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Abstract

We establish connections between invariant means and set ideals. As an appli-
cation, we obtain a necessary and sufficient condition for the separation almost
everywhere of two functions by an additive function. We also derive the stability
results for Cauchy’s functional equation.
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Let M be an invariant mean on the spagées, R) of all real bounded functions

on a semigroup. We say that the subsdtof S is a zero set fol/ if M(x4) =

0, wherex 4 denotes the characteristic function of a get Zero sets for an
invariant meanV/ are regarded as small sets. On the other hand, in literature we
can find the axiomatic definition of a family, named set ideal, of a small subset
of a semigroupS. In the first part we study connections between families of
zero sets and set ideals. As a consequence, we obtain, for every sef ideal _

. k ) . Invariant Means, Set Ideals and
subsets of5 the existence of such an invariant meahon B(S,R) for which Separation Theorems
elements of7 are zero sets faob/.

In the second part of this paper we consider some functional inequalities.
We give a necessary and sufficient condition for the existence of an additive _
function which separates almost everywhere two functions. As an application Title Page
of our result, we derive a generalization of the Gajda-Kominek theorem on a Contents
separation of subadditive and superadditive functionals by an additive function.
We also give stability properties of the Cauchy functional equation.
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In this section we assume thi, +) is a semigroup.

Definition 2.1. A non-empty family7 of subsets of will be called a proper
set ideal if

(2.1) S¢&JT;
(2.2) A BeJ = AUBeJ;
(2.3) Ae JANBCA=— BeJ. Invariant Means, Set Ideals and

Separation Theorems
Moreover, if the sefA = {x € S : a + x € A} belongs to the family/
whenever € S and A € J then the set ideal/ is called proper left quasi-
invariant (in short p.l.g.i.). Analogously, the set idedlis said to be proper
right quasi-invariant (p.r.q.i.) if the setl, = {x € S : x + a € A} belongs
to the family7 whenever € S and A € J. In the case where the set ideal Contents
satisfies both these conditions we shall call it proper quasi-invariant (p.g.i.).
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The sets belonging to the set ideal are regarded as, in a sense, small sets >

(see Kuczmal?]). For example, ifS is a second category subsemigroup of a
topological group’ then the family of all first category subsets®is a p.q.i. Go Back
ideal. If G is a locally compact topological group equipped with the left or right

Haar measurg and if S is a subsemigroup a& with positive measurg then Close
the family of all subsets of which have zero measuyeis a p.q.i. ideal. Also, Quit
if S'is a normed spacelim S > 1) then the family of all bounded subsets®f Page 4 of 21
iS p.q.i. ideal.
Let 7 be a set ideal of subsets 8f For a real functiory on S we defineJ; 3.Ineq. Pure and Appl. Math. 6(1) Art. 18, 2005
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of A. Areal functionf on S is called.7-essentially boundeid and only if the
family J; is non-empty. The space of afl-essentially bounded functions 6h
will be denoted byB7 (S, R).

For every element of the spaceé3” (S, R) the real numbers

(2.4) J —essuf f(z) = sup ot f (2),
(2.5) J —essup f(zr) = inf sup f(x)
zes ACTf zeS\A

are correctly defined and are referred to as jhessential infimunand the
J-essential supremuwof the functionf, respectively.

Definition 2.2. A linear functional M on the space3(S,R) is called a left
(right) invariant mean if and only if

(2.6) gicrelgf(x) < M(f) < sggf(x);
(2.7) M(of) = M(f) (M(fa)=M(f))

forall f € B(S,R)anda € S, where, f and f, are the left and right translates
of f defined by

o (@)= fla+2x), fux)=f(r+a), ze€S.

A semigroupS which admits a left (right) invariant mean aB (S, R) will be
termed left (right) amenable. If on the spaBéS, R) there exists a real linear

Invariant Means, Set Ideals and
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One can prove that every Abelian semigroup is amenable. For the theory of
amenability see, for example, Greenleaf]|

Remark 1. In this paper, in the proofs of our theorems we restrict ourselves to
the "left-hand side versions". The proofs of the "right-hand side versions" and

"two-sided versions" are literally the same.
Let us start with the following observation.

Theorem 2.1.1If S is a semigroup and// is a left (right) invariant mean on
B(S,R) thenu,, : 2° — R defined by the following formulae

(2.8) par(A) = M(xa), ACS,

wherey 4 denotes the characteristic function of a sktis an additive normed
measure defined on the family of all subsets$ afivariant with respect to the
left (right) translations.

Proof. From (2.6) it follows immediately thaju,,(()) = 0. The linearity of M
shows thaju,, is additive:

par(A) + par(B) = M(xa) + M(x5) = M(xaus) = pu(AU B),

forall A, B ¢ S, AnNB = (). The leftinvariance o implies the left invariance
of Mar-

par(aA) = M(x,4) = M(xa) = pa(A),
forall A C S anda € S. Finally, from 2.6) we infer thatu,,(S) = M (xs) =
1. O
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If M is an left (right) invariant mean oB(S, R) then by.7,, we denote the
family of all subsets of which have zero measure,,

Theorem 2.2.1f S is a semigroup and// is a left (right) invariant mean on
B(S,R) then the family7,, is a proper left (right) quasi-invariant ideal of
subsets of.

Proof. By (2.6), ua(S) = 1. Hence,S & J.
Next we choose arbitrary, g € B(S,R) such thatf < g. The additivity of
M and @.6) yields

0<M(g—f)=M(g) - M(f).
So, we get the monotonicity dif:
(2.10) f,9€ BISSR)A f<g= M(f) < M(g).
Therefore, ifA € 7y, andB C Athen
0 < M(xp) < M(xa) =0,
which means thaB € 7,; and forA, B € J,; we have
0 < M(xauB) < M(xa+xB) = M(xa) + M(xz) =0,

whenceA U B € J,,. Moreover, forA € J,, anda € S, by the left invariance
of M we obtain
0 < M(x,a) = M(xa) =0,

which implies that, A € 7, and the proof is finished. O
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Hence, the family7,, of all zero sets for every invariant medr forms a
proper set ideal of subsets §f The following question arises: it is true that
for every proper set idegl of subsets of5S there exists an invariant mead
on B(S,R) for which elements of7 are zero sets{ C Ju)? To answer

to this question first we quote the following theorem which was proved using

Silverman’s extension theorem by Gajda % [

Theorem 2.3.1f (S, +) is a left (right) amenable semigroup agdis a p.l.qg.i.
(p.r.g.i.) ideal of subsets df, then there exists a real linear function&l” on
the spaceB (S, R) such that

(2.11) J — essnf f(z) < M7 (f) < J — esssup f(x)
xe zeS

and

(2.12) M7 (of) = M7 (f) (M7 (f.) = M7(f)),

forall f € B7(S,R)and alla € S.
We can find an elementary and short proof of this factlj$ee also ]).

Remark 2. We already know that for every p.l.g.i. (p.r.q.i.) idgabf subsets of
the left (right) amenable semigroupthere exists a left (right) invariant mean
M7 on the space3’ (S,R). Of course, the restriction of/” to the space
B(S,R) is a left (right) invariant mean on this space. Moreover, BylL() we
have

M7(xa)=0, Ae€J,
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which means that for every p.l.g.i. (p.r.q.i.) idedl of subsets of the left
(right) amenable semigroup’ there exists a left (right) invariant meam/
(M = M7|sr) on the space3(S, R) such that

(2.13) J C Iwm-

As simple applications of our observation we obtain the following known
facts.

Example 2.1. Let (Z,+) be a group of integers and |é¥ denote the set of
positive integers. The family” of all subsetsA of Z for which there exists
K € ZsuchthatA C {k € Z : k > K} forms a p.q.i. ideal of subsets @f
Hence, there exists an additive normed meagufe = 15, for some invariant
mean ) defined on the family of all subsets Bfinvariant with respect to
translations such that

u(N) =0.

Analogously, if(S,+) = (R,+) and A € J iff there existsK" € R such that
AcC{reR:x> K}thenJ is a p.q.i. ideal of subsets & and there exists
an additive normed measuredefined on the family of all subsets®variant
with respect to translations such that

((a, +o0) = 0,

forall a € R.

Now we formulate the theorem which generalized Cabello Sdnchez’s Lemma

6 from [5].
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Theorem 2.4.Let 7 be a p.l.q.i. (p.r.g.i.) ideal of subsets of a semigrgupf
the set ideal7 satisfies the following condition

for every elementl of the set ideaf'there exists an elemeatof S
(2.14) suchthat AN, A=0(ANA, =0),
then
J C Ju,
for every left (right) invariant mead/ on the space3(S, R).

Proof. Let A € J be fixed and letM be a left invariant mean on the space
B(S,R). Suppose to the contrary that

M(xa) #0.

Putting A, = A and fy = x4,, by our hypothesis and conditio&.¢) we have

0 = inf fo(z) < M(fo) <sup fo(r) = 1.
€S xS
Now, let f; be the real function oy’ defined byf, = fy +., fo, Where the
elementa, € S is associated with the sély by condition ¢.14). Then the set
Ay = AgU,, Ay isin J. Moreover, applying the properties of the left invariant
mean we have

M(f1) = M(fo+ay fo) = M(fo) + M(aefo) = M(fo) + M(fo) = 2M(fo)

and
0= ;lggfl(x) < M(f1) <sup fi(z) =1.

T€S
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Next, letfs = fi +., f1, where the element, € S is associated with the sdf,
by condition @.14). ThenA, = A; U,, 4, € J and

M(f2) = M(f1+a, f1) =2M(f1) = 22M(f0),

0= glﬁlelgfz(w) < M(f2) <sup fa(z) = 1.

z€eS
Inductively we construct the sequence of real functignen S such that

0= inf fu(x) < M(f,) = 2'M(fy) < sup fofa) = 1, n €N
ze zeS

which is false. Hence) (fo) = M(xa) = 0, which means thatl € 7,, and
thus ends the proof. O

Remark 3. Observe that the family, of all bounded sets of a normed space
S (dim S > 1) yields an example of a p.q.i. ideal of subsetsSdiulfilling
condition @.14). Therefore,

Ty C I,

for every invariant mead/ on B(S,R). Moreover, the family7; of all finite
subsets of also forms a p.q.i. ideal of subsets®ftnd.J; ¢ J,. Hence

Jr & T CImn

for every invariant mean\/ on B(S,R) which shows that in4.13 we have

only inclusion. This answers the question posed by Zs. Pales on the equality in

(2.13.

Finally, to summarize the results just obtained, we note the following.
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Remark 4. Let S be a left amenable semigroup and lebe a subset of.

If
AU, AU.. U, A S,

forall ai,as,...,a, € Sandn € N, then the setl generates a p.l.g.i. ideal of
subsets ob. Hence, using Rematk the setA is a zero set for some invariant
mean)M on the spacé3 (S, R) (A € Ju).

If there existn € N anday, as, ..., a, € S such that
AU, AU U, A= S,

then for every invariant meal/ on the spacé (S, R) we have

- ( ) (XmA Uaz A U. Uan A)
SM( A+ Xap A +xa1A>

= M(xa,A) + M (XayA) + ...+ M(Xa, A)
M(xA),

which means thatl ¢ 7).

The "right-hand side version" of this observation is analogous to the one

presented above.
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Let S be a semigroup and Igt be a proper ideal of subsets ®f Then we say
that a given condition is satisfied-almost everywhere ofi (written 7-a.e. on
S) if there exists a setl € 7 such that the condition in question is satisfied for
everyr € S\ A.

Moreover, the symbdl(.7) will stand for the family of all setsv C S x
with the property that

N[l’] — {y cs: ($ y) c N} eJ J—a.e.onG. Invariant Means, Set Ideals and

Separation Theorems

The familyQ(.7) forms a proper ideal of subsets $fx S (see Kuczmal?)). Roman Badora
We are now in a position to formulate and prove the main result of this sec-
tion which is the "almost everywhere version" of the result proved by Pales in

Title Page
[14] (see also4]).

Contents
Theorem 3.1.Let (S, +) be a left (right) amenable semigroup, [étbe a p.1.q.i.
(p.r.q.i.) ideal of subsets of and letp, ¢ : S — R . Then there exists a map b dd
a: S — R such that < S
(3.1) alx+y) =a(x)+aly) QUT)—a.e.onS xS Go Back
and Close

Quit

(3.2) p(z) <al(x) <q(zr) J—aeons
Page 13 of 21

if and only if there exists a functiop: S — R such that
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Proof. Assume that: satisfies 8.1) and 3.2) and lety = . Condition 3.1)
implies that there exists a séf € Q(7) such that

(B4)  e(z+y) —ely) =alz+y)—aly) =az), (z,y)€S*\ M.

Now, choosd/ € J such thatV[z] € 7, forallz € S\ U. Next, by 3.2) we
get the existence of a skt 7 such that

(3.5) p(z) <a(z) < qg(z), v€S\V.
By W we denote the set of all paifs, y) € S? such that

p(x) <z +y) —ply) < q()

do not hold. Putting3.4) and @.5) together, we infer that/'[z] C M|[z] € 7,
forallz € S\ (U UV), which impliesiW € Q(J). So, the functiornp satisfies
(3.3.

Assume thatg.3) is valid with a certain functiorp : S — R. Then there
exists a sefl/ € Q(J) such that

p(x) < p(r+y) —o(y) < q(@), (z,y)€ S\ M.

SinceM € Q(J), one can find a se/ € J such thatM[z] € 7, for all
x € S\ U. Now, given an element € S \ U we have

(3.6) p(r) < @z +y) —e(y) <qlz), y €S\ Mzl
which means that for any fixed e S\ U the function

Sy —owlr+y) -y eR
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belongs to the spacg’ (S, R).

Let M7 represent a left invariant mean on the spacl S, R), whose ex-
istence results from Theoret3. The functiona : S — R is defined by the
formula

a(z) = { M (p(x+y) —¢(y), forzeS\U

0, forz e U,
where the subscriptindicates that the meaw 7 is applied to a function of the Invariant Means, Set Ideals and
variabley. Separation Theorems
If we chooseu,v € S\ U in such a manner that+ v € S\ U too, then by Roman Badora
the left invariance and linearity df/7, we get
Title Page
a(u) + a(v) = M (o(u+y) — o(y) + M (v +y) — () <
_ asT g Contents
= M (p(u+v+y)—pv+y)+ M (olv+y) —py))
= M (p(u+v+y) = p(y)) = alu+v). « dd
4 4
This means that(u + v) = a(u) + a(v), for all (u,v) € S*\ W, where
Go Back
W=UxS)U(SxU)U{(u,v)eS*: u+veclU}. ——
It is clear thatiV € () and we get§.1). Moreover, conditionZ.11) jointly Quit
with the definition ofe and @3.6) implies 3.2) and completes the proof. [ Page 15 of 21
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Corollary 3.2. Let (S, +) be a left (right) amenable group, letf be a p.l.g.i.
(p.r.q.i.) ideal of subsets ¢f and letp, g : S — R. Then there exists an additive
functionA : S — R such that

(3.7) p(r) < A(zx) < q(z) J —a.e.onS
if and only if there exists a functiop: S — R such that
(3.8)  plr) <wlz+y) —ely) <qlz) QT)—ae ons xS

Proof. The proof of this theorem is a consequence of our previous result and the
Cabello Sanchez theoreni([Theorem 8]) which is a version of the celebrated
theorem of de Bruijn (seé]) and its generalization given by Ger (s€€]) and
which shows that for a map : S — R fulfilling (3.1) there exists an additive
functionA : S — R such that

a(z) = A(x) J —a.e.onS.
0

As a consequence of this fact we obtain the following (see Gajda, Kominek
[2] and Cabello Sanchez]).

Theorem 3.3.Let (S, +) be an Abelian group and lef be a p.l.g.i. (p.r.q.i.)
ideal of subsets of. If f,¢: S — R satisfy

fle+y) < fl@)+ fly) UT) —aeonS xS

g +y) > g(x) +9(y) UAT)—aeonSxS

Invariant Means, Set Ideals and
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and
J —a.e.onS

g(z) < f(x)

then there exists an additive functigh: S — R such that
g(z) < a(z) < f(x)
Proof. Assume that/;, V; € J satisfy: forz € S\ Uy

fle+y) < fl@)+ fly), ye€S\ W
and letls,, V, € J satisfy: forz € S\ Us

J —a.e.ons.

g(x+y) >g(x)+9(y), yeS\Va.

Moreover, letl/, be such that
g(x) < f(z), zeS\Uy.

Then, forx € S\U, whereU = UyUU, UU, and fory € S\ (V;UVLUU,U, Up)
we have

flz+y) —gly) = g(x+y) —g(y) > g(z).

Hence, one can define a functign: S — R by p(z) = 0, if z € U and for
z e S\Uhby
p(z) = essinf(, f — g)(t).

Suppose that andz + y are inS \ U. Then, as in{], we can show that

9(z) < plz+y) —oly) < f(a).
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Now, takingN = (U x S) U {(z,y) € S* : x + y € U} we observe thalv €
Q(J) which means thap satisfies condition3.8) and an appeal to Corollary
3.2completes the proof. O

The next application concerns the stability problem for Cauchy’s functional
equation. On account of similarity we restrict our considerations to the "Ger-

additive" functions.

Theorem 3.4.Let (S, +) be a left (right) amenable semigroug, be a p.l.q.i.
(p.r.q.i.) ideal of subsets & and letp : S — R. Moreover, letf : S — R be a
function such that for a certain séf € Q(7), the inequality

[f(@+y) = flz) = Fy)] < p(x)

(1f(@+y) = f@) = FW)] < p())

holds whenevefz,y) € S x S\ N. Then there exists a map: S — R such
that

(3.9) a(z+y) =a(x) +aly) QUJT)—aeonS xS
and
(3.10) |f(z) —a(x)| < p(z) T —a.e.onS.

Proof. The functionsp = f — p, ¢ = f + p andy = f satisfy condition
(3.3). Theorem3.1yields a map fulfilling (3.9) and @.10, and the proof is
complete. ]

For groups we have the following result.

Invariant Means, Set Ideals and
Separation Theorems

Roman Badora

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 18 of 21

J. Ineq. Pure and Appl. Math. 6(1) Art. 18, 2005

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:robadora@ux2.math.us.edu.pl
http://jipam.vu.edu.au/

Corollary 3.5. Let (S,+) be a left (right) amenable group7 be a p.l.q.i.
(p.r.q.i.) ideal of subsets ¢f and letp : S — R . Moreover, letf : S — R be
a function such that for a certain sét € 2(7), the inequality

|flz+y) = flz) = fy)] < plz)

(If (@ +y) = fz) = fW)] < p(y))

holds whenevefz, y) € S x S\ N. Then there exists an additive mdp S —
R such that Invariant Means, Set Ideals and
|f(l’) . A(JJ)| S p(x) j —qg.e.0onsS. Separation Theorems

. ) Roman Badora
Remark 5. The vector-valued versions of the above results can be obtained

using the techniques presented i}, [[ 6] or [ 2].
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