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ABSTRACT. A class of fractional derivative operators (with the Appell hypergeometric function
in the kernel) is used here to define a new subclass of analytic functions and a coefficient bound
inequality is established for this class of functions. Also, an inclusion theorem for a class of
fractional integral operators involving the Hardy space of analytic functions is proved. The
concluding remarks briefly mentions the relevances of the main results and possibilities of further
work by using these new classes of fractional calculus operators.
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1. I NTRODUCTION , DEFINITIONS AND PRELIMINARIES

LetA(n) denote the class of functionsf(z) normalized by

(1.1) f(z) = z +
∞∑

k=n+1

akz
k (n ∈ N),

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.

We denote by∆(α,α′,β,β′,γ)
n (σ) the subclass of functions inA(n) which also satisfy the inequal-

ity:

(1.2) Re
{

χ1(α, α′, β, β′, γ)zα+α′+γ−1D
(α,α′,β,β′,γ)
0,z f(z)

}
> σ (z ∈ U),
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2 R. K. RAINA

whereD
(α,α′,β,β′,γ)
0,z is the generalized fractional derivative operator (defined below), and (for

convenience)

(1.3) χm(α, α′, β, β′, γ)

=
Γ(1 + m + β′)Γ(1 + m− α− α′ − γ)Γ(1 + m− α′ − β − γ)

Γ(1 + m)Γ(1 + m− α′ + β′)Γ(1 + m− α− α′ − β − γ)
(m ∈ N),

provided that

0 ≤ σ < 1; 0 ≤ γ < 1;(1.4)

γ< min (−α− α′,−α′ − β,−α− α′ − β) + m + 1;

β′> max(0, α′)−m− 1.

Following [8], a functionf(z) is said to be in the classVn(θk) if f(z) ∈ A(n) satisfies the
condition that

arg(ak) = θk (k ≥ n + 1; n ∈ N)

and if there exists a real numberρ such that

(1.5) θk + (k − 1)ρ ≡ π(mod2π) (k ≥ n + 1; n ∈ N),

then we say thatf(z) is in the classVn(θk; ρ). SupposeVn = ∪Vn(θk; ρ) over all possible
sequencesθk with ρ satisfying (1.5), then we denote by∇(α,α′,β,β′,γ)

n (σ) the subclass ofVn

which consists of functionsf(z) belonging to the class∆(α,α′,β,β′,γ)
n (σ).

We present here the following family of fractional integral (and derivative) operators which
involve the familiar Appell hypergeometric functionF3 (see also Kiryakova [4] and Saigo and
Maeda [9]).

Definition 1.1. Let γ > 0 andα, α′, β, β′ ∈ R. Then the fractional integral operatorI
(α,α′,β,β′,γ)
0,z

of a functionf(z) is defined by

(1.6) I
(α,α′,β,β′,γ)
0,z f(z)

=
z−α

Γ(γ)

∫ z

0

(z − ζ)γ−1ζ−α′
F3

(
α, α′, β, β′; γ; 1− ζ

z
, 1− z

ζ

)
f(ζ)dζ (γ> 0),

where the functionf(z) is analytic in a simply-connected region of the complexz-plane con-
taining the origin, and it is understood that(z − ζ)γ−1 denotes the principal value for0 5
arg(z − t) < 2π. The function F3 occurring in the kernel of (1.6) is the familiar Appell hyper-
geometric function of third type (also known as Horn’sF3 - function; see, for example, [10])
defined by

(1.7) F3 (α, α′, β, β′; γ; z, ξ) =
∞∑

m=0

∞∑
n=0

(α)m(α′)n(β)m(β′)n

(γ)m+n

zm

m!

ξn

n!
(|z| < 1, |ξ| < 1) ,

which is related to the Gaussian hypergeometric function2F1(α, β; γ; z) by the following rela-
tionship:

2F1(α, β; γ; z) = F3 (α, α′, β, β′; γ; z, 0)

= F3 (α, 0, β, β′; γ; z, ξ) = F3 (α, α′, β, 0; γ; z, ξ) .

Definition 1.2. The fractional derivative operatorD(α,α′,β,β′,γ)
0,z of a functionf(z) is defined by

(1.8) D
(α,α′,β,β′,γ)
0,z f(z) =

dn

dzn
I

(α,α′,β−n,β′,n−γ)
0,z f(z) (n− 1 ≤ γ < n; n ∈ N).
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It may be observed that for

(1.9) α = λ + µ, α′ = β′ = 0, β = −η, γ = λ,

we obtain the relationship

(1.10) I
(λ+µ,0,−η,0,λ)
0,z = Iλ,µ,η

0,z

in terms of the Saigo type fractional integral operatorIλ,µ,η
0,z ([12]). On the other hand, if

(1.11) α = µ− λ, α′ = β′ = 0, β = −η, γ = λ,

then we get

(1.12) D
(µ−λ,0,−η,0,λ)
0,z = Jλ,µ,η

0,z ,

whereJ
(λ,µ,η
0,z is the Saigo type fractional derivative operator ([6]; see also [7]). Further, when

(1.13) α = β′ = 0, α′ = 1− µ, γ = λ (or − λ),

then the operatorsI(0,1−µ,0,0,λ)
0,z andD

(0,1−µ,0,0,−λ)
0,z correspond to the differential-integral opera-

torsQλ
µ due to Dziok [2].

LetHp (0 ≤ p < ∞) be the class of analytic functions inU such that

(1.14) ‖f‖p = lim
r→1−

{Mp(r, f)} < ∞,

where

(1.15) ‖f‖p =


(

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣p) 1

p
(0 < p < ∞),

sup
|z|≤r

|f (z)| .

In this paper we first define a new function class in terms of the fractional derivative operators
(with the Appell hypergeometric function in the kernel) and then establish a coefficient bound
inequality for this function class. Also, we prove an inclusion theorem for a class of fractional
integral operators involving the Hardy space of analytic functions. The relevance of the main
results and possibilities of further work by using the new classes of fractional calculus operators
are briefly pointed out in the concluding section of this paper.

2. A SET OF COEFFICIENT BOUNDS

We begin by proving the following coefficient bounds inequality for a functionf(z) to be in
the class∆(α,α′,β,β′,γ)

n (σ).

Theorem 2.1.Letf(z) defined by (1.1) be in the class∆
(α,α′,β,β′,γ)
n (σ), then

(2.1)
∞∑

k=n+1

|ak|
χk(α, α′, β, β′, γ)

≤ 1− σ

χ1(α, α′, β, β′, γ)
,

whereχm(α, α′, β, β′, γ) is defined by (1.3). The result is sharp.

Proof. Assume that

Re
{

χ1(α, α′, β, β′, γ)zα+α′−γ−1D
(α,α′,β,β′,γ)
0,z f(z)

}
> σ (z ∈ U).
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Using (1.1) and the formula (see, e.g. [9, p. 394]):

(2.2) D
(α,α′,β,β′,γ)
0,z zq

=
Γ(1 + q)Γ(1 + q − α′ + β′)Γ(1 + q − α− β − γ)

Γ(1 + q + β′)Γ(1 + q − α′ − β − γ)Γ(1 + q − α− α′ − γ)
zq−α−α′−γ,

(0 ≤ γ < 1; α, α′, β, β′ ∈ R; q > max (0, α′ − β′, α + β + γ)− 1)

we obtain

(2.3) Re

{
1 +

∞∑
k=n+1

χ1(α, α′, β, β′, γ)

χk(α, α′, β, β′, γ)
akz

k−1

}
> σ (z ∈ U),

and forf(z) ∈ Vn(θk; ρ) (z = reiθ), the inequality thus obtainable from (2.3) on lettingr → 1−
therein, readily yields

(2.4) Re

{
1 +

∞∑
k=n+1

χ1(α, α′, β, β′, γ)

χk(α, α′, β, β′, γ)
|ak| exp (i (θk + (k − 1) ρ))

}
> σ.

If we apply (1.5), then (2.4) gives

(2.5) 1−
∞∑

k=n+1

χ1(α, α′, β, β′, γ)

χk(α, α′, β, β′, γ)
|ak| > σ,

which leads to the desired inequality (2.1). We also observe that the equality sign in (2.1) is
attained for the functionf(z) defined by

(2.6) f(z) = z +
(1− σ)χk(α, α′, β, β′, γ)

χ1(α, α′, β, β′, γ)
zk exp (iθk) (k ≥ n + 1; n ∈ N),

and this completes the proof of Theorem 2.1. �

3. I NCLUSION RELATIONS

Under the hypotheses of Definition 1.1, let

γ > 0; min (γ − α− α′, γ − α′ − β, β′, γ − α− α′ − β, β′ − α′) > −2;(3.1)

α, α′, β, β′ ∈ R,

then the fractional integral operator

Ω(α,α′,β,β′,γ)
z : A → A (A(1) = A)

is defined by

(3.2) Ω(α,α′,β,β′,γ)
z f(z) = χ1(α, α′, β, β′,−γ)zα+α′+γI

(α,α′,β,β′,γ)
(0,z) f(z).

whereχ1(α, α′, β, β′,−γ) is given by (1.3).
By using the formula ([9, p. 394]; see also [4, p. 170, Lemma 9])

(3.3) I
(α,α′,β,β′,γ)
0,z zq

=
Γ(1 + q)Γ(1 + q − α′ + β′)Γ(1 + q − α− α′ − β + γ)

Γ(1 + q + β′)Γ(1 + q − α′ − β + γ)Γ(1 + q − α− α′ + γ)
zq−α−α′+γ,

(γ > 0; α, α′, β, β′ ∈ R; q > max (0, α′ − β′, α + β − γ)− 1)
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it follows from (1.1), (3.2) and (3.3) that

(3.4) Ω(α,α′,β,β′,γ)
z f(z) = z + χ1(α, α′, β, β′,−γ)

∞∑
k=2

ak

χk(α, α′, β, β′,−γ)
zk,

where (as before)χk(α, α′, β, β′,−γ) is given by (1.3).
Before stating and proving our main inclusion theorem, we recall here the following known

results concerning the classR(ρ) in A which satisfies the inequality that<{f ′(z)} > ρ(0 ≤
ρ < 1), whereR(1) is denoted byR.

Lemma 3.1([3, p. 141]). Letf(z) ∈ R, then

(3.5) f(z) ∈ Hp : (0 < p < ∞).

Lemma 3.2([5, p. 533]). Letf(z) defined by (1.1) be in the classR(ρ) (0 ≤ ρ < 1), then

(3.6) |ak| ≤
2

k
(k = 2, 3, 4, ...).

Theorem 3.3.Letf(z) ∈ R, then (under the constraints stated in (3.1))

(3.7) Ω(α,α′,β,β′,γ)
z f(z) ∈ Hp (0 < p < ∞)

and

(3.8) Ω(α,α′,β,β′,γ)
z f(z) ∈ H∞ (γ > 1).

Proof. In view of (1.6) and (3.2), we obtain

(3.9) Ω(α,α′,β,β′,γ)
z f(z) = χ1(α, α′, β, β′,−γ)

×
∫ 1

0

(1− t)γ−1t−α′
F3

(
α, α′, β, β′; γ; 1− t, 1− 1

t

)
f(zt)dt.

This implies that

(3.10) Re

{
d

dz
Ω(α,α′,β,β′,γ)

z f(z)

}
= χ1(α, α′, β, β′,−γ)

∫ 1

0

(1− t)γ−1t1−α′
F3

(
α, α′, β, β′; γ; 1− t, 1− 1

t

)
<{f ′(zt)} dt.

Sincef(z) ∈ R, therefore, we infer from (3.10) that

(3.11) Ω(α,α′,β,β′,γ)
z f(z) ∈ R,

and applying Lemma 3.1, (3.11) gives the inclusion relation (3.7) under the conditions stated in
(3.1).

To prove the result (3.8), we observe the following three-term recurrence relation:

(3.12)
d

dz
Ω(α,α′,β,β′,γ)

z f(z)

= z−1
{

(γ − α′ − β + 1) Ω(α,α′,β,β′,γ−1)
z f(z)− (γ − α′ − β) Ω(α,α′,β,β′,γ)

z f(z)
}

,

which yields the inequality

(3.13)

∣∣∣∣ d

dz
Ω(α,α′,β,β′,γ)

z f(z)

∣∣∣∣p ≤ r−p
{

(γ − α′ − β + 1)
p
∣∣∣Ω(α,α′,β,β′,γ−1)

z f(z)
∣∣∣p

− (γ − α′ − β)
p
∣∣∣Ω(α,α′,β,β′,γ)

z f(z)
∣∣∣p} (|z| = r) ,
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provided that

γ > 1; min (1+γ−α−α′, 1+γ−α′−β, 1+β′, 1+γ−α−α′−β, 1+β′−α′) >−1;(3.14)

α, α′, β, β′ ∈ R

and0 < p < ∞.
Making use of (1.14) and (1.15), the above inequality (3.13) (withp = 1) yields

(3.15) M1

(
r,

d

dz
Ω(α,α′,β,β′,γ)

z f(z)

)
≤ r−1

{
(γ − α′ − β + 1) M1

(
r, Ω(α,α′,β,β′,γ−1)

z f(z)
)

− (γ − α′ − β) M1

(
r, Ω(α,α′,β,β′,γ)

z f(z)
)}

and

(3.16)

∥∥∥∥ d

dz
Ω(α,α′,β,β′,γ)

z f(z)

∥∥∥∥
1

≤ (γ − α′ − β + 1)
∥∥∥Ω(α,α′,β,β′,γ−1)

z f(z)
∥∥∥

1

− (γ − α′ − β)
∥∥∥Ω(α,α′,β,β′,γ)

z f(z)
∥∥∥

1
.

Applying (3.7), we infer (under the constraints stated in (3.14)) that

(3.17) Ω(α,α′,β,β′,γ−1)
z f(z) ∈ H1 and Ω(α,α′,β,β′,γ)

z f(z) ∈ H1 (γ > 1),

and consequently (3.16) implies that

d

dz
Ω(α,α′,β,β′,γ)

z f(z) ∈ H1,

provided that the conditions stated in (3.14) are satisfied. By appealing to a known result
[1, p. 42, Theorem 3.11], we infer from (3.17) thatΩ

(α,α′,β,β′,γ)
z f(z) is continuous inU∗ =

{z : z ∈ C and |z| ≥ 1} . But U∗ being compact, we finally conclude thatΩ
(α,α′,β,β′,γ)
z f(z) is a

bounded analytic function inU, and the proof of the second assertion (3.8) of Theorem 3.3 is
complete.

The assertion (3.8) of Theorem 3.3 can also be proved by applying Lemma 3.2 (see also [3,
p. 145]). Indeed, it follows from (3.4) and (3.6) that∣∣∣Ω(α,α′,β,β′,γ)

z f(z)
∣∣∣ ≤ |z|+ χ1(α, α′, β, β′,−γ)

∞∑
k=2

|ak|
χk(α, α′, β, β′,−γ)

∣∣zk
∣∣

≤ 1 + 2 : χ1(α, α′, β, β′,−γ)
∞∑

k=2

Γ(k)

Γ(k + 1)χk(α, α′, β, β′,−γ)

= 1 +
2(2− α′ + β′)(2− α− α′ − β + γ)

(2 + β′)(2− α− α′ + γ)(2− α′ − β + γ)

× 4F3

[
1, 2, 3− α′ + β′, 3− α− α′ − β + γ;

3 + β′, 3− α− α′ + γ, 3− α′ − β + γ;

∣∣∣∣ 1

]
in terms of the generalized hypergeometric function.

Now, for fixed values of the parametersα, α′, β, β′, γ satisfying the conditions stated in (3.1),
we observe that by using the asymptotic formula [10, p. 109],

Γ(k)

Γ(k + 1)χk(α, α′, β, β′,−γ)
= o

(
k−γ−1

)
(k →∞),

and sinceγ > 1, this proves our assertion (3.8). �
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4. CONCLUDING REMARKS

In view of the relationships (1.10) and (1.12), the main results (Theorems 2.1 and 3.3) of this
paper would correspond to the results due to Raina and Srivastava [8, p. 75, Theorem 1; p. 79,
Theorem 7]. Furthermore, in view of the relationship (1.13), we can easily apply Theorems
2.1 and 3.3 to obtain the corresponding results associated with Dziok’s differential-integral
operators [2]. The family of fractional calculus operators (fractional integrals and fractional
derivatives) defined by (1.6) and (1.8) can fruitfully be used in Geometric Function Theory.
Several new analytic, multivalent (or meromorphic) function classes can be defined and the
various properties of coefficient estimates, distortion bounds, radii of starlikeness, convexity
and close to convexity for such contemplated classes investigated.

REFERENCES

[1] P.L. DUREN,Theory ofHp Spaces, Vol. 38, A series of monographs and textbooks in pure and
applied mathematics, Academic Press, New York, 1970.

[2] J. DZIOK, Applications of the Jack lemma,Acta Math. Hungar.,105(2004), 93–102.

[3] I. B. JUNG, Y. C. KIM AND H. M. SRIVASTAVA, The Hardy space of analytic functions associated
with certain one-parameter families of integral operators,J. Math. Anal. Appl.,176 (1993), 138–
147.

[4] V. KIRYAKOVA, On two Saigo’s fractional integal operators in the class of univalent functions,
Fracl. Cal. Appld. Math.,9 (2006), 159–176.

[5] T.H. MACGREGOR, Functions whose derivative has a positive real part,Trans. Amer. Math. Soc.,
104(1962), 532–537.

[6] R.K. RAINA AND T.S. NAHAR, Characterization properties for starlikeness and convexity of some
subclasses of analytic functions involving a class of fractional derivative operators,Acta Math.
Univ. Comenianae,69 (2000), 1–8.

[7] R.K. RAINA AND H.M. SRIVASTAVA, A certain subclass of analytic functions associated with
operators of fractional calculus,Comput. Math. Appl.,32 (1996), 13–19.

[8] R.K. RAINA AND H.M. SRIVASTAVA, Some subclasses of analytic functions associated with
fractional calculus operators,Comput. Math. Appl.,37 (1999), 73–84.

[9] M. SAIGO AND N. MAEDA, More generalization of fractional calculus, In:Transform Methods
and Special Functions, Varna’96 (Proc. Second Internat. Workshop), Science Culture Technology
Publishing, Singapore (1998), 386-400.

[10] H.M. SRIVASTAVA AND P.W. KARLSSON,Multiple Gaussian Hypergeometric Series, Halsted
Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1985.

[11] H.M. SRIVASTAVA AND S. OWA,Current Topics in Analytic Function Theory, World Scientific
Publishing Company, Singapore, New Jersey, London and Hongkong, 1992.

[12] H.M. SRIVASTAVA, M. SAIGO AND S. OWA, A class of distortion theorems involving certain
operators of fractional calculus,J. Math. Anal. Appl.,131(1988), 412–420.

J. Inequal. Pure and Appl. Math., 10(1) (2009), Art. 14, 7 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction, Definitions and Preliminaries
	2. A Set of Coefficient Bounds
	3. Inclusion Relations
	4. Concluding Remarks
	References

