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ABSTRACT. We prove Ostrowski inequalities (regular and weighted cases) on time scales and
thus unify and extend corresponding continuous and discrete versions from the literature. We
also apply our results to the quantum calculus case.
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1. INTRODUCTION

In 1938, Ostrowski derived a formula to estimate the absolute deviation of a differentiable
function from its integral mean. As shown [n [6], the so-called Ostrowski inequality

(L.1) \f@)—bfa [ 15| < swp 1701 6= ) [%%1

holds and can be shown by using the Montgomery ideritity [5]. These two properties will be
proved for general time scales, which unify discrete, continuous and many other cases. The
setup of this paper is as follows. In Sect[dn 2 we first give some preliminary results on time
scales that are needed in the remainder of this paper. Next, in Sgction 3 we prove time scales
versions of the Montgomery identity and of the Ostrowski inequality] (1.1) (the question of
sharpness is also addressed), while in Se¢fion 4 we offer several weighted time scales versions
of the Ostrowski inequality. Throughout, we apply our results to the special cases of continuous,
discrete, and quantum time scales.
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2. TIME SCALES ESSENTIALS

Definition 2.1. A time scalds an arbitrary nonempty closed subset of the real numbers.
The most important examples of time scalesRy& andg™ := {¢*| k € Ny}.

Definition 2.2. If T is a time scale, then we define tfmward jump operators : T — T
by o(t) := inf{s € T| s >t} for all t € T, the backward jump operatop : T — T by
p(t) := sup{s € T| s < t} for all ¢ € T, and thegraininess functioru : T — [0,00) by
u(t) = o(t)—tforallt € T. Furthermore for a functiofi : T — R, we definef?(t) = f(o(t))
forallt € T and f°(t) = f(p(t)) forall ¢t € T. In this definition we usénf () = sup T (i.e.,
o(t) =t if ¢ is the maximum ofl) andsup () = inf T (i.e., p(¢) = t if ¢ is the minimum ofT).

These definitions allow us to characterize every pointin a time scale as displayed in Table 2.1.

t right-scattered| ¢ < o(t)
t right-dense t=o(t)
t left-scattered || p(t) <t
t left-dense p(t) =t
t isolated p(t) <t <o(t)
t dense p(t) =t =0o(t)

Table 2.1: Classification of Points

Definition 2.3. A function f : T — R is calledrd-continuous(denoted byC.,) if it is con-
tinuous at right-dense points @f and its left-sided limits exist (finite) at left-dense points of
T.

Theorem 2.1(Existence of Antiderivatives)Let f be rd-continuous. Thefi has an antideriv-
ative F satisfyingF'® = f.

Proof. Seel[1, Theorem 1.74]. O

Definition 2.4. If f is rd-continuous an¢, € T, then we define thategral
t

(2.1) F(t) :/ f(r)Ar for teT.
to

Therefore forf € C,q we havef; f(1)AT = F(b) — F(a), whereF® = f.

Theorem 2.2. Let f, g be rd-continuousy, b,c € T anda, 5 € R. Then
@) [Ylaf®) + Bg(t At—af FOAL+ B [7 g(t)At

(
2) [, F()AL =~ fb
@) [ f(t)At:f At+f f
@) [} Ft)g* ()AL = (f9)(b) = (fg)(a) —fffA(t)g(O(t))At,
(5) [, f()At =
Proof. Seel[1, Theorem 1.77]. O
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Definition 2.5. Let gi, hi, : T?> — R, k € N, be defined by
go(t,s) = ho(t,s)=1 forall s,teT

and then recursively by
t
gkﬂ(t,s):/gk(a(T),s)AT forall steT
and

t
B (t, ) = / he(r,$)Ar forall steT.

Theorem 2.3(Hdlder’s Inequality) Leta,b € T and f, g : [a,b] — R be rd-continuous. Then

(2.2) /|f !At<{/ 1) |pAt}l{/ab|g<t>|w};,

wherep > Land | + - = 1.

Proof. Seel[1, Theorem 6.13]. O

3. THE OSTROWSKI INEQUALITY ON TIME SCALES

Lemma 3.1 (Montgomery Identity) Leta,b,s,t € T,a < band f : [a,b] — R be differen-
tiable. Then

I L I A
(3.1) 5 [ F@as e [t as
where
s—a, a<s<t,
(3.2) p(t,s) =
s—b, t<s<b.

Proof. Using Theorem 2|2 (4), we have

/ (s —a)f2(8)0s = (t— ) f() — [ f7(s)As
and similarily

b
/t (s —b)f2(s)As = (b—t)f(t) — | fo(s)As.

bia/bfa(S)ASﬂLL/bp(t, s)f2(s)As
b_a/f” s+ 0= ) /f" ~

i.e., (3.1) holds. O

Therefore

If we apply Lemma 31 to the discrete and continuous cases, we have the following results.
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Corollary 3.2 (discrete case)\We letT = Z. Leta = 0,b =n, s = j,t = i and f(k) = xy.

Then
1 n 1n—1
P — j - .7>A B
x njg_l :cj+nj§_0p(z J)Ax;

where
p(i,O):O,
p(l,j)=j—n for 1<j<n-—1,
p(n,j)=j for 0<j<n-1,
.. j? 0§j<l,
p(i,j) =§ o
J—mn, 1<j<n—1
as we just need < i < nand0 < j < n — 1. This result is the same as &, Theorem 2.1]

Corollary 3.3 (continuous case)We letT = R. Then

1 b I .
1) = 5= [ s+ = [ steoreis
This is the Montgomery identity in the continuous case, which can be foladan565]

Corollary 3.4 (quantum calculus case)Ve letT = ¢, ¢ > 1, a = ¢™ andb = ¢" withm < n.
Then

@ e
flt) == — " [ = F(d)] p(t. "),
> T
k=m

where

k m m k
E\ qg —q, g SC] <t>
p(t.d") =9 A
¢ —q", t<q <q"

Theorem 3.5(Ostrowski Inequality) Leta, b, s,t € T,a < band f : [a,b] — R be differen-
tiable. Then

33) -5 [ s

where

< S (a(t,0) + (1, 1)

M = sup |f2(t)].
a<t<b

This inequality is sharp in the sense that the right-hand sid€3dl) cannot be replaced by a
smaller one.

Proof. With Lemmd 3.1 ang(¢, s) defined as in(3]2), we have

-5 [ s = [ [t

M t b
5 (/ ]s—a]As+/|s—b|As)
—a a t
M t b

([ fu-0a)

- (ha(t, a) + ho(t,D)).

—a

<

=

(=
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Note that, since(t,a) = 0, the smallest value attaining the supremundins greater tham.
To prove the sharpness of this inequality, fét) = ¢, a = ¢1, b = t, andt = t,. It follows that
f2(t) = 1andM = 1. Starting with the left-hand side df(3.3), we have

- [ s = - [t

to — 11 Jy,

to to
= |ty — ! (/ (0(s) +s)As —/ sAs)
to —t1 \Jyy t1
1 to to
= |ty — (/ (sH)2As — / SAS)‘
ta —t1 \Jyy t

1 t2
= |-t + / sAs
to — 11 Jyy

Starting with the right-hand side of (3.3), we have

b]\fa (ha(t,a) + ho(t, b)) = 1 (/t2(5—tl)As+/t2(s—t2)A3)

t2 - t]_ t1 to

1 b2
- (—t1t2 + 1+ / sAs)
to —ty t1
1

Therefore in this particular case

b
g MO R

b—a

>

(ha(t,a) + ha(t,0))

o) -
and by [3.B) also
10 - 5 [ £ < 2 (hafti) + halt )

So the sharpness of the Ostrowski inequality is shown. O

Corollary 3.6 (discrete case)LetT = Z. Leta = 0,b=n, s = j, t =i and f(k) = z;. Then

1 < M n+1]> n2-1
3.4 == 1< 2| = 7
(34) Injzlmj_nll 2‘+4]
where
M = max |Ax.
1<i<n—1

This is the discrete Ostrowski inequality frd@ Theorem 3.1]where the constar& in the
right-hand side of(3.4)is the best possible in the sense that it cannot be replaced by a smaller
one.

Corollary 3.7 (continuous case)f T = R, then

b _ atb)2
-5 [ o] < a0 | GEEE )
where
M = iggb!f’(t)l-
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This is the Ostrowski inequality in the continuous cf&ep. 226—227]where again the con-
stant; in the right-hand side is the best possible.

Corollary 3.8 (quantum calculus caseletT = ¢"°, ¢ > 1, a = ¢™ andb = ¢" withm < n.

Then
2
.M 2 [, S'a"+d)
Tt =" | 1+¢q 2

1 “
10 o [ s

%_—G%f@m+ff+@ﬂ+@—ﬂﬂfm+fﬂ>]
. ,
wnere Flat) - 1)
o) —
M= qms<lrlfl<)q” (q - 1)t ’ ’

and the constany in the right-hand side is the best possible.

4. THE WEIGHTED CASE
The following weighted Ostrowski inequality on time scales holds.
Theorem 4.1.Leta, b, s, t,7 € T,a < bandf : [a,b] — R be differentiableq € C,q. Then

16~ [ @) eas

b
(4.2) < [ w@lots) — ol s

(Pl —tras)” (JPlrras) . teio1, p>1
(4.2) <M ¢ sup ¢°(s) [g2(a, t) + g2(b, )] ;

a<s<b

?

b—o(a) b+o(a)
bt | kg

\
where
M = sup |fA(T)|
o(a)<T<b
and

/ ¢°(s)As =1, q(s)>0.

Proof. We have

W®—[f@ﬂ@m

[ w@ - reas

g/f@vw—f@mm+[f@u@—ﬂ@m5
t t b o(s)
(s A ATAs (s A ATAs
<[ [ 1l [ae [Tl

b
SM/W@M@4M&
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and thereford (4]1) is shown.
The first part of[(4.R) can be done easily by applying](2.2). By factoring ¢?(s), we have

/ "($) lo(s) — 1] As < s (o) ( / (1~ o(s)As 1 / (o(s) — t>As)
= sw () ([ 0t 085+ [ (os) - nas)
— sup q7(s) [ga(ar ) + g2(b,1)],

a<s<b

and therefore the second part[of (4.2) holds. Finally for proving the third inequality, we use the
fact that

sup {|o(s) — ¢} = max {b— £t — o(a)} = ofa) . ‘t_ bt o(a)|
a<s<b 9 5
Thus [4.2) is shown. -

Remark 4.2. Theorenj 4.[L states a similar result as shownlin [3, Theorem 3.1], if we consider
the normalized isotonic functional(f) = fcf’ q°(s)f?(s)As. Moreover the second inequality

of (4.2) is comparable to the achievement’in [4, Theorem 3.1] for the continuous case (see [4,
Corollary 3.3)).

Corollary 4.3 (discrete case)LetT = Z. Leta =0,b=n,s = j,t =i,7 = kand f(k) = xy.
Then) ! ¢, =1,¢; <0and

Ti= Y g <Y apli— il M
pu j=1

( 1 1
n P n a
(zu—zv’) (zqg L oagion pew
j=1 j=1
<M n2_ 112
(- )] max ();
\ nT_l_"‘i_nTH"
where
M = max |Axy|.
k=l.n—-1

This is the result given if2, Theorem 4.1]

Corollary 4.4 (continuous case)f T = R, thenfabq(s)ds =1,4q(s) > 0and
b
< / q(s)|s —t| Mds

( (f;|s—t\pds);(fab(q(s))qu>q, sta=1 p>1

- [ " s) 7 (s)ds

sup a(6)(0 - 0| (i + 4

a<s<b

bt - 2,

\

J. Inequal. Pure and Appl. Matt9(1) (2008), Art. 6, 8 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

8 MARTIN BOHNER AND THOMAS MATTHEWS

where
M = sup |f'(7)].

a<t<b

Another interesting conclusion of Theorém|4.1 is the following corollary.

Corollary 4.5. Leta, b, s,t € T and f differentiable. Then

(4.3) 'f(t) - 1 (s)s

where

< % (ho(t,a) + ha(t,D)),

M= sup [f2(t)].
o(a)<t<b
Note that this was shown in a different manner in Thedrer 3.9. Th (4.3) we use the fact that
the functionsg, andh, satisfy g,(s,t) = (—1)%hy(t,s) forallt € T and alls € T* (see [,
Theorem 1.112]).

Remark 4.6. Moreover note that there is a small difference[of|(4.2) in comparison to Theo-

rem[3.%, as we havesup instead of sup . This is just important ifa is right-dense, i.e.,
o(a)<t<b a<t<b

o(a) = a. Butin those cases the inequality does not change and is still sharp. Furthermore in
the proof of TheorerBS we could have pickedp as explained before.

a<t<b
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