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consider a variety of Lebesgue norms for functionsu on Rn+1, and prove or
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type inequalities.
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1. Introduction

Let (x, t) ∈ Rn+1 wheren ≥ 1. The Schrödinger equation∂u
∂t

= i4xu has been
much studied using spectral properties of the self-adjoint operator4x. When a
multiplication operator (potential)V is added, it becomes important to determine
whether4x + V is a self-adjoint operator, and there is a vast literature on this ques-
tion (see e.g. [9]).

One can also, however, regard the operatorL = −i ∂
∂t
− 4x as a self-adjoint

operator onL2(Rn+1), and that is the point of view taken in this paper. We ask what
can be said about the domain ofL, more specifically, we ask whichLq spaces, and
more generally mixedLq

t (L
r
x) space, a functionu must belong to, given thatu is in

the domain ofL (i.e. u andLu both belong toL2(Rn+1)). We answer this question
and, using the Kato-Rellich theorem, deduce sufficient conditions onV for L+V to
be self-adjoint.

Our approach is based on the fact that any sufficiently well-behaved functionu
onRn+1 can be regarded as a solution of the initial value problem (IVP)

(1.1)

{
−iut −4xu = g(x, t),

u(x, α) = f(x)

whereα ∈ R, f(x) = u(x, α) andg = Lu.
To apply this, we will use estimates foru based on given bounds forf andg.

A number of such estimates are known and generally called Strichartz inequalities,
after [12] which obtained such anLq bound foru. This has since been generalized to
give inequalities for mixed norms [13, 4]. The specific inequalities we use concern
the caseg = 0 of (1.1) and give bounds foru in terms of‖f‖L2(Rn) - see (3.2) below.
The precise range of mixedLq

t (L
r
x) norms for which the bound (3.2) holds is known

as a result of [13, 4] and the counterexample in [6].
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In Section2 we prove a special case of our main theorem, namely a bound foru
in L∞

t (L2
x), which does not require Strichartz estimates, only elementary arguments

using the Fourier transform. The main theorem, givingLq
t (L

r
x) bounds for the largest

possible set of(q, r) pairs, is proved in Section3. In fact, we prove a somewhat
stronger bound, in a smaller spaceL2,q,r defined below. The fact that the set of pairs
(q, r) covered by Theorem3.1 is the largest possible is shown in Section4.

Some results on a similar question for the wave operator can be found in [7]. For
Strichartz-type inequalities for the wave operator, see e.g. [11, 12, 2, 3, 4].

We assume notions and definitions about the Fourier Transform and unbounded
operators and for a reference one may consult [8], [5] or [10]. We also use on several
occasions the well-known Duhamel principle for the Schrödinger equation (see e.g.
[1]).

Notation. The symbolû stands for the Fourier transform ofu in the space (x)
variable while the inverse Fourier transform will be denoted either byF−1u or ǔ.

We denote byC∞
0 (Rn+1) the space of infinitely differentiable functions with com-

pact support.
We denote byR+ the set of all positive real numbers together with+∞.
For 1 ≤ p ≤ ∞, ‖ · ‖p is the usualLp-norm whereas‖ · ‖Lp

t (Lq
x) stands for the

mixed spacetime Lebesgue norm defined as follows

‖u‖Lq
t (Lr

x) =

(∫
R
‖u(t)‖q

Lr
x
dt

) 1
q

.

We also define some modified mixed norms. First we define, for any integerk,

‖u‖Lq
t,k(Lr

x) =

(∫ k+1

k

‖u(t)‖q
Lr

x
dt

) 1
q

,
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and then

‖u‖Lp,q,r =

(∑
k∈Z

‖u‖p
Lq

t,k(Lr
x)

) 1
p

.

We note that‖u‖Lp,q1,r ≥ ‖u‖Lp,q2,r if q1 ≥ q2, and that‖u‖Lq
t (Lr

x) ≤ ‖u‖Lp,q,r if
q ≥ p.

Finally we define

Mn
L = {f ∈ L2(Rn+1) : Lf ∈ L2(Rn+1)},

whereL is defined as in the abstract and where the derivative is taken in the distri-
butional sense. We note thatMn

L = D(L), the domain ofL, and also thatC∞
0 (Rn+1)

is dense inMn
L in the graph norm‖u‖L2(Rn+1) + ‖Lu‖L2(Rn+1).
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2. L∞t (L2
x) Estimates.

Before stating the first result, we are going to prepare the ground for it. Take the
Fourier transform of the IVP (1.1) in the space variable to get{ −iût + η2û = ĝ(η, t),

û(η, α) = f̂(η)

which has the following solution (valid for allt ∈ R):

(2.1) û(η, t) = f̂(η)e−iη2t + i

∫ t

α

e−iη2(t−s)ĝ(η, s)ds,

whereη ∈ Rn.
Duhamel’s principle gives an alternative way of writing the part of the solution

depending ong. Taking the casef = 0, the solution of (1.1) can be written as

(2.2) u(x, t) = i

∫ t

α

us(x, t)ds,

whereus is the solution of{
Lus = 0, t > s,

us(x, s) = g(x, s).

Now we state a result which we can prove using (2.1). In the next section we
prove a more general result using Strichartz inequalities and Duhamel’s principle
(2.2).
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Proposition 2.1. For all a > 0, there existsb > 0 such that

‖u‖L2,∞,2 ≤ a‖Lu‖2
L2(Rn+1) + b‖u‖2

L2(Rn+1)

for all u ∈ Mn
L .

Proof. We prove the result foru ∈ C∞
0 (Rn+1) and a density argument allows us to

deduce it foru ∈ Mn
L .

We use the fact that any suchu is, for anyα ∈ R, the unique solution of (1.1),
wheref(x) = u(x, α) andg = Lu, and therefore satisfies (2.1).

Let k ∈ Z and lett andα be such thatk ≤ t ≤ k + 1 andk ≤ α ≤ k + 1.
Squaring (2.1), integrating with respect toη in Rn, and using Cauchy-Schwarz (and
the fact that|t− α| ≤ 1), we obtain

(2.3) ‖û(·, t)‖2
L2(Rn) ≤ 2

∫
Rn

|û(η, α)|2dη + 2

∫
Rn

∫ t

α

|ĝ(η, s)|2dsdη.

Now integrating againstα in [k, k + 1] allows us to say that

‖u(·, t)‖2
L2(Rn) ≤ 2

∫ k+1

k

∫
Rn

|û(η, α)|2dηdα + 2

∫ k+1

k

∫
Rn

|ĝ(η, s)|2dηds.

Now take the essential supremum of both sides int over [k, k + 1], then sum ink
overZ to get (recalling thatg = Lu)

∞∑
k=−∞

ess sup
k≤t≤k+1

‖u(·, t)‖2
L2(Rn) ≤ 2‖Lu‖2

L2(Rn+1) + 2‖u‖2
L2(Rn+1).

Finally to get an arbitrarily small constant in theLu term we use a scaling argu-
ment: letm be a positive integer and letv(x, t) = u(mx, m2t). Then we find

‖v‖L2(Rn+1) = m−1−n/2‖u‖L2(Rn+1)
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and
‖Lv‖L2(Rn+1) = m1−n/2‖Lu‖L2(Rn+1).

Also,
‖v(·, t)‖L2(Rn) = m−n/2‖u(·, m2t)‖L2(Rn)

and so

sup
k≤t≤k+1

‖v(·, t)‖2
L2(Rn) = m−n sup

m2k≤t≤m2(k+1)

‖u(·, t)‖2
L2(Rn)

≤ m−n

m2(k+1)−1∑
j=m2k

sup
j≤t≤j+1

‖u(·, t)‖2
L2(Rn).

Summing overk gives

‖v‖2
L2,∞,2

≤ m−n‖u‖2
L2,∞,2

≤ m−n
(
2‖Lu‖2

L2(Rn+1) + 2‖u‖2
L2(Rn+1)

)
≤ 2m−2‖Lv‖2

L2(Rn+1) + 2m2‖v‖2
L2(Rn+1)

and choosingm so that2m−2 < a completes the proof.

Now we recall the Kato-Rellich theorem which states that ifL is a self-adjoint
operator on a Hilbert space andV is a symmetric operator defined onD(L), and if
there are positive constantsa < 1 andb such that‖V u‖ ≤ a‖Lu‖ + b‖u‖ for all
u ∈ D(L), thenL + V is self-adjoint onD(L) (see [9]).

Corollary 2.2. LetV be a real-valued function inL∞,2,∞. ThenL+V is self-adjoint
onD(L) = Mn

L .
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Proof. One can easily check that

‖V u‖L2(Rn+1) ≤ ‖V ‖L∞,2,∞‖u‖L2,∞,2 .

Choosea < ‖V ‖−1
L∞,2,∞

and then Proposition2.1 shows thatL + V satisfies the
hypothesis of the Kato-Rellich theorem.

In particular, it follows thatL + V is self-adjoint wheneverV ∈ L2
t (L

∞
x ).
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3. Lq
t (L

r
x) Estimates.

Now we come to the main theorem in this paper, which depends on the following
Strichartz-type inequality. Supposen ≥ 1 andq andr are positive real numbers
(possibly infinite) such thatq ≥ 2 and

(3.1)
2

q
+

n

r
=

n

2
.

Whenn = 2 we exclude the caseq = 2, r = ∞. Then there is a constantC such
that if f ∈ L2(Rn) andg = 0, the solutionu of (1.1) satisfies

(3.2) ‖u‖Lq
t (Lr

x) ≤ C‖f‖L2(Rn).

This result can be found in [13] for q > 2; the more difficult ‘end-point’ case
whereq = 2, n ≥ 3 is treated in [4]. That (3.2) fails in the exceptional casen =
2, q = 2, r = ∞ is shown in [6].

Forn ≥ 1 we define a regionΩn ∈ R+ × R+ as follows: forn 6= 2,

(3.3) Ωn =

{
(q, r) ∈ R+ × R+ :

2

q
+

n

r
≥ n

2
, q ≥ 2, r ≥ 2

}
and forn = 2, Ω2 is defined by the same expression, with the omission of the point
(2,∞).

The setsΩn are probably most easily visualized in the(1
q
, 1

r
)-plane. ThenΩ1

is a quadrilateral with vertices(1
4
, 0), (1

2
, 0), (0, 1

2
), (1

2
, 1

2
) and forn ≥ 2, Ωn is a

triangle with vertices(1
2
, n−2

2n
), (0, 1

2
), (1

2
, 1

2
), the point(1

2
, 0) being excluded in the

casen = 2.

Theorem 3.1.Letn ≥ 1, and let(q, r) ∈ Ωn. Then for alla > 0, there existsb > 0
such that

(3.4) ‖u‖L2,q,r ≤ a‖Lu‖L2(Rn+1) + b‖u‖L2(Rn+1)

for all u ∈ Mn
L .
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Proof. By the inclusionL2,q1,r ⊆ L2,q2,r, whenq1 ≥ q2 it suffices to treat the case
where2

q
+ n

r
= n

2
, for which (3.2) holds.

Let k ∈ Z and letα ∈ [k, k + 1]. As in the proof of Proposition2.1 we use the
fact thatu is the solution of (1.1) with f = u(·, α) andg = Lu. Now we splitu into
two partsu = u1 + u2, whereu1, u2 are the solutions of{

Lu1 = g,

u1(x, α) = 0,

{
Lu2 = 0,

u2(x, α) = f.

The estimate foru2 is deduced from (3.2):

(3.5) ‖u2‖Lq
t (Lr

x) ≤ C‖f‖L2(Rn) ≤ C‖u(·, α)‖L2(Rn).

Foru1 we apply (2.2) to obtain

(3.6) u1(x, t) = i

∫ t

α

us(x, t)ds,

from which we deduce

‖u1(·, t)‖Lr(Rn) ≤
∫ k+1

k

‖us(·, t)‖Lr(Rn)ds

for t ∈ [k, k + 1], and hence

‖u1‖Lq
t,k(Lr

x) ≤
∫ k+1

k

‖us‖Lq
t (Lr

x)ds

≤ C

∫ k+1

k

‖g(·, s)‖L2(Rn)ds

≤ C‖g‖L2(Rn×[k,k+1]).
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Combining this with (3.5) we have

‖u‖2
Lq

t,k(Lr
x) ≤ 2C2‖u(·, α)‖2

L2(Rn) + 2C2‖Lu‖2
L2(Rn×[k,k+1]).

Integrating w.r.t.α from k to k + 1 gives

‖u‖2
Lq

t,k(Lr
x) ≤ 2C2‖u‖2

L2(Rn×[k,k+1]) + 2C2‖Lu‖2
L2(Rn×[k,k+1]).

Summing overk, we obtain

‖u‖2
L2,q,r

≤ 2C2‖u‖L2(Rn+1) + 2C2‖Lu‖L2(Rn+1),

and the proof is completed by a similar scaling argument to that used in Proposition
2.1.

Using the inclusionL2,q,r ⊆ Lq
t (L

r
x) for q ≥ 2 we deduce

Corollary 3.2. Letn ≥ 1, and let(q, r) ∈ Ωn. Then for alla > 0, there existsb > 0
such that

(3.7) ‖u‖Lq
t (Lr

x) ≤ a‖Lu‖L2(Rn+1) + b‖u‖L2(Rn+1)

for all u ∈ Mn
L .

In particular, we get such a bound for‖u‖Lq(Rn+1) whenever2 ≤ q ≤ (2n+4)/n.
By applying the Kato-Rellich theorem we can deduce a generalization of Corol-

lary 2.2from Theorem3.1. We first define

(3.8) Ω∗
n =

{
(p, s) ∈ R+ × R+ :

2

p
+

n

s
≤ 1, p ≥ 2, s ≥ 2

}
for n 6= 2, and forn = 2, Ω2 is defined by the same expression, with the omission of
the point(2,∞).

http://jipam.vu.edu.au
mailto:mortad@univ-oran.dz
http://jipam.vu.edu.au


Lp-Estimates for the
Schrödinger Operator

Mohammed Hichem Mortad

vol. 8, iss. 3, art. 80, 2007

Title Page

Contents

JJ II

J I

Page 13 of 18

Go Back

Full Screen

Close

Corollary 3.3. Let n ≥ 1 and let (p, s) ∈ Ω∗
n. Let V be a real-valued function

belonging toL∞,p,s. ThenL + V is self-adjoint onMn
L .

Proof. Let q = 2p
p−2

andr = 2s
s−2

. Then(q, r) ∈ Ωn and the conclusion (3.4) of
Theorem3.1applies. Now we have∫ k+1

k

‖V u(·, t)‖2
L2(Rn) ≤

∫ k+1

k

‖u(·, t)‖2
Lr(Rn)‖V (·, t)‖2

Ls(Rn)

≤ ‖u‖2
Lq

t,k(Lr
x)‖V ‖

2
Lp

t,k(Ls
x)

and summation overk gives

‖V u‖L2(Rn+1) ≤ ‖u‖L2,q,r‖V ‖L∞,p,s .

Then, using (3.4), the result follows in the same way as Corollary2.2.

It follows from Corollary3.3 thatL + V is self-adjoint wheneverV ∈ Lp
t (L

s
x)

for (p, s) ∈ Ω∗
n. Taking the cases = p, we find thatL + V is self-adjoint ifV ∈

Lp(Rn+1) for somep ≥ n + 2.
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4. Counterexamples

Now we show that Theorem3.1is sharp, as far as the allowed set ofq, r is concerned.

Proposition 4.1.Letn ≥ 1 and letq andr be positive real numbers, possibly infinite,
such that(q, r) /∈ Ωn. Then there are no constantsa andb such that (3.7) holds for
all u ∈ Mn

L .

Proof. For (q, r) to fail to be inΩn one of the following three possibilities must
occur: (i)q < 2 or r < 2; (ii) 2

q
+ n

r
< n

2
; (iii) n = 2, q = 2 andr = ∞. We consider

these cases in turn.

(i) If q < 2, choose a sequence(βk)k∈Z which is in l2 but not inlq. Let φ(x, t) be a
smooth function of compact support onRn+1 which vanishes fort outside[0, 1], and
let u(x, t) =

∑
k∈Z βkφ(x, t− k). Thenu ∈ Mn

L , butu /∈ Lq
t (L

r
x) for anyr.

The caser < 2 can be treated similarly. We chose a sequenceβk which is in l2

but not lr, and a smoothφ which vanishes forx1 outside[0, 1], then setu(x, t) =∑
k∈Z βkφ(x−ke1, t), wheree1 is the unit vector(1, 0, . . . , 0) in Rn. Thenu ∈ Mn

L ,
butu /∈ Lq

t (L
r
x) for anyq.

(ii) In this case we use the scaling argument which shows that the Strichartz estimates
fail, together with a cutoff to ensureu andLu are inL2.

We start with a non-zerof ∈ L2(Rn), and letu be the solution of (1.1) with
α = 0 andg = 0. (An explicit example would bef(x) = e−|x|

2
and thenu(x, t) =

(1 + 4it)−n/2e−|x|
2/(1+4it)). Choose a smooth functionφ on R such thatφ(0) 6= 0

and such thatφ andφ′ are inL2. Then forλ > 0 define

vλ(x, t) = λn/2u(λx, λ2t)φ(t).

Then (usingLu = 0) we find Lv(x, t) = −iλn/2u(λx, λ2t)φ′(t). We calculate
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‖vλ‖L2(Rn+1) = ‖f‖L2(Rn)‖φ‖L2 and‖Lvλ‖L2(Rn+1) = ‖f‖L2(Rn)‖φ′‖L2. Also

‖vλ‖Lq
t (Lr

x) = λβ

{∫
R
‖u(·, t)‖q

Lr(Rn)|φ(λ−2t)|qdt

} 1
q

,

whereβ = n
2
− n

r
− 2

q
> 0. Soλ−β‖vλ‖Lq

t (Lr
x) → |φ(0)|‖u‖Lq

t (Lr
x) (note that the norm

on the right may be infinite) and hence‖vλ‖Lq
t (Lr

x) tends to∞ asλ →∞, completing
the proof.

(iii) This exceptional case we treat in a similar fashion to (ii), but we need the result
from [6], that the Strichartz inequality fails in this case. We start by fixing a smooth
functionφ onR such thatφ = 1 on [−1, 1] andφ andφ′ are inL2.

Now let M > 0 be given and we use [6] to find f ∈ L2(R2) with ‖f‖L2(R2) = 1
such that the solutionu of (1.1) with α = 0 andg = 0 satisfies‖u‖L2

t (L∞x ) > M .

Then we can findR > 0 so that
∫ R

−R
‖u(·, t)‖2

L∞(R2)dt > M2. Let λ = R1/2 and

definev(x, t) = λn/2u(λx, λ2t)φ(t). Then‖v‖L2(R3) = ‖φ‖L2 , ‖Lv‖L2(R3) = ‖φ′‖L2

and

‖v‖2
L2

t (L∞x ) ≥
∫ 1

−1

‖v(·, t)‖2
L∞(R2)dt > M2,

which completes the proof, sinceM is arbitrary.

We remark that [6] also gives an example off ∈ L2(R2) such thatu /∈ L2
t (BMOx)

and the argument of part (iii) can then be applied to show that no inequality

‖u‖L2
t (BMOx) ≤ a‖Lu‖L2(R3) + b‖u‖L2(R3)

can hold.
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5. Question

We saw as a result of Corollary3.3 that if (p, s) ∈ Ω∗, thenL + V is self-adjoint
on Mn

L wheneverV ∈ Lp
t (L

s
x). One can ask whether this can be extended to a

larger range of(p, s) with p, s ≥ 2. If one asks whetherL + V is defined onMn
L ,

then we would require a bound‖V u‖L2(Rn+1) ≤ a‖Lu‖L2(Rn+1)+b‖u‖ to hold for all
u ∈ Mn

L . If such a bound is to hold for allV ∈ Lp
t (L

s
x), then, in fact, we require (3.7)

to hold forq = 2p
p−2

andr = 2s
s−2

, which we know cannot hold unless(p, s) ∈ Ω∗.
One can instead ask forL + V , defined on sayC∞

0 (Rn+1), to be essentially self-
adjoint. This is equivalent to saying that the only (distribution) solution inL2(Rn+1)
of the PDE

−iut −4xu + V u = ±iu

is u = 0 (see e.g. [8]).
We do not know if there are any values of(p, s) not inΩ∗

n such that this holds for
all V ∈ Lp

t (L
s
x). The analogous question for the Laplacian is extensively discussed

in [9].
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