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ABSTRACT. A class of fractional derivative operators (with the Appell hypergeometric function

in the kernel) is used here to define a new subclass of analytic functions and a coefficient bound
inequality is established for this class of functions. Also, an inclusion theorem for a class of
fractional integral operators involving the Hardy space of analytic functions is proved. The
concluding remarks briefly mentions the relevances of the main results and possibilities of further
work by using these new classes of fractional calculus operators.
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let A(n) denote the class of functiorf§z) normalized by
(1.1) f)=z+ ) az* (neN),
which are analytic in the open unit disk

U={z: zeC and |z <1}

We denote byA'™*##7) () the subclass of functions id(n) which also satisfy the inequal-
ity:

12 Refa(aa, 8,87 DR () >0 (ze ),
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Where D(()?YZ’Q 7Ba6 77)

convenience)

(13) Xm(Oé,O/,/B, /6/7’}/)
A+ m+8)rl+m—-—a—ao —y)I1+m—-a —3—7)
T+ mI(l+m—o+T(1+m—a—a —3—7)

is the generalized fractional derivative operator (defined below), and (for

(m € N),

provided that
(1.4) 0<o<1;0<y< 1,
y<min(—a —ad,—a' — 3, —a—a' — ) +m+1;
f'> max(0,a’) —m — 1.
Following [8], a functionf(z) is said to be in the clasB,(6;) if f(z) € A(n) satisfies the
condition that
arg(ag) =0 (k>n+1;neN)
and if there exists a real numbesuch that
(1.5) Or + (k—1)p = w(mod27) (k>n+1;n€N),
then we say thaf(z) is in the classV,(0y; p). SupposeV,, = UV, (Gk;p) over all possible

sequence$,, with p satisfying (1 ) then we denote by *7) (o) the subclass o),

which consists of functiong(z) belonglng to the clasa (™ ## ().

We present here the following family of fractional integral (and derivative) operators which
involve the familiar Appell hypergeometric functidry (see also Kiryakova [4] and Saigo and
Maedal[9]).

Definition 1.1. Lety > 0 anda, o, 3, 8 € R. Then the fractional integral operatgf:*>""
of a functionf(z) is defined by

(1.6) 137 f(2)

- 15(_;) /o (=) (a, o, B, 8571 — % b %) flete =0

where the functiory (z) is analytic in a simply-connected region of the compteglane con-
taining the origin, and it is understood th@at — ¢)?~! denotes the principal value for <
arg(z —t) < 2. The function F; occurring in the kernel of (1]6) is the familiar Appell hyper-
geometric function of third type (also known as Hor#’s - function; see, for example, [10])
defined by

(17) F3 (a,o/,ﬁ,ﬁ';’y;z 5 ZZ

m=0 n=0

which is related to the Gaussian hypergeometrlc functiona, 3; v; z) by the following rela-
tionship:

Jm(8)n 2™ €

l

e e (el <Ll <),

2F1<04a5;7; Z) = F3 (aa&/aﬁaﬂ/;7;270)
= F5(a,0,8,057:2,8) = Fs (o, &, 3,0;7; 2, ) .

Definition 1.2. The fractional derivative operat@éf‘z’a"ﬁ’ﬂ'”) of a functionf(z) is defined by

o, ! d" a,a’,8—n,B n—
@8) DRIV = I f(2) (n 1<y <mneN).
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It may be observed that for
(2.9) a=\A+u o=0p=0 p=-n 5=\
we obtain the relationship
(1.10) 0TI, — gt

in terms of the Saigo type fractional integral operal@;)j“7 ([12]). On the other hand, if

(1.11) a=p—X o=p0=0, B=-n v=)\
then we get
(1.12) D((sz—w—mom _ Jaf’”,

Wherejéf;“’” Is the Saigo type fractional derivative operator ([6]; see also [7]). Further, when

(1.13) a=0 =0, a=1—pu, y=X(or =),

then the operatorsg?z’l—u,o,o,x

tors @, due to Dziok [2].
Let H? (0 < p < o0) be the class of analytic functions thsuch that

" and D' "%~ correspond to the differential-integral opera-

(1.14) 11, = lim {My(r, f)} < oo,
where

L e ) (0 < p < o),
(1.15) 171, = (i )

‘ST1<P 1f(2)]

In this paper we first define a new function class in terms of the fractional derivative operators
(with the Appell hypergeometric function in the kernel) and then establish a coefficient bound
inequality for this function class. Also, we prove an inclusion theorem for a class of fractional
integral operators involving the Hardy space of analytic functions. The relevance of the main
results and possibilities of further work by using the new classes of fractional calculus operators
are briefly pointed out in the concluding section of this paper.

2. A SET OF COEFFICIENT BOUNDS
We begin by proving the following coefficient bounds inequality for a functi¢n) to be in
the classAl™ 777 ().

Theorem 2.1. Let £(z) defined by|(1]1) be in the clags™*"** ") (), then

o0

|ak| 1-— ag
2.1 < ,
( ) k::zn—:i-l Xk(a7a/aﬁ7ﬂ/a7) a Xl(avalvﬂaﬂ//y)

wherex, (o, o/, 3, 3',7) is defined by[ (1]3). The result is sharp.

Proof. Assume that

Re {xi(a,a,8,8,7):™ DTN ()L > 0 (2 € ),
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Using (1.1) and the formula (see, e.g. [9, p. 394]):

(2.2) DYy

__ A+l +g-a+ Il +g—a=F~-7)  ,aa-y
Fl4+g¢+p)T1+q—a —B—y)T(14+qg—a—a —7) ’

0<y<Lio,d, 6,0 €Rig>max (0,0 =, a+8+7)—1)

we obtain

(23) {1+ Z iizz:gg/ ’Y; zk1}>o_ (ZEU),

and forf(z) € V,(0x; p) (z = re'?), the inequality thus obtainable from (.3) on letting- 1—
therein, readily yields

(2.4 {1+ EIijZZ’?ﬁ/ikzwmw<@+wk—np»}>a.
k=n+1 LN

If we apply [1.%), then[(2]4) gives

Xl «, O/ B7ﬁ,77>
(2.5) 1— ag| > o,
k;lea Od:ﬂaﬂ/77)| k|

which leads to the desired inequalify (2.1). We also observe that the equality sjgn|in (2.1) is
attained for the functiorf(z) defined by

B (]_ _O')Xk(a, Oz’,ﬁ,ﬁ/a’Y)
26)  fle)=z+ xi(a, o/, 3, 3,7)

and this completes the proof of Theorpm|2.1. O

Fexp(ify) (k>n+1;n¢€N),

3. INCLUSION RELATIONS
Under the hypotheses of Definitipn 1.1, let
(3.1) y>0min(y—a—d,y—ao =3, y—a—-d -5, —a) > -2
a, 3,3 €R,
then the fractional integral operator
QLB - A A (A1) = A)
is defined by
(3.2) QU BTN f(2) = xa(a, o, B, B, =) 22T TS T f(z).

(0,2)
wherey; (o, o/, 3, 5, —v) is given by [1.B).
By using the formula ([9, p. 394]; see also [4, p. 170, Lemma 9])
(3.3) I‘” B8 q
M+l +gq—a'+ )T (1+qg—a—ao —B+7)
S T(l4q+ 8T (l4+g—o —B+NI(1+g—a—a +7)
(v>0;0,0, 8, € Rjg >max (0,0 — 3, a+5—7) — 1)

La—a—a’+y

Y
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it follows from (1.1), [3.2) and (3]3) that

3.4 QEBEN () = 2+ 1 (o, o, 3,3, — T 2",
(3.4) z f(z) xa( B, B —v) £ il of, B, B, =)

where (as beforey,(«, o, 3, 3, —v) is given by [1.B).

Before stating and proving our main inclusion theorem, we recall here the following known
results concerning the cla®y(p) in A which satisfies the inequality that{ f'(z)} > p(0 <
p < 1), whereR(1) is denoted byR.

Lemma 3.1([3, p. 141]) Let f(z2) € R, then
(3.5) f(z) eHP 1 (0<p<o0).
Lemma 3.2([5, p. 533]) Let f(z) defined by[(1]1) be in the cla®&(p) (0 < p < 1), then

2
(3.6) ] <= (k=2,3,4,..).
Theorem 3.3.Let f(z) € R, then (under the constraints stated|in (3.1))
(3.7) QBN f(2) e HP (0 < p < o0)
and
(3.8) QBB f(2) e H® (v > 1).

Proof. In view of (1.6) and[(3.2), we obtain
(39) an,a',ﬁ,ﬁ'77)f(z) = X1 (CY, O/7 ﬁa 6/7 _7)

! / 1
X / (1 o t)’Yiltia F3 (CY, 0/7 ﬂa Bla v 1- t 1- ;) f(Zt)dt
0
This implies that
(3.10) Re {ngﬂ“va’WW) f(z)}
dz
! : 1
= Xl(aa 0/7 ﬁ: 5,7 _7) / (1 - t)v_ltl_a F3 ((1/7 O/v ﬁ7 ﬁ/a s 1- l I Z) R {f,(Zt)} dt.
0
Sincef(z) € R, therefore, we infer fronf (3.10) that
(3.11) Qe85 f(2) € R,

and applying Lemmpa 3], (3.]11) gives the inclusion relafior] (3.7) under the conditions stated in
B.D).

To prove the resulf (3]8), we observe the following three-term recurrence relation:
d ! /
3.12 O’ ,5,6"7)
(312) ol f(2)

=== o' = B D QTITIIG) — (3 - ol = B ATV () |
which yields the inequality
d ! /
_Q(OL,OA 8,8 7'}’)
o )

p

<rr{(—a g1y !

(313) an,o/,ﬁﬂ/,"/*l)f(z)

b=,

— (v =/ = B QT (2)
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provided that
(3.14) ~>Iymin(l+y—a—ad,1+y—a' =3, 1+5" 1+7v—a—a'— 3,1+ —a') >—1;
a’ a/’ﬁ’ﬁ/ e R

and0 < p < oo.
Making use of[(1.14) and (1.15), the above inequality (3.13) (with1) yields

d ’ / / /
(3.15) M, (7’, QL0 ’”f(z)) <! {(7 —d - B+ 1) M (r, QLo B0 ’”‘”f(z))

~ (- a' = B) My (r, QST () |

and

d ! /
(3.16) HEQQW BB f(2)

<(y—d —B+1) “an,a’,ﬁ,ﬁ/,w—1)f(z)Hl
1

—(y— o = B Q)|
Applying (3.7), we infer (under the constraints stated in (3.14)) that

(3.17) QB8 =D 2y e HY and Q@ BINf(Z) e HY (v > 1),
and consequently (3.L6) implies that
d

_Q(aralvﬁzﬂlv')/) e Hl
dZ z f(Z) )

provided that the conditions stated [n (3.14) are satisfied. By appealing to a known result
[1, p. 42, Theorem 3.11], we infer f17) tHaio"a/’ﬁ’B/’”f(z) is continuous iNU* =
{z:2€Cand|z| > 1}. ButU* being compact, we finally conclude tHaf* "% f(z) is a
bounded analytic function iy, and the proof of the second assertipn|(3.8) of Thegremn 3.3 is
complete.

Thpe assertiorf (3]8) of Theorém B.3 can also be proved by applying Lémma 3.2 (see also [3,
p. 145]). Indeed, it follows fron{ (3]4) and (3.6) that

e}

Q29 ()] < 2] + xa (oo, B, B, o
z ( ) — ’ ‘ 1( ’7); Xk(Oé7Oé/’/67/8/7—”}/

S (k)
<1+2:xi(a,d, 3,0, —
Xl( ﬁ ﬁ ’y) ; F(k + 1)Xk(a7 O/vﬁ’ﬁ/7 _’Y>
22— o'+ 8)2—a—o —3+7)
2+8)Q2-a-a'+7)2-a' = F+7)
1,2,3—ad+0,3—a—ao -3+
X 4F3 1
3+p0.3—a—-ad'+7,3-ad =0+
in terms of the generalized hypergeometric function.

Now, for fixed values of the parametersa/, 3, 3, v satisfying the conditions stated [n (B.1),
we observe that by using the asymptotic formula [10, p. 109],

‘|

yI2

=1+

L'(k) -
=o(k™7 k — 00),
F(k+ 1)Xk‘<057a/7576/7_’7> ( ) ( )
and sincey > 1, this proves our assertion (8.8). O
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4. CONCLUDING REMARKS

In view of the relationshipg (1.10) ard (1I}12), the main results (Thedrems 2[1 and 3.3) of this
paper would correspond to the results due to Raina and Srivastava [8, p. 75, Theorem 1; p. 79,
Theorem 7]. Furthermore, in view of the relationstjip (1.13), we can easily apply Theorems
[2.7 and 3.B to obtain the corresponding results associated with Dziok’s differential-integral
operators([2]. The family of fractional calculus operators (fractional integrals and fractional
derivatives) defined by (1.6) and (IL.8) can fruitfully be used in Geometric Function Theory.
Several new analytic, multivalent (or meromorphic) function classes can be defined and the
various properties of coefficient estimates, distortion bounds, radii of starlikeness, convexity
and close to convexity for such contemplated classes investigated.
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