Here,c =

=1. 0O

A L. (1-a)
e~ cos 3 and the branch of the power function is chosen such ﬁﬁ(}éﬂ
z=0

Lemma| 2.1 expresses the relations of fifeand S5* classes, which play a key role in this
paper.

Lemma 2.2([5], [8]). A(K) = {|y|<i}U[}. 2]
Lemma 2.3. For o € [0,1), § e( T5), J(S8) = Iy _pye-iveors (K.

Proof. Let f € J(S), then there existg(z) € S5 such thatf(z) = [ 2<Ld¢. According to
(iii) of Lemma(2.] there is(z) € S* such that

r 1 (1—a)e= B cos 3
s(z
o(z) = = | 22 ,

therefore

z T 1 (1—a)e=%? cos 8
o= [ [ .

By the relationship of th&* class and thé( class, there existg(z) € K such thats(z) =
zu'(z), thus

f(z) = / [/ (¢)) e P eosBg,

€., £(2) € I a)e-i9 cos p(K). As @r1esult,] (S%) C I a)e-in cos 3(K) hOIDS.
Conversely, whery(z) € I(1_n)e-isc0s g(K), We can trace back the above procedure to get
f € J(52), 8011 _aye-i5cosp () C J(SE).
From the above proof, we obtain the assertion. O

Remark 1. If, in the hypothesis of Lemnia 3.3, we set= 0, we arrive at Lemma 4 of [4].
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3. THE MAIN RESULTS AND THEIR PROOFS

In this section, we lefz, w] denote the closed line segment with endpointand w for
z,w € C.
Now we give the main results and their proofs.

Theorem 3.1.Fora € [0,1), B € (-5, ),

3 1 et 3¢t }
A(T(52) = {M 2(1 — ) cosﬁ} U {2(1 —a)cosf2(1 —a)cos B
Proof. By Lemmd 2.8, we have
I’Y(‘](Sg)) - [’Y<I(1fa)e—7"5 cosﬁ(K)) - I’y(lfa)e—’ﬂcosﬂ(K)'

Therefore;y € A(J(S?)) if and only ifv(1 — a)e=? cos 3 € A(K), and by Lemma 2|2 we
may easily get the result. O

Remark 2. In this theorem, if we set = 0, we obtain Theorem 3 of [4].

Theorem 3.2. For a€(0,1), 8 € (=%,5), the inclusion relation/ (S?) ¢ S holds precisely if
eithercos 3 < 5 ey Ora= 6 =0.

Proof. As o = 6 = 0, the result holds evidently by Integral transformafipn 1; whiledor 0
andg # 0, the result is Theorem 1 dfl[4] and was proved by Y.C. Kim and T. Sugawa [4].
If « #£ 0andg = 0, thenf(z) € S*(a). By Lemmd 2.1L(i), there exists(z) € S* such that

u(z) = 2 (@) " The branch of the power function is chosen such (hﬁf) B
R z=0
From Integral transformatidﬂ 1, we can easily see that there existss J(S?) such that
o= [ (F) e
0 G
" (2) 1 2f(e)
zq" (2 zf'(z
Re |1+ ] = Re [ }
{ g (z) l—a f(z)
and Re [z}v(g)} > «, we can deduce thate [1 + Zgg(iﬂ > (. This impliesg(z) € K and

J(S*(a)) C S. ) A
Now leta # 0 andg # 0. SinceJ(S?) c Sis equivalent tol € A(J(SP)) and1 ¢
[ ( i 3¢ } by Theorel we deduce thak i.e.,cos 3 < 3

2(1—a)cos B’ 2(1—a) cos B 2(1— oz)cos,@ !
Summarizing the above procedure, forc [0,1), 8 € (=Z,%), J(SP) ¢ S holds when

2772
cos 3 < or « = 3 = 0.This completes the proof. O

a)

2(1 )

Remark 3. This theorem is an extension of Theorem 1.0f [4]. Indeed, if wevset0, we will
obtain the result of [4].

Theorem 3.3.Fora € [0,1), 8 € (=7, ),

A(J(S 2{Iv = m}

Proof. In view of § = Uﬁﬁg andA(F) = {y € C : I(F) c S}, we deduceA(.J(5)) =
Ns(J(S2)).  With the aid of Theoren| 3|1, a simple observation givég/(S)) =

{M < m} Thus the proof is now complete. O
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Remark 4. Fora = 8 = 0, Theorenj 3.3 implies the Theorem 2 of [4].

At the end of this paper, we mention the norm estimate of pre-Schwarzian derivatives. The
hyperbolic norm of the pre-Schwarzian derivatile= f”/f" of f € Ais defined to be

1£1l = sup (1 = |2*)|T;(2)].

|z]<1

It is known thatf is bounded if| f|| < 2 and the bound depends only on the valug of ([9]).

Since
I = sup (1 = 27) (f(f[f[ﬁ)g)]dj)
= gup (@ = 1e) %
= sup(1 = +P) |2 =l

We obtain the following assertion.

Proposition 3.4. For eacha € [0,1), 5 € (-7, %), the sharp inequality f|| < 4(1 — a)cos 3
holds for f € J(5%). Moreover, ifcos 3 < sii—ay» then a function in/(S7) is bounded by a
constant depending amand j.
Proof. For eachf € J(5°), by Lemm, there is a functidgne K such thatf = I,(k),
wherey = (1 — a)e~% cos 3. Noting that|| k|| < 4 [10], we obtain the following inequality

11 = I1lIEll < 4]yl = 4(1 = @) cos B.
Since the inequality{k|| < 4 is sharp, the above inequality is also sharp:of3 < 2(1—1_60 the
above inequality implie§ f|| < 4(1 — «) cos 8 < 2, so f is bounded by a constant depending
ona andg. O

Remark 5. If, in the statement of Propositign 3.4, we set= 0, we arrive at the result of [4].
In the above proposition, the bou@at.ann(-)t be repla?ed by any number greater %
Indeed, by the Alexander transformation, if the function
g(z) = z(1 — z)_z(l_o‘)eiw cosf ¢ 5‘5,

then the function ,
(1 - Z)l—?(l—a)eﬂﬂ cosB __ 1 R

(z) = 2(1 — a)e=Bcosf— 1
and we may verify that the latter is unbounded whens >

1
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