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ABSTRACT. We prove Ostrowski inequalities (regular and weighted cases) on time scales and
thus unify and extend corresponding continuous and discrete versions from the literature. We
also apply our results to the quantum calculus case.
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1. I NTRODUCTION

In 1938, Ostrowski derived a formula to estimate the absolute deviation of a differentiable
function from its integral mean. As shown in [6], the so-called Ostrowski inequality

(1.1)

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s)ds

∣∣∣∣ ≤ sup
a<t<b

|f ′(t)| (b− a)

[(
t− a+b

2

)2
(b− a)2

+
1

4

]
holds and can be shown by using the Montgomery identity [5]. These two properties will be
proved for general time scales, which unify discrete, continuous and many other cases. The
setup of this paper is as follows. In Section 2 we first give some preliminary results on time
scales that are needed in the remainder of this paper. Next, in Section 3 we prove time scales
versions of the Montgomery identity and of the Ostrowski inequality (1.1) (the question of
sharpness is also addressed), while in Section 4 we offer several weighted time scales versions
of the Ostrowski inequality. Throughout, we apply our results to the special cases of continuous,
discrete, and quantum time scales.
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2 MARTIN BOHNER AND THOMAS MATTHEWS

2. T IME SCALES ESSENTIALS

Definition 2.1. A time scaleis an arbitrary nonempty closed subset of the real numbers.

The most important examples of time scales areR, Z andqN0 := {qk| k ∈ N0}.

Definition 2.2. If T is a time scale, then we define theforward jump operatorσ : T → T
by σ(t) := inf {s ∈ T| s > t} for all t ∈ T, the backward jump operatorρ : T → T by
ρ(t) := sup {s ∈ T| s < t} for all t ∈ T, and thegraininess functionµ : T → [0,∞) by
µ(t) := σ(t)−t for all t ∈ T. Furthermore for a functionf : T → R, we definefσ(t) = f(σ(t))
for all t ∈ T andfρ(t) = f(ρ(t)) for all t ∈ T. In this definition we useinf ∅ = sup T (i.e.,
σ(t) = t if t is the maximum ofT) andsup ∅ = inf T (i.e.,ρ(t) = t if t is the minimum ofT).

These definitions allow us to characterize every point in a time scale as displayed in Table 2.1.

t right-scattered t < σ(t)
t right-dense t = σ(t)
t left-scattered ρ(t) < t
t left-dense ρ(t) = t
t isolated ρ(t) < t < σ(t)
t dense ρ(t) = t = σ(t)

Table 2.1: Classification of Points

Definition 2.3. A function f : T → R is calledrd-continuous(denoted byCrd) if it is con-
tinuous at right-dense points ofT and its left-sided limits exist (finite) at left-dense points of
T.

Theorem 2.1(Existence of Antiderivatives). Letf be rd-continuous. Thenf has an antideriv-
ativeF satisfyingF∆ = f .

Proof. See [1, Theorem 1.74]. �

Definition 2.4. If f is rd-continuous andt0 ∈ T, then we define theintegral

(2.1) F (t) =

∫ t

t0

f(τ)∆τ for t ∈ T.

Therefore forf ∈ Crd we have
∫ b

a
f(τ)∆τ = F (b)− F (a), whereF∆ = f .

Theorem 2.2.Letf, g be rd-continuous,a, b, c ∈ T andα, β ∈ R. Then

(1)
∫ b

a
[αf(t) + βg(t)]∆t = α

∫ b

a
f(t)∆t + β

∫ b

a
g(t)∆t,

(2)
∫ b

a
f(t)∆t = −

∫ a

b
f(t)∆t,

(3)
∫ b

a
f(t)∆t =

∫ c

a
f(t)∆t +

∫ b

c
f(t)∆t,

(4)
∫ b

a
f(t)g∆(t)∆t = (fg)(b)− (fg)(a)−

∫ b

a
f∆(t)g(σ(t))∆t,

(5)
∫ a

a
f(t)∆t = 0.

Proof. See [1, Theorem 1.77]. �
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Definition 2.5. Let gk, hk : T2 → R, k ∈ N0 be defined by

g0(t, s) = h0(t, s) = 1 for all s, t ∈ T

and then recursively by

gk+1(t, s) =

∫ t

s

gk(σ(τ), s)∆τ for all s, t ∈ T

and

hk+1(t, s) =

∫ t

s

hk(τ, s)∆τ for all s, t ∈ T.

Theorem 2.3(Hölder’s Inequality). Leta, b ∈ T andf, g : [a, b] → R be rd-continuous. Then

(2.2)
∫ b

a

|f(t)g(t)|∆t ≤
{∫ b

a

|f(t)|p ∆t

} 1
p
{∫ b

a

|g(t)|q ∆t

} 1
q

,

wherep > 1 and 1
p

+ 1
q

= 1.

Proof. See [1, Theorem 6.13]. �

3. THE OSTROWSKI I NEQUALITY ON T IME SCALES

Lemma 3.1 (Montgomery Identity). Let a, b, s, t ∈ T, a < b andf : [a, b] → R be differen-
tiable. Then

(3.1) f(t) =
1

b− a

∫ b

a

fσ(s)∆s +
1

b− a

∫ b

a

p(t, s)f∆(s)∆s,

where

(3.2) p(t, s) =

{
s− a, a ≤ s < t,

s− b, t ≤ s ≤ b.

Proof. Using Theorem 2.2 (4), we have∫ t

a

(s− a)f∆(s)∆s = (t− a)f(t)−
∫ t

a

fσ(s)∆s

and similarily ∫ b

t

(s− b)f∆(s)∆s = (b− t)f(t)−
∫ b

t

fσ(s)∆s.

Therefore

1

b− a

∫ b

a

fσ(s)∆s +
1

b− a

∫ b

a

p(t, s)f∆(s)∆s

=
1

b− a

∫ b

a

fσ(s)∆s +
1

b− a

[
(b− a)f(t)−

∫ b

a

fσ(s)∆s

]
= f(t),

i.e., (3.1) holds. �

If we apply Lemma 3.1 to the discrete and continuous cases, we have the following results.
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4 MARTIN BOHNER AND THOMAS MATTHEWS

Corollary 3.2 (discrete case). We letT = Z. Leta = 0, b = n, s = j, t = i andf(k) = xk.
Then

xi =
1

n

n∑
j=1

xj +
1

n

n−1∑
j=0

p(i, j)∆xj,

where
p(i, 0) = 0,

p(1, j) = j − n for 1 ≤ j ≤ n− 1,

p(n, j) = j for 0 ≤ j ≤ n− 1,

p(i, j) =

{
j, 0 ≤ j < i,

j − n, i ≤ j ≤ n− 1

as we just need1 ≤ i ≤ n and0 ≤ j ≤ n− 1. This result is the same as in[2, Theorem 2.1].

Corollary 3.3 (continuous case). We letT = R. Then

f(t) =
1

b− a

∫ b

a

f(s)ds +
1

b− a

∫ b

a

p(t, s)f ′(s)ds.

This is the Montgomery identity in the continuous case, which can be found in[5, p. 565].

Corollary 3.4 (quantum calculus case). We letT = qN0, q > 1, a = qm andb = qn with m < n.
Then

f(t) =

n−1∑
k=m

qkf(qk+1)

n−1∑
k=m

qk

+
1

qn − qm

n−1∑
k=m

[
f(qk+1)− f(qk)

]
p(t, qk),

where

p(t, qk) =

{
qk − qm, qm ≤ qk < t,

qk − qn, t ≤ qk ≤ qn.

Theorem 3.5(Ostrowski Inequality). Let a, b, s, t ∈ T, a < b andf : [a, b] → R be differen-
tiable. Then

(3.3)

∣∣∣∣f(t)− 1

b− a

∫ b

a

fσ(s)∆s

∣∣∣∣ ≤ M

b− a
(h2(t, a) + h2(t, b)) ,

where
M = sup

a<t<b
|f∆(t)|.

This inequality is sharp in the sense that the right-hand side of(3.3) cannot be replaced by a
smaller one.

Proof. With Lemma 3.1 andp(t, s) defined as in (3.2), we have∣∣∣∣f(t)− 1

b− a

∫ b

a

fσ(s)∆s

∣∣∣∣ =

∣∣∣∣ 1

b− a

∫ b

a

p(t, s)f∆(s)∆s

∣∣∣∣
≤ M

b− a

(∫ t

a

|s− a|∆s +

∫ b

t

|s− b|∆s

)
=

M

b− a

(∫ t

a

(s− a) ∆s +

∫ b

t

(b− s) ∆s

)
=

M

b− a
(h2(t, a) + h2(t, b)) .
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Note that, sincep(t, a) = 0, the smallest value attaining the supremum inM is greater thana.
To prove the sharpness of this inequality, letf(t) = t, a = t1, b = t2 andt = t2. It follows that
f∆(t) = 1 andM = 1. Starting with the left-hand side of (3.3), we have∣∣∣∣f(t)− 1

b− a

∫ b

a

fσ(s)∆s

∣∣∣∣ =

∣∣∣∣t2 − 1

t2 − t1

∫ t2

t1

σ(s)∆s

∣∣∣∣
=

∣∣∣∣t2 − 1

t2 − t1

(∫ t2

t1

(σ(s) + s)∆s−
∫ t2

t1

s∆s

)∣∣∣∣
=

∣∣∣∣t2 − 1

t2 − t1

(∫ t2

t1

(s2)∆∆s−
∫ t2

t1

s∆s

)∣∣∣∣
=

∣∣∣∣−t1 +
1

t2 − t1

∫ t2

t1

s∆s

∣∣∣∣ .
Starting with the right-hand side of (3.3), we have

M

b− a
(h2(t, a) + h2(t, b)) =

1

t2 − t1

(∫ t2

t1

(s− t1)∆s +

∫ t2

t2

(s− t2)∆s

)
=

1

t2 − t1

(
−t1t2 + t21 +

∫ t2

t1

s∆s

)
= −t1 +

1

t2 − t1

∫ t2

t1

s∆s.

Therefore in this particular case∣∣∣∣f(t)− 1

b− a

∫ b

a

fσ(s)∆s

∣∣∣∣ ≥ M

b− a
(h2(t, a) + h2(t, b))

and by (3.3) also∣∣∣∣f(t)− 1

b− a

∫ b

a

fσ(s)∆s

∣∣∣∣ ≤ M

b− a
(h2(t, a) + h2(t, b)) .

So the sharpness of the Ostrowski inequality is shown. �

Corollary 3.6 (discrete case). LetT = Z. Leta = 0, b = n, s = j, t = i andf(k) = xk. Then

(3.4)

∣∣∣∣∣xi −
1

n

n∑
j=1

xj

∣∣∣∣∣ ≤ M

n

[∣∣∣∣i− n + 1

2

∣∣∣∣2 +
n2 − 1

4

]
,

where
M = max

1≤i≤n−1
|∆xi| .

This is the discrete Ostrowski inequality from[2, Theorem 3.1], where the constant1
4

in the
right-hand side of(3.4) is the best possible in the sense that it cannot be replaced by a smaller
one.

Corollary 3.7 (continuous case). If T = R, then∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s)ds

∣∣∣∣ ≤ M(b− a)

[(
t− a+b

2

)2
(b− a)2

+
1

4

]
,

where
M = sup

a<t<b
|f ′(t)| .
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6 MARTIN BOHNER AND THOMAS MATTHEWS

This is the Ostrowski inequality in the continuous case[6, p. 226–227], where again the con-
stant 1

4
in the right-hand side is the best possible.

Corollary 3.8 (quantum calculus case). Let T = qN0 , q > 1, a = qm andb = qn with m < n.
Then∣∣∣∣f(t)− 1

qn − qm

∫ qn

qm

fσ(s)∆s

∣∣∣∣ ≤ M

qn − qm

 2

1 + q

(t−
1+q
2

(qm + qn)

2

)2

+
−
(

1+q
2

)2
(qm + qn)2 + (2(1 + q)− 2) (q2m + q2n)

4

)]
,

where

M = sup
qm<t<qn

∣∣∣∣f(qt)− f(t)

(q − 1)t

∣∣∣∣ ,
and the constant1

4
in the right-hand side is the best possible.

4. THE WEIGHTED CASE

The following weighted Ostrowski inequality on time scales holds.

Theorem 4.1.Leta, b, s, t, τ ∈ T, a < b andf : [a, b] → R be differentiable,q ∈ Crd. Then∣∣∣∣∣f(t) −
∫ b

a

qσ(s)fσ(s)∆s

∣∣∣∣∣
≤
∫ b

a

qσ(s) |σ(s)− t|M∆s(4.1)

≤ M



(∫ b

a
|σ(s)− t|p ∆s

) 1
p
(∫ b

a
(qσ(s))q ∆s

) 1
q
, 1

p
+ 1

q
= 1, p > 1;

sup
a≤s<b

qσ(s) [g2(a, t) + g2(b, t)] ;

b−σ(a)
2

+
∣∣∣t− b+σ(a)

2

∣∣∣ ,
(4.2)

where
M = sup

σ(a)≤τ<b

∣∣f∆(τ)
∣∣

and ∫ b

a

qσ(s)∆s = 1, q(s) ≥ 0.

Proof. We have∣∣∣∣f(t)−
∫ b

a

qσ(s)fσ(s)∆s

∣∣∣∣ =

∣∣∣∣∫ b

a

qσ(s) (f(t)− fσ(s)) ∆s

∣∣∣∣
≤
∫ t

a

qσ(s) |f(t)− fσ(s)|∆s +

∫ b

t

qσ(s) |f(t)− fσ(s)|∆s

≤
∫ t

a

qσ(s)

∫ t

σ(s)

∣∣f∆(τ)
∣∣∆τ∆s +

∫ b

t

qσ(s)

∫ σ(s)

t

∣∣f∆(τ)
∣∣∆τ∆s

≤ M

∫ b

a

qσ(s) |σ(s)− t|∆s,
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and therefore (4.1) is shown.
The first part of (4.2) can be done easily by applying (2.2). By factoringsup

a≤s<b
qσ(s), we have

∫ b

a

qσ(s) |σ(s)− t|∆s ≤ sup
a≤s<b

qσ(s)

(∫ t

a

(t− σ(s))∆s +

∫ b

t

(σ(s)− t)∆s

)
= sup

a≤s<b
qσ(s)

(∫ a

t

(σ(s)− t)∆s +

∫ b

t

(σ(s)− t)∆s

)
= sup

a≤s<b
qσ(s) [g2(a, t) + g2(b, t)] ,

and therefore the second part of (4.2) holds. Finally for proving the third inequality, we use the
fact that

sup
a≤s<b

{|σ(s)− t|} = max {b− t, t− σ(a)} =
b− σ(a)

2
+

∣∣∣∣t− b + σ(a)

2

∣∣∣∣ .
Thus (4.2) is shown. �

Remark 4.2. Theorem 4.1 states a similar result as shown in [3, Theorem 3.1], if we consider
the normalized isotonic functionalA(f) =

∫ b

a
qσ(s)fσ(s)∆s. Moreover the second inequality

of (4.2) is comparable to the achievement in [4, Theorem 3.1] for the continuous case (see [4,
Corollary 3.3]).

Corollary 4.3 (discrete case). LetT = Z. Leta = 0, b = n, s = j, t = i, τ = k andf(k) = xk.
Then

∑n
i=1 qi = 1, qi ≤ 0 and∣∣∣∣∣xi −

n∑
j=1

qjxj

∣∣∣∣∣ ≤
n∑

j=1

qj |j − i|M

≤ M



(
n∑

j=1

|j − i|p
) 1

p
(

n∑
j=1

qq
j

) 1
q

, 1
p

+ 1
q

= 1, p > 1;[
n2−1

4
+
(
i− n+1

2

)2]
max
j=1..n

q(j);

n−1
2

+
∣∣i− n+1

2

∣∣ ,
where

M = max
k=1..n−1

|∆xk| .

This is the result given in[2, Theorem 4.1].

Corollary 4.4 (continuous case). If T = R, then
∫ b

a
q(s)ds = 1, q(s) ≥ 0 and∣∣∣∣f(t)−

∫ b

a

q(s)f(s)ds

∣∣∣∣ ≤ ∫ b

a

q(s) |s− t|Mds

≤ M



(∫ b

a
|s− t|p ds

) 1
p
(∫ b

a
(q(s))q ds

) 1
q
, 1

p
+ 1

q
= 1, p > 1;

sup
a≤s<b

q(s)(b− a)2

[
(t−a+b

2 )
2

(b−a)2
+ 1

4

]
;

b−a
2

+
∣∣t− b+a

2

∣∣ ,
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where
M = sup

a≤τ<b
|f ′(τ)| .

Another interesting conclusion of Theorem 4.1 is the following corollary.

Corollary 4.5. Leta, b, s, t ∈ T andf differentiable. Then

(4.3)

∣∣∣∣f(t)− 1

b− a

∫ b

a

fσ(s)∆s

∣∣∣∣ ≤ M

b− a
(h2(t, a) + h2(t, b)) ,

where
M = sup

σ(a)≤t<b

|f∆(t)|.

Note that this was shown in a different manner in Theorem 3.5. In (4.3) we use the fact that
the functionsg2 andh2 satisfyg2(s, t) = (−1)2h2(t, s) for all t ∈ T and alls ∈ Tκ (see [1,
Theorem 1.112]).

Remark 4.6. Moreover note that there is a small difference of (4.2) in comparison to Theo-
rem 3.5, as we have sup

σ(a)≤t<b

instead of sup
a<t<b

. This is just important ifa is right-dense, i.e.,

σ(a) = a. But in those cases the inequality does not change and is still sharp. Furthermore in
the proof of Theorem 3.5 we could have pickedsup

a≤t<b
as explained before.
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