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Abstract: Let L denote the time-dependent Schrodinger operatarspace variables. We
consider a variety of Lebesgue norms for functiensn R™**, and prove or Full Screen
disprove estimates for such normswofn terms of theL? norms ofu and Lu.
The results have implications for self-adjointness of operators of the fofnV’ Close

whereV is a multiplication operator. The proofs are based mainly on Strichartz-
type inequalities.

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

Acknowledgements: I would like to express all my gratitude to my ex-Ph.D.-supervisor Professor
Alexander M. Davie for his helpful comments, especially in the counterexamples

section.

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:mortad@univ-oran.dz
http://jipam.vu.edu.au
mailto:mortad@univ-oran.dz
mailto:sever.dragomir@vu.edu.au

Contents

1

2

Introduction

L°(L?) Estimates.

L}(L:) Estimates.
Counterexamples

Question

14

16

Title Page

Contents

Page 2 of 18
Go Back
Full Screen

Close



http://jipam.vu.edu.au
mailto:mortad@univ-oran.dz
http://jipam.vu.edu.au

1. Introduction

Let (z,t) € R"*! wheren > 1. The Schrodinger equatio® = iA,u has been
much studied using spectral properties of the self-adjoint operajor When a
multiplication operator (potential) is added, it becomes important to determine
whetherA, + V is a self-adjoint operator, and there is a vast literature on this ques-
tion (see e.g.9)).

One can also, however, regard the operdios —z’% — /A, as a self-adjoint
operator on.?(R"*1), and that is the point of view taken in this paper. We ask what
can be said about the domain bf more specifically, we ask which? spaces, and
more generally mixed.{ (L") space, a functiom must belong to, given thatis in
the domain off. (i.e. v and Lu both belong ta.?(R™*!)). We answer this question
and, using the Kato-Rellich theorem, deduce sufficient conditioris fum L + V' to
be self-adjoint.

Our approach is based on the fact that any sufficiently well-behaved function
onR"*! can be regarded as a solution of the initial value problem (IVP)

{ —iuy — Ngu = g(z, t),
u(z, o) = f(x)

wherea € R, f(x) = u(z,a) andg = Lu.

To apply this, we will use estimates farbased on given bounds fgrandg.
A number of such estimates are known and generally called Strichartz inequalities,
after [L2] which obtained such ah? bound foru. This has since been generalized to

(1.1)
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give inequalities for mixed normd4.8, 4]. The specific inequalities we use concern
the casey = 0 of (1.1) and give bounds fou in terms of]| f|| 2z~) - See §.2) below.
The precise range of mixed (L") norms for which the bound(2) holds is known
as a result of13, 4] and the counterexample i6][
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In Section2 we prove a special case of our main theorem, namely a bound for
in L&°(L?2), which does not require Strichartz estimates, only elementary arguments
using the Fourier transform. The main theorem, givirigL’ ) bounds for the largest
possible set ofq, ) pairs, is proved in Sectiof. In fact, we prove a somewhat
stronger bound, in a smaller spatg, . defined below. The fact that the set of pairs
(q,r) covered by Theorerfi. 1is the largest possible is shown in Section

Some results on a similar question for the wave operator can be fourd Fof
Strichartz-type inequalities for the wave operator, see é3.1R, 2, 3, 4].

We assume notions and definitions about the Fourier Transform and unbounded
operators and for a reference one may con8lil{ f] or [10]. We also use on several
occasions the well-known Duhamel principle for the Schrédinger equation (see e.g.

[1].

Notation. The symbolu stands for the Fourier transform afin the space «)
variable while the inverse Fourier transform will be denoted eitheFbyu or .

We denote by’s°(R"!) the space of infinitely differentiable functions with com-
pact support.

We denote byR* the set of all positive real numbers together witho.

Forl < p < oo, || - [|, is the usualL?-norm whereag] - || ;»(,4) Stands for the
mixed spacetime Lebesgue norm defined as follows

1
q
ellzsias) = ( / uu@)r%;dt) .

We also define some modified mixed norms. First we define, for any inkeger

k1 3
el = ([ Tulz,ae)

LP-Estimates for the
Schrodinger Operator

Mohammed Hichem Mortad

vol. 8, iss. 3, art. 80, 2007

Title Page
Contents
44 44
< >
Page 4 of 18
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:mortad@univ-oran.dz
http://jipam.vu.edu.au

and then

3=

[ulleyr = (Z ||“||I£;{,€(L;)>

kEZ
We note that|ul| .

q=Dp-
Finally we define

pare 2 Wl g, i @1 = go, and thatull gy < Jlullg,,, if

P,q,T

L={fe’®"): Lf e L* R},

wherelL is defined as in the abstract and where the derivative is taken in the distri-
butional sense. We note thaf!" = D(L), the domain of’,, and also tha€5° (R™*!)

is dense inM/} in the graph normju|| 2w, ) + || Lu|| L2k, )
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2. L(L?) Estimates.

Before stating the first result, we are going to prepare the ground for it. Take the
Fourier transform of the IVPI(1) in the space variable to get

{ —ity +n*t = g(n, t),
i(n, o) = f(n)

which has the following solution (valid for alle R):

t

2.1) i, t) = flme "t 4 / e~ g, ),

«

wheren € R™.
Duhamel’s principle gives an alternative way of writing the part of the solution
depending ory. Taking the cas¢ = 0, the solution of {.1) can be written as

t
(2.2) u(z,t) = z/ ug(z, t)ds,
whereu, is the solution of
{ Lug =0, t>s,

us(z,s) = g(x, s).

Now we state a result which we can prove usifidl). In the next section we
prove a more general result using Strichartz inequalities and Duhamel’s principle
(2.2).
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Proposition 2.1. For all « > 0, there exist$ > 0 such that
ull 22, < @llLullZognsry + OllullZo gnsr)
forall u € M7}.

Proof. We prove the result for € C5°(R"™') and a density argument allows us to
deduce it foru € M7.

We use the fact that any suehis, for anya € R, the unique solution ofi( 1),
wheref(z) = u(x,«) andg = Lu, and therefore satisfies.().

Letk € Z and lett anda be suchthakt < ¢t < k+1andk < o < k+ 1.
Squaring £.1), integrating with respect tg in R", and using Cauchy-Schwarz (and
the fact thatt — «| < 1), we obtain

t
@3) a0l <2 [ litno)Pdn+2 [ [ latn.s)Pasay
n ]Rn
Now integrating against in [k, k£ + 1] allows us to say that

k+1 k+1
lu(-,t |\L2Rn><2// (.o !dnda+2/ / 3, ) Pdds.

Now take the essential supremum of both sides awer [k, k + 1], then sum ink
overZ to get (recalling thay = Lu)

Z ess sup |u(, )H%Q(R") < QHLUH%Z(R"H) +2HUH%2(R"+1)'
k<t<k+1
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Finally to get an arbitrarily small constant in ttie: term we use a scaling argu-
ment: letm be a positive integer and lefz, t) = u(mx, m?t). Then we find

—l—n/2’

HUHB(RW) =m \UHL%RHH)
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and

||LU||L2(Rn+1) = ml_n/QHLuHLz(Rnﬂ).
Also,
[o(-s )| 2@my = m ™™ [[u(-, m?t)| 2 ey
and so
sup [Ju( ) e@ay =m™" sup  fu( )| T2
E<t<k+1 m2k<t<m?2(k+1)
m2(k+1)—1
<m™" Z suplu(, )72 (gy-
j=m2k J<t<j+1

Summing ovek gives

2 - 2
[0lzy e <m0l

<m0 (2 Lull gy + 20l s
< 2m 72| Lo Faggnsry + 2m3[|0]| 22 @nsy
and choosingn so that2m =2 < a completes the proof. O

Now we recall the Kato-Rellich theorem which states that is a self-adjoint
operator on a Hilbert space amdis a symmetric operator defined @ L), and if
there are positive constanis< 1 andb such thatl|Vu| < al|Lu|| + bu|| for all
u € D(L), thenL + V is self-adjoint orD(L) (see PJ).

Corollary 2.2. LetV be areal-valued function il » ~.. ThenL+V is self-adjoint
onD(L) = M}.
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Proof. One can easily check that

IVl 2@ty <AV 2o z,oo [l 23,00,2-

Choosea < [|V]|;!, and then Propositioft.1 shows thatZ + V satisfies the
hypothesis of the Kato-Rellich theorem. O

In particular, it follows that. + V' is self-adjoint wheneve¥” € L?(L%°).
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3. LJ(L%) Estimates.

Now we come to the main theorem in this paper, which depends on the following
Strichartz-type inequality. Suppose> 1 andq andr are positive real numbers
(possibly infinite) such that > 2 and

(3.1) .

Whenn = 2 we exclude the casg = 2, r = oco. Then there is a constant such
that if f € L?(R™) andg = 0, the solutionu of (1.1) satisfies

(3.2) lullLaczry < CllfllL2@n)-

This result can be found inLB] for ¢ > 2; the more difficult ‘end-point’ case
whereq = 2, n > 3 is treated in 4]. That (3.2) fails in the exceptional case =
2,q =2,r = oo is shown in B].

Forn > 1 we define aregiof2,, € R™ x R* as follows: forn # 2,

2
(3.3) Qn:{(q,T)GR+XR+ —+ >§ q>2, T>2}

q
and forn = 2, Q, is defined by the same expression, with the omission of the point
(2, 00).

The set«),, are probably most easily visualized in thé L)-plane. Thenf,
is a quadrilateral with verticeé,o) (5,0),(0,2), (2,5) and forn > 2, Q,is a
triangle with verticeg1, 2-2), (0, 1), (2, 1), the point(3, 0) being excluded in the

72
casen = 2.
Theorem 3.1.Letn > 1, and let(q, ) € ©Q,,. Then for alla > 0, there exist$ > 0
such that
(3.4) ull 2y, < allLu|l 2@ty + bl|ul| L2 @n+1)
forall u € M7.
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Proof. By the inclusionl,,, , C Ly, ., Wheng, > g, it suffices to treat the case
where2 + 2 = 2, for which (3.2) holds.

Letk € Z and leta € [k, k + 1]. As in the proof of Propositiofi.1 we use the
fact thatu is the solution of {.1) with f = u(-,«) andg = Lu. Now we splitu into
two partsu = u; + ug, whereuy, u, are the solutions of

Lu, = g, Luy =0,
ul(l’,Oé):O, UQ(I,OZ):f.
The estimate for, is deduced from3.2):

(3.5) [uzl[rgry) < Cllfll2ey < Cllu(s, @)l z2gn.
Foru; we apply €.2) to obtain

(3.6) ui(x,t) = i/t us(z, t)ds,

from which we deduce
k+1
o Oy < [ Ol
fort € [k, k + 1], and hence
k+1
luallre, () < /k s L ey ds

k+1
<C [ g5 lnnds
k

< C\gll 2@ x e 1)) -
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Combining this with 8.5 we have

lulZs iz < 2C% (e, )2z + 2% LulEaqgn ey
Integrating w.r.t.o from £ to k£ + 1 gives
HUH%gyk(Lg) < 20%|ullFagn 1)) + 202 Ll T g i 1 -
Summing ovetk, we obtain
Hu||2527q’r < 2C%||u|| p2rn+1y + 2C%|| Lu|| g2 g1y,

and the proof is completed by a similar scaling argument to that used in Proposition
2.1 O

Using the inclusiorC, ., C L{(L”) for ¢ > 2 we deduce

Corollary 3.2. Letn > 1, and let(q, r) € €,. Then for alla > 0, there exist$ > 0
such that

3.7) lull Loy < allLullpz@ntry + bllull L2y
forall u € M7}.

In particular, we get such a bound || o (zn+1) WheneveR < ¢ < (2n+-4)/n.
By applying the Kato-Rellich theorem we can deduce a generalization of Corol-
lary 2.2 from TheorenB.1. We first define

2
(3.8) QZZ{(p,S)ER+XR+:—+E§1,p22,822}
p s

forn # 2, and forn = 2, Q), is defined by the same expression, with the omission of
the point(2, o).
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Corollary 3.3. Letn > 1 and let(p,s) € Q. LetV be a real-valued function

belonging tol , .. ThenL + V' is self-adjoint onM/}'.

Proof. Let ¢ = Z% andr = 52—_2 Then(q,r) € Q, and the conclusion3(4) of

Theorem3.1applies. Now we have

k+1 k+1
/k IV, )]y < / et )2 o [V, )]

< ||u||ig’k(L;)HVH%ik(L;)

2
Ls(®n)

and summation ovet gives
Vull 2@y < lullzs g, 1V I 2o e

Then, using §.4), the result follows in the same way as Corollary. O]

It follows from Corollary3.3that L + V' is self-adjoint wheneveV € L{(L?)
for (p,s) € Q. Taking the case = p, we find thatL + V is self-adjoint ifVV €
LP(R™!) for somep > n + 2.
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4. Counterexamples

Now we show that Theoref 1is sharp, as far as the allowed setof is concerned.

Proposition4.1.Letn > 1 and letq andr be positive real numbers, possibly infinite,
such that(q, r) ¢ 2,. Then there are no constanisandb such that §.7) holds for
all w e M.

Proof. For (¢, r) to fail to be in(2, one of the following three possibilities must
occur: (i)g < 2 orr < 2; (ii) §+% < %, (iii) n = 2, ¢ = 2 andr = co. We consider
these cases in turn.

(i) If ¢ < 2, choose a sequen¢g;, ).z Which is inl? but not inl?. Let ¢(z,t) be a
smooth function of compact support &i*! which vanishes fot outside|0, 1], and
letu(x,t) = > oy Oud(x, t — k). Thenu € M7, butu ¢ Li(L%) for anyr.

The case' < 2 can be treated similarly. We chose a sequefcehich is ini?
but not/", and a smootlpy which vanishes for; outside|0, 1], then setu(z,t) =
> kez Brd(x — ke, t), wheree, is the unit vecto(1,0,...,0) in R™. Thenu € M7,
butu ¢ Li(L.) for anygq.

(ii) In this case we use the scaling argument which shows that the Strichartz estimates
fail, together with a cutoff to ensureand Lu are inL2.

We start with a non-zerg € L?(R"), and letu be the solution of {.1) with
o = 0andg = 0. (An explicit example would bg(z) = e~ *I” and theru(z, ) =
(1 + 4it)~"/2e~12I/0+4i1)) - Choose a smooth functianon R such thaip(0) # 0
and such that and¢’ are inL?. Then for\ > 0 define

oz, 1) = NV 2u(da, N2 o (t).
Then (usingLu = 0) we find Lo(x,t) = —i\"?u(\x, \*t)¢'(t). We calculate
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HU)\HLQ(R7L+1) = ||f||L2(Rn)||¢||L2 andHLv>\||L2(Rn+1) = ||f“L2(Rn) gb/HLz. Also

oalliss) = X° { / Hu(-,t>||qr(Rn)r¢<x2t>|th} |

wheres = & — 2 —2 > 0. SOA " |[vall zazr) — [¢(0)]]Jul|2(zy) (note that the norm

on the right may be infinite) and henge, || .2 (.., tends toco asA — oo, completing
the proof.

(i) This exceptional case we treat in a similar fashion to (ii), but we need the result
from [6], that the Strichartz inequality fails in this case. We start by fixing a smooth
function¢ onR such thatp = 1 on[—1, 1] and¢ and¢’ are in L2,

Now let M > 0 be given and we usé] to find f € L*(R?) with || f|| ,2r2) = 1
such that the solution of (1.1) with a = 0 andg = 0 satisfies||ul[,2(z) > M.

Then we can find? > 0 so thatf_RRHu(-,t)Hioc(RQ)dt > M?2. Let\ = RY? and

definev(z,t) = )\”/2u(/\x,/\2t)¢(t). Then||v|| 23y = [|@] 2, | Lv|| 2@sy = ||| 2
and

1
V[l 200y > /1 [0(, 8[| (g2ydt > M?,
which completes the proof, siné¢ is arbitrary. o

We remark thatf] also gives an example ¢gf € L?(R?) such that. ¢ LZ(BMO,)
and the argument of part (iii) can then be applied to show that no inequality

HuHLf(BMOI) < a|Lu| L2 r3) + b||ul| 2 rs)

can hold.
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5. Question

We saw as a result of Corollafy3that if (p,s) € Q, thenL + V is self-adjoint

on M} wheneverV € L{(L3). One can ask whether this can be extended to a
larger range ofp, s) with p, s > 2. If one asks whethek + V' is defined onM7},
then we would require a bounid’ u|| p2gn+1y < al|Lul| z2@n+1y+b||u|| to hold for all

u € M. If such abound is to hold for all € LY(L:), then, in fact, we require3(7)

to hold forg = 1% andr = 25, which we know cannot hold unlegs, s) € Q*.

One can instead ask fdr+ V, defined on sags°(R"*1), to be essentially self-
adjoint. This is equivalent to saying that the only (distribution) solutioh3(R"!)
of the PDE

—iuy — Npu+ Vu = fiu

isu =0 (seee.qg.q)).

We do not know if there are any values(pf s) not in 2’ such that this holds for
all vV e L¥(L3). The analogous question for the Laplacian is extensively discussed
in[9].
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