DIFFERENTIAL ANALYSIS OF MATRIX CONVEX
FUNCTIONS Il

FRANK HANSEN JUN TOMIYAMA

Department of Economics Department of Mathematics and Physics
University of Copenhagen Japan Women'’s University
Studiestraede 6 Mejirodai Bunkyo-ku

DK-1455 Copenhagen K, Denmark. Tokyo, Japan.

EMail: Frank.Hansen@econ.ku.dk EMail: juntomi@med.email.ne.jp
Received: 11 August, 2008

Accepted: 12 March, 2009

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 26A51, 47A63.

Key words: Matrix convex function, Polynomial.

Abstract: We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis
of matrix convex functionsLinear Algebra Appl.420:102-116, 2007] of matrix
convex functions of a fixed order defined in a real interval by differential methods
as opposed to the characterization in terms of divided differences given by Kraus.
We amend and improve some points in the previously given presentation, and we
give a number of simple but important consequences of matrix convexity of low
orders.
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1. Introduction

Let f be a real function defined on an intervallt is said to ben-convex if
FOA+(1=XNB) <Af(A)+ (1 =XNf(B) A€ 0,1]

for arbitrary Hermitiann x n matricesA and B with spectra in/. It is said to be
n-concave if— f is n-convex, and it is said to be-monotone if

A<B = [f(A) < f(B)

for arbitrary Hermitiann x n matricesA and B with spectra in/. We denote by
P,(I) the set ofn-monotone functions defined on an intervaland by K, (1) the
set ofn-convex functions defined in

We analyzed in3] the structure of the set&, (/) by differential methods and
proved, among other things, that, (/) is strictly contained ink, (I) for every
natural number. We discovered that some improvements of the analysis and pre-
sentation is called for, and this is the topic of the next section. We also noticed that
the theory has quite striking applications for monotone or convex functions of low
order, and this is covered in the last section.
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2. Improvements and Amendments

Definition 2.1. Let f: I — R be a function defined on an open interval. We say
that f is strictly n-monotone, iff is n-monotone an®n — 1 times continuously
differentiable, and the determinant

et (M) >0
(i+5-D1)

for everyt € I. Likewise, we say that is strictly n-convex, iff is n-convex an®n
times continuously differentiable, and the determinant

det (w)n >0
G+ )i

for everyt € I.

By inspecting the proof of3, Proposition 1.3], we realize that we previously
proved the following slightly stronger result.

Proposition 2.2. Let I be a finite interval, and letn and n be natural numbers
with m > 2n. There exists a strictly-concave and strictly.-monotone polynomial
fm: I — R of degreem. Likewise, there exists a strictly-convex and strictly:-
monotone polynomial,,: I — R of degreemn.

The above proposition is proved by introducing a polynomjglt) of degreen
such thatM,,(p,,; t) is positive definite and<, (p,,; t) is negative definite fot = 0.
The last part of 3, Theorem 1.2] then directly ensures the existence ok an 0
such that,, is n-monotone andi-concave in(—a, «). It is somewhat misleading,
as we did in the paper, to first consider the definitenesd,qf,,.; t) and K, (p; t)
in a neighborhood of zero.

Matrix Convex Functions
Frank Hansen and Jun Tomiyama

vol. 10, iss. 2, art. 32, 2009

Title Page
Contents
44 44
< >
Page 4 of 12
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Remarkl. We would like to give some more detailed comments to the proof of the
second part of3, Theorem 1.2] (which is independent of the last assertion in the
theorem). The statement is thatfifis a real2n times continuously differentiable
function defined on an open intervalthen the matrix

w0 - (4)

E+) )5
is positive semi-definite for eache I. We proved that the leading determinants
of the matrix K,,(f;t) are non-negative for eache I. It is well-known that this
condition is not sufficient to insure that the matrix itself is positive semi-definite.
In the proof we wave our hands and say that all principal submatricés, of; ¢)
may be obtained as a leading principal submatrix by first making a suitable joint
permutation of the rows and columns in the Kraus matrix. But this common remedy
is unfortunately not working in the present situation. We therefore owe it to readers
to complete the proof correctly.

Proof. Let D,,(K,(f;to)) for somet, € I denote the leading principal determinant
of orderm of the matrix K, (f;ty). We may according to Propositidh2 choose a
matrix convex functiory such that

Dm(Kn(gv tO)) >0
The polynomialb,, in € defined by setting
pm(€) = D (Ko (f + €95 to))

is of degree at most, andp,,(¢) > 0 for ¢ > 0. However since the coefficient to
e™in py, is Dy, (K (g; to)) > 0, we realize thap,, is not the zero polynomial. Let
nm be the smallest positive root pf,, then

pm(€) >0

m=1,...,n.

0<e<Nm.
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Settingn = min{ny,...,n,), we obtain
K,.(f+eg;t)) >0 0<e<n.

By letting e tend to zero, we finally conclude that, (f; ) is positive semi-definite.
O

We state in a remark afteB] Corollary 1.5] that the possible degrees of any
polynomial in the gap between the matrix convex functions of ordand order
n + 1 defined on a finite interval are limited 2o and2n + 1. However, this is taken
in the context of polynomials of degree less than or equainta- 1 and may be
misunderstood. There may well be polynomials of higher degrees in the gap.
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3. Scattered Observations

It is well-known for which exponents the function— ¢? is either operator monotone

or operator convex in the positive half-axis. It turns out that the same results apply

if we ask for which exponents the functiondsmonotone oR-convex on an open
subinterval of the positive half-axis.

Proposition 3.1. Consider the function
ft)y =1 tel

defined on any subintervalof the positive half-axis. Thefis 2-monotone if and
only if0 < p < 1, and it is2-convex if and only if eithet < p < 2or —1 < p < 0.

Proof. There is nothing to prove if is constant or linear, so we may assume that
p # 0andp # 1. In the first case the derivativé(¢) = pt?~! should be non-negative
sop > 0, and it may be writteng, Chapter VII Theorem IV] in the form

for ¢(t) = p~/?t1=P)/2 and this function is concave only for< p < 1. One may
alternatively consider the determinant

7 _ _92
o fy L o ptP—1 plp= )7
e =de
J O ASA ) plp—1)tP—2  p(p—1)(p—2)tP—3
2! 3! 2 6
1 _
1P - D+ e

and note that the matrix is positive semi-definite only(fot p < 1.
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The second derivative may be writte3) Theorem 2.3] in the form

0 = bl 10 =

for d(t) = (p(p — 1))~'/3t-P)/3 and this function is concave only ferl < p < 0
or1 < p < 2. One may alternatively consider the determinant

tel

I OIISI0! pp—1)tP—2 p(p—1)(p—2)t*—3
2 6 2 6
det = det
ARG ISI0) pp=1)(=2)t""%  p(p—1)(p—2)(p—3)tr—*
[§ 24 6 24
1 2 2 2p—6
=——p'(p—1)>*p—2 1)t
P P -2)p+1)
and note that the matrix is positive semi-definite only far < p < 0orl1 < p
<2. O

The observation that the functian— ¢? is 2-monotone only fo < p < 1 has
appeared in the literature in different forms, @&, 1.3.9 Proposition] or{].

It is known that the derivative of an operator monotone function defined on an
infinite interval (o, o0) is completely monotone2[ Page 86]. We give a parallel
result for matrix monotone functions which implies this observation, and extend the
analysis to matrix convex functions.

Theorem 3.2. Consider a functiory defined on an interval of the forfay, o) for
some reakb.

1. If fisn-monotone andn — 1 times continuously differentiable, then
(~DFfE V@) >0 k=0,1,...,2n —2.

Therefore, the functiofi and its even derivatives up to ord2t —4 are concave
functions, and the odd derivatives up to or@er— 3 are convex functions.

Matrix Convex Functions
Frank Hansen and Jun Tomiyama

vol. 10, iss. 2, art. 32, 2009

Title Page
Contents
44 44
< >
Page 8 of 12
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

2. If fisn-convex an@®n times continuously differentiable, then

(D)D) >0 k=0,1,...,2n—2.

Therefore, the functiori and its even derivatives up to ord®t — 2 are convex
functions, and the odd derivatives up to ord@er— 3 are concave functions.

Proof. We may assume that > 2. To prove the first assertion we may writ2, |
Chapter VII Theorem IV] the derivativé’ in the form

r 1
f(t)_Tt)?’

wherec is a positive concave function. Sineés defined on an infinite interval it has
to be increasing, therefor@ is decreasing and thy¥ < 0. Sincef is n-monotone,
it follows from Dobsch’s condition]] that the odd derivatives satisfy

fE*Y >0 k=0,1,...,n— 1.

The odd derivatives®***) are thus convex fok = 0,1,...,n — 2. If the third
derivative f®, which is a convex function, were strictly increasing at any point, then
it would go towards infinity and the second derivative would eventually be positive
for larget. However, this contradictg” < 0, so f® is decreasing and thus the
fourth derivativefY) < 0. This argument may now be continued to prove the first
assertion.

To prove the second assertion we may wrieTheorem 2.3] the second deriva-

tive f” in the form
1
"
t) = —
whered is a positive concave function. Sindes defined on an infinite interval it has
to be increasing, thereforg is decreasing and thy$*) < 0. Sincef is n-convex,
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it follows [3, Theorem 1.2] that the even derivatives satisfy
2R >0 kE=1,....,n.
The statement now follows in a similar way as for the first assertion. O

Corollary 3.3. The second derivative of an operator convex function defined on an
infinite interval («, co) is completely monotone.

Remark2. The indefinite integray(¢t) = [ f(¢) dt of a 2-monotone functiory is
2-convex.

Proof. The second derivative may be written in the form

" ! 1 1
SO =IO = E ~ oy

for some positive concave functienSince the functiort — ¢2/3 is increasing and
concave, we conclude that— c(t)?/3 is concave. The statement then follows from
the characterization &-convexity. O

It is known in the literature that operator monotone or operator convex functions
defined on the whole real line are either affine or quadratic, and this fact is estab-
lished by appealing to the representation theorem of Pick functions. However, the
situation is far more general, and the results only depend on the monotonicity or
convexity of two by two matrices.

Theorem 3.4.Let f be a function defined on the whole real linef lis 2-monotone
then it is necessarily affine. ffis 2-convex then it is necessarily quadratic.
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Proof. Let (p,)n.—12.. be an approximate unit of positive and evéfr-functions
defined on the real axis, vanishing outside the closed inténall]. The convolu-
tionsp,, x f are infinitely many times differentiable, and they armonotone iff is
2-monotone an@-convex if f is 2-convex. Sincef is continuous,, * f converge
uniformly on any bounded interval tf. We may therefore assume thatis four
times differentiable.

In the first case, the derivativ€ may be written 2, Chapter VII Theorem 1V]
in the form f/(¢) = ¢(t)~2 for some positive concave functierdefined on the real
line, while in the second case the second derivafiVenay be written 8, Theorem
2.3]in the formf”(t) = d(t)~* for some positive concave functiehdefined on the
real line. The assertions now follow since a positive concave function defined on the
whole real line is necessarily constant. O Title Page
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