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1. Introduction

In 1938, Ostrowski derived a formula to estimate the absolute deviation of a differ-
entiable function from its integral mean. As shown @, the so-called Ostrowski
inequality

_ atb)?
gsuwfunw—@[%———}+3

a<t<b

b
an |ro -2, [ e

holds and can be shown by using the Montgomery iderityThese two properties

will be proved for general time scales, which unify discrete, continuous and many
other cases. The setup of this paper is as follows. In Seétiwa first give some
preliminary results on time scales that are needed in the remainder of this paper.
Next, in Sectior3 we prove time scales versions of the Montgomery identity and of
the Ostrowski inequalityl(. 1) (the question of sharpness is also addressed), while in
Section/ we offer several weighted time scales versions of the Ostrowski inequality.
Throughout, we apply our results to the special cases of continuous, discrete, and
guantum time scales.
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2. Time Scales Essentials

Definition 2.1. A time scale is an arbitrary nonempty closed subset of the real num-
bers.

The most important examples of time scalesiRy& andq™ := {¢*| k € Ny}.

Definition 2.2. If T is a time scale, then we define the forward jump operator

T — Tbyo(t) := inf{s € T| s >t} for all ¢ € T, the backward jump operator
p: T — Thyp(t) :=sup{s € T| s < t} forall ¢t € T, and the graininess function
T — [0,00) by pu(t) := o(t) — ¢t forall t € T. Furthermore for a function
f: T — R, we definef’(t) = f(o(t)) forall t € T and f(t) = f(p(t)) for all

t € T. In this definition we useaf ) = sup T (i.e.,o(t) = t if ¢ is the maximum of
T) andsup () = inf T (i.e., p(¢t) = t if ¢ is the minimum oT).

These definitions allow us to characterize every point in a time scale as displayed
in Tablel.

t right-scattered|| ¢ < o(t)
t right-dense t=o(t)
t left-scattered || p(t) <t
t left-dense p(t) =t
tisolated p(t) <t <o(t)
t dense pt)=t=o0(t)

Table 1: Classification of Points

Definition 2.3. A functionf : T — R is called rd-continuous (denoted lay,) if
it is continuous at right-dense points @fand its left-sided limits exist (finite) at
left-dense points df.
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Theorem 2.4 (Existence of Antiderivatives).Let f be rd-continuous. Thefi has

an antiderivativel’ satisfyingF’® = f.

Proof. See [L, Theorem 1.74].

Definition 2.5. If f is rd-continuous and, € T, then we define the integral

2.1) F(t) = /tt f()Ar for teT.

Therefore forf € C,q we havefab f(r)AT = F(b) — F(a), whereF2 = f.
Theorem 2.6. Let f, g be rd-continuousy, b,c € T anda, 5 € R. Then

L [Mlaf(t) + Bgt)At = o [ F()AL+ 5 [ g(t)At,

2. [P f(t)At = — [ f(£)AL,

3. [P )AL= [ F()AL+ [P ()AL,

4. [ F(t)g (AL = (fg)(b) — (fg)(a) — [) fA(t)glo(t))At,
5. [ f(t)At = 0.

Proof. See [L, Theorem 1.77].
Definition 2.7. Let gy, hy : T? — R, k € Ny be defined by

go(t,s) = ho(t,s) =1 forall s,teT

]
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and then recursively by

t
gk+1(t,s):/ gr(o(1),s)Ar forall s,teT

and
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hiy (t, s):/ hi(t,s)Ar forall s,teT.

Theorem 2.8 (Hdlder’s Inequality). Leta,b € T and f,g : [a,b] — R be rd-

continuous. Then vol. 9, iss. 1, art. 6, 2008
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3. The Ostrowski Inequality on Time Scales

Lemma 3.1 (Montgomery ldentity). Leta, b, s,t € T,a < bandf : [a,b] — R be
differentiable. Then

b
(3.1) s)As + bL / p(t,s)f2(s)As
where
s—a, a<s<t,
(3.2) p(t,s) =
s—b, t<s5<0.

Proof. Using Theoren?.6 (4), we have

[6-ar6ss=-as0- [ 16

and similarily
b
/(s—b)fA(s)As— (b—1)f /f"
t
Therefore

bia/abfa(*S)AS—FL/bp(t,s)fA(S)As
G S

= f( )7
i.e., 3.1 holds. ]

Ostrowski Inequalities on

Time Scales
Martin Bohner and

Thomas Matthews

vol. 9, iss. 1, art. 6, 2008

Title Page
Contents
<44 44
< 14
Page 7 of 17
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

If we apply Lemma3.1to the discrete and continuous cases, we have the follow-

ing results.

Corollary 3.2 (discrete case).We letT = Z. Leta = 0,b=n,s = j,t =i and

f(k) = x. Then
1 n 1n—1
RJZ_;J n;( ) A

where
p(i,0) =0,
p(l,j)=j—n for 1<j<n—1,
p(n,j)=j for 0<j<n—1,
o Js 0< )<y,
p(i,j) =9 o
J—-n, Zéjén_l

aswe justneed < i < nand0 < j < n — 1. This result is the same as i2,[
Theorem 2.1].

Corollary 3.3 (continuous case).We letT = R. Then

16 = [ s+ [ pes) s

This is the Montgomery identity in the continuous case, which can be foubdpn [
565].
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Corollary 3.4 (quantum calculus case)We letT = ¢"°, ¢ > 1, a = ¢™ andb = ¢"
withm < n. Then

A
flt) == PR > A = (@) p(t.dh),
qk k=m
k=m

where

k m m k
W) T s <t
p(t:d") =9 A
¢ —q", t<q <q".

Theorem 3.5 (Ostrowski Inequality). Leta,b,s,t € T,a < bandf : [a,b] — R
be differentiable. Then

1 b
P / f7(s)As

M = sup [f2(t)).

a<t<b

M
b—a

<

(hQ(t7 CL) + hQ(t7 b)) ’

(3.3) ‘f(t) -

where

This inequality is sharp in the sense that the right-hand sid€30f) cannot be
replaced by a smaller one.

Proof. With Lemma3.1andp(t, s) defined as in¥.2), we have

1 b
o [ s

o) - ~ | [ pearens

¢ b
§£</ |s—a]As+/|s—b|As)
b—a\/, +
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:b]‘fa (/:(s—a)As+/tb<b—s)As>

M (hat, @) + bt b))

:b—a

Note that, sincep(t,a) = 0, the smallest value attaining the supremumiinis
greater tham. To prove the sharpness of this inequality, fét) = ¢, a = t1, b = t5
andt = t,. It follows that f2(¢) = 1 and M = 1. Starting with the left-hand side of

(3.9, we have
1 t2
= |ty — / o(s)As
t1

1 to to
= |ty — (/ (o(s) + s)As — / SAS) ‘
ta =1 ty ty
1 to to
= |ty — (/ ()2 As —/ SAS)‘
ty—t t1 t1
1 r2
/ sAs| .
to —t1 Jy

Starting with the right-hand side of (3), we have

e+ hafe ) = 2 ( “e-tas+ tQ(s—tg)As)

b—a oty t ty

1 f2
— (—tltg + 1+ / sAs)
to —ty 4
1

-5 [ s
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Therefore in this particular case

-5 [

and by .3 also

-5 [ roas

(hg(t a) + ho(t,b))
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So the sharpness of the Ostrowski inequality is shown. O vol. 9, iss. 1, art. 6, 2008
Corollary 3.6 (discrete case).LetT = Z. Leta = 0,b =n, s = j,t = i and
f(k) = zx. Then Title Page
1 & M n+1 2 n2 —1 Contents
. R — J< = || =
(34) v n.zlacj—n[Z 2 ’Jr 4 ]’ 4« »
J:
where ¢ >
M = max |Az,|. Page 11 of 17
1<i<n—1
This is the discrete Ostrowski inequality fro@ [Theorem 3.1], where the constant i X
}l in the right-hand side o{3.4) is the best possible in the sense that it cannot be Full Screen
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where
M = sup |f'(t)].

a<t<b

This is the Ostrowski inequality in the continuous ca&ef 226—227], where again
the constan% in the right-hand side is the best possible.

Corollary 3.8 (quantum calculus case).LetT = ¢, ¢ > 1, a = ¢™ andb = ¢"
with m < n. Then

<
q"—q" " —=qm | 1+q 2

q" 1tq(,m n\ 2
- [ o < A |2 (t_M>
1

LB P R0+ - (@ + ‘f”)) ]

4
where
Ve s |TE)=SO]
qr<t<qn (q - 1)t

and the constan} in the right-hand side is the best possible.
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4. The Weighted Case

The following weighted Ostrowski inequality on time scales holds.

Theorem 4.1. Leta,b,s,t,7 € T, a < band f : [a,b] — R be differentiable,
g € Cq. Then

b
ﬂﬂ—/q%ﬂﬁ@As
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b Thomas Matthews
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(J21o(s) =P as)” (L@ (s)85)", L+i=1 p>1, e Page
(4.2) <M SUPb q°(s) [g2(a,t) + g2(b,1)] ; Contents
a<s<
b—o(a) b+o(a) <44 44
g -] W
where
M = sup ‘fA(T)} Page 13 of 17
o(a)<T<b
and X Go Back
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t b
S/ q"(S)If(t)—f”(S)IASJr/t q7(s) [F(t) = [7(s)] As

s/tq”(s)/ | F2( )|A7‘As+/tbqa(5)/tg(8)‘fA(T)‘ATAS
<M/ s) — t| As,

and therefore4.1) is shown.
The first part of {.2) can be done easily by applying.f). By factoring sup ¢°(s),

a<s<b
we have

a<s<b (t —o(s))As + /tb(U(S) - t)AS)

o ([
~ sup ¢°(s) (/ta(a(s)—t)As—i-/tb(a(s) —t)As)
(5) [92(a;t)

a<s<b
t) + gz(b, t)] R

b
/ q°(s)|o(s) —t| As < sup ¢?(s

= sup ¢°(s

a<s<b

and therefore the second part éf4) holds. Finally for proving the third inequality,
we use the fact that

sup {|o(s) —t|} = max{b—t,t —o(a)} = b_Tff(CL)+‘t_b+;7(a) |
a<s<b
Thus @.2) is shown. -

Remarkl. Theorem4.1 states a similar result as shown B) [I'heorem 3.1], if we
consider the normalized isotonic functiondl f f q°( s)As. Moreover
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the second inequality ofi(2) is comparable to the achievement #) Theorem 3.1]

for the continuous case (seg Corollary 3.3]).

Corollary 4.2 (discrete case).LetT = Z. Leta = 0,b =n, s =

and f(k) = . Then)_" ¢ =1,¢; <0and

n
XT; — E le'j
=1

<Y gli—ilM
j=1

[un
[un

<M 2_
< |:n4 1y (2 n-zu) ] max (7);
j=1l.n
s,
where
M = max |Azyl
k=1..n—1

This is the result given ing, Theorem 4.1].

Corollary 4.3 (continuous case).If T = R, thenff q(s)ds =1, q(s) > 0and

‘f(t)—/abQ(S)f(S)ds g/abq(s)\s—tdes

= sup ¢(s)(b— a)? {((b—Z)f + i} :

a<s<b
b—a o b+a’
2 + |t 2 1

\

Lht=i4,17=%k
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where
M = sup |f'(7)|.

a<t<b

Another interesting conclusion of Theoreimi is the following corollary.

Corollary 4.4. Leta,b,s,t € T and f differentiable. Then
1 b
= a/a f7(s)As

M= sup [f2(t)-

o(a)<t<b

< % (ha(t,a) + ho(t, b)),

(4.3) ‘f(t) -

where

Note that this was shown in a different manner in Theofei In (4.3) we use
the fact that the functiong, andh, satisfyg,(s,t) = (—1)?hy(t,s) forallt € T and
all s € T" (see [, Theorem 1.112]).

Remark2. Moreover note that there is a small difference ©) in comparison to

Theorem3.5, as we have sup instead of sup . This is just important ifa is
o(a)<t<b a<t<b

right-dense, i.eq(a) = a. But in those cases the inequality does not change and is

still sharp. Furthermore in the proof of Theorén® we could have pickedup as

. a<t<b
explained before.
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