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1. Introduction

The theory of function spaces appears at first to be a disconnected subject, because

of the variety of spaces and the different considerations involved in their defini-
tions. There are the Lebesgue spatgR?), the Sobolev space$®(R?), the Besov
spacesB;g(Rd), the BMO spaces (bounded mean oscillation) and others.
Nevertheless, several approaches lead to a unified viewpoint on these spaces,
for example, approximation theory or interpolation theory. One of the most suc-
cessful approaches is the Littlewood-Paley theory. This approach has been de-
veloped by the European school, which reached a similar unification of function
space theory by a different path. Motivated by the methods of Hormander in study-
ing partial differential equations (se6]], they used a Fourier transform approach.
Pick Schwartz functiong and y on R¢ satisfyingsupp Y C B(0,2), Suppg/b\ C
{¢ e R, 1 < ||| <2}, and the nondegeneracy conditigi(¢)], 16(£)] > C > 0.
Forj € Z, let¢;(x) = 274¢(27z). In 1967 Peetrel[]] proved that

1

2

[ £l s ray 2= lIx * fllz2gay + (Z 227 ||, f”i?(Rd)> :
j=1

Independently, Triebelll] in 1973 and Lizorkin 8] in 1972 introducedr; , (the
Triebel-Lizorkin spaces) defined originally foK p < oo and1 < ¢ < oo by the norm

(1.1)

(1.2) 1f 1, = I * flleey + (Z(T%J’ * f|)q>

P>
szt LP(R4)

For the special casg= 1 ands = 0, Triebel [L6] proved that

(1.3) LP(RY) ~ FY,.

Thus by the Littlewood-Paley decomposition we characterize the functional spaces
LP(RY), Sobolev spaces/*(R%), Holder space<*(RY) and others. Using the
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Littlewood-Paley decomposition J.M. Bony id][ built the paraproduct operators
which have been later successfully employed in various settings.

The purpose of this paper is to generalize the Littlewood-Paley theory, to unify
and extend the paraproduct operators which allow the analysis of solutions to more
general partial differential equations arising in applied mathematics and other fields.
More precisely, we define the Littlewood-Paley decomposition associated with the
Dunkl operators. We introduce the new spaces associated with the Dunkl opera-
tors, the Sobolev spacdg;(R?), the Holder space€’;(R?) and the BM O, (R?)
that generalizes the corresponding classical spaces. The Dunkl operators are the
differential-difference operators introduced by C.F. Dunkl3hdnd which played
an important role in pure Mathematics and in Physics. For example they were a main
tool in the study of special functions with root systems (g8 [ Title Page

As applications of the Littlewood-Paley decomposition we establish results analo-
gousto (.1) and (L.3), we prove the Sobolev embedding theorems, and the Gagliardo-
Nirenberg inequality. Another tool of the Littlewood-Paley decomposition associ- <« Y
ated with the Dunkl operators is to generalize the paraproduct operators defined by

J
P

Littlewood-Paley Decomposition
Hatem Mejjaoli

vol. 9, iss. 4, art. 95, 2008

Contents

J.M. Bony. We prove results similar ta][ < 4
The paper is organized as follows. In Sectiowe recall the main results about Page 4 of 46
the harmonic analysis associated with the Dunkl operators. We study in Section
3 the Littlewood-Paley decomposition associated with the Dunkl operators, we give Go Back
the sufficient condition on,, so thatu := ) u,, belongs to Sobolev or Holder spaces Full Screen
associated with the Dunkl operators. We finish this section by the Littlewood-Paley
decomposition of the Lebesgue spaéégR?) associated with the Dunkl operators. Close
In Section4 we give some applications. More precisely we establish the Sobolev
embedding theorems and the Gagliardo-Nirenberg inequality. Settodevoted journal of inequalities

in pure and applied
mathematics
issn: 1443-575k

to defining the paraproduct operators associated with the Dunkl operators and to
giving the paraproduct algorithm.

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:hatem.mejjaoli@ipest.rnu.tn
http://jipam.vu.edu.au

2. The Eigenfunction of the Dunkl Operators

In this section we collect some notations and results on Dunkl operators and the

Dunkl kernel (seed], [4] and [5]).

2.1. Reflection Groups, Root System and Multiplicity Functions

We considerR? with the euclidean scalar produ¢t-) and ||z|| = \/(z,z). On
C9, || - || denotes also the standard Hermitian norm, whilev) = Z] | 2505

Fora € R?\{0}, let o, be the reflection in the hyperplai#é, C R? orthogonal
toq,i.e.

(0.2)
ol

(2.1) oa(x) =2 —2

Afinite setkR ¢ R4\ {0} is called aroot system RNR-a = {a, —a} ando,R = R
for all « € R. For a given root systerR the reflections,,, o € R, generate a finite
groupW C O(d), called the reflection group associated with All reflections
in W correspond to suitable pairs of roots. For a giye R¥\U,crH,, We fix
the positive subsysterl®, = {a« € R : («, 5) > 0}, then for eachv € R either
a € R, or—a € R.. We willassume thate, o) = 2foralla € R, .

A functionk : R — C on a root systeng is called a multiplicity function if it
is invariant under the action of the associated reflection gibudf one regards:
as a function on the corresponding reflections, this means:tlsatonstant on the
conjugacy classes of reflectionslii. For brevity, we introduce the index

(2.2) y=v(k) = > k()

acER

Littlewood-Paley Decomposition
Hatem Mejjaoli

vol. 9, iss. 4, art. 95, 2008

Title Page
Contents
44 44
< >
Page 5 of 46
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:hatem.mejjaoli@ipest.rnu.tn
http://jipam.vu.edu.au

Moreover, letv, denote the weight function

(2:3) wr(z) = T e a) P,

acRy
which is invariant and homogeneous of degeee We introduce the Mehta-type
constant

(2.4) Ck :/ o3 wi(z)dz.
R

2.2. Dunkl operators-Dunkl kernel and Dunkl intertwining operator

Notations. We denote by

— C(RY) (resp. C.(R%)) the space of continuous functions &4 (resp. with
compact support).

— E£(RY) the space of*>°-functions onR<.

— S(RY) the space of’><-functions onR¢ which are rapidly decreasing as their
derivatives.

— D(RY) the space of>°-functions onR? which are of compact support.

We provide these spaces with the classical topology.
Consider also the following spaces

— &'(RY) the space of distributions d&' with compact support. Itis the topolog-
ical dual of€(RRY).
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— §'(R?) the space of temperate distributions®h It is the topological dual of
S(RY).

The Dunkl operator§}, j = 1,...,d, onR? associated with the finite reflection
groupW and multiplicity functionk are given by

@5) D) = o f@)+ 3 Maa, IO e gy

(o, )

In the casé: = 0, theT}, j = 1,...,d, reduce to the corresponding partial deriva-
tives. In this paper, we will assume throughout that 0.
Fory € RY, the system

T']u(:uy) = yju(xay)a ] = 17 cee ada
u(0,y) =1,

admits a unique analytic solution &¢¥, which will be denoted by< (, 3y) and called
the Dunkl kernel. This kernel has a unique holomorphic extensidifte C?. The
Dunkl kernel possesses the following properties.

forall y € R?

Proposition 2.1. Letz, w € C?, andz,y € R%.
)
(2.6) K(z,w) = K(w,z2), K(z0)=1 and
K(A\z,w) = K(z,\w), forall A eC.

i) Forall v € NY, 2z € R?andz € C¢, we have

(2.7) IDYK (2, 2)] < ||l exp(fl]l]| Re 2[)),
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and for allz, y € R?:

(2.8) | K (i, y)] < 1,

W|thDZ:#and|V| :V1+"‘+Vd.
Y<d

vy
27"

iy Forall z,y € R* andw € W we have

(29) K(—im, y) _ m and K(wx’ wy) _ K(x’ y) Littlewood-Paley Decomposition

Hatem Mejjaoli
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— H(CY) the space of entire functions d@&f, rapidly decreasing of exponential
type.

— H(C?) the space of entire functions d@if,, slowly increasing of exponential
type.

We provide these spaces with the classical topology.
The Dunkl transform of a functioy in D(R?) is given by

(2.11) Fo(f)ly) = B f(2)K(—iy, )wy(z)dz, forally € R%

Ck JRd

It satisfies the following properties:

i) For fin L}(R?) we have
(2.12) IFo( Pl < ol e
i) ForfinS(R%) we have
(2.13) vy eRY, Fo(Tif)(y) =iy Fo(f)y), 7=1,....d.

jii) Forallfin L}(R%) suchthatFp(f)isin L}(R?), we have the inversion formula

(2.14) fly)= [ Fp(f)(x)K(ix,y)w(z) dz, a.e.

R4
Theorem 2.2. The Dunkl transforn¥, is a topological isomorphism.

i) From S(R?) onto itself.
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i) From D(R?) onto H(C?).
The inverse transforrf ;' is given by
(2.15) vy e R, FRN(F)y) = Fo(f)(—y), feSERY.
Theorem 2.3. The Dunkl transforn¥, is a topological isomorphism.
i) FromS'(R%) onto itself.
i) From&'(R%) ontoH(CY).
Theorem 2.4.

i) Plancherel formula fotFp. For all f in S(R?) we have
@18) [ If@Pads = [ PR
Rd Rd

ii) Plancherel theorem fa¥ . The Dunkl transfornf — Fp(f) can be uniquely
extended to an isometric isomorphism BH{R?).

2.4. The Dunkl Convolution Operator

Definition 2.5. Lety be inR?. The Dunkl translation operatof — 7, f is defined
onS(RY) by

(2.17) Fo(r,f)(x) = K(iz,y) Fp(f)(z), forall z € R
Example2.1 Lett > 0, we have

(e Y () = =P K (200 ), forall € RY
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Remarkl. The operator,, y € R?, can also be defined ¢f(R?) by
(2.18) Ty f (@) = (Vi)e (Vi) [(Vi) T (F)(z + »)],
(see [L9)).

At the moment an explicit formula for the Dunkl translation operators is known
only in the following two cases. (Se&]] and [13)).

forall x € R?

e It cased =1 andW = Z,.

e 2" case For all f in £(R?) radial we have

(219) 7f(2) = Vi |fo (VI + g2 +2(,})| (), forallz e R,
with f, the function on0, oo given by
f@) = folll]).

Using the Dunkl translation operator, we define the Dunkl convolution product of
functions as follows (se€ll] and [18]).

Definition 2.6. The Dunkl convolution product gf and g in D(R?) is the function
f *p g defined by

(2.20) f*pg(xr) = /Rd Tof (=) g(y)wr(y)dy, forall z € R?

This convolution is commutative, associative and satisfies the following proper-
ties. (Seel3).
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Proposition 2.7.

i) For f andg in D(R?) (resp. S(R%)) the functionf *p g belongs toD(R?)
(resp.S(R%)) and we have

Fo(f*p 9)(y) = Fo(f)()Fn(g)(y), forally e R

ii) Letl < p,q,r < oo, suchthat; + - —; = L. If fisin L}(R?) andg is a
radial element of.} (R?), thenf xp g € L;(RY) and we have

(2.21) 1f #p QHL;(Rd) < ”fHLz(Rd) ”gHLZ(R’i) :

iii) LetW = Z4. We have the same result for glle L7 (R?) andg € L{(R?).
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3. Littlewood-Paley Theory Associated with Dunkl Operators

We consider now a dyadic decompositionRsf

3.1. Dyadic Decomposition

Forp > 0 be a natural integer, we set

(3.1) Cp={€ e RY 2771 < ||¢|| < 27*1} = 2°C
and

(3.2) C_1=B(0,1) = {£ e R% [|¢] <1}
ClearlyR* = ()2 _, C,.

Remark2. We remark that

(3.3) card {q; ¢, C, # @} <2

Now, let us define a dyadic partition of unity that we shall use throughout this
paper.

Lemma 3.1. There exist positive functions and « in D(R¢), radial with supp
Y C C_y, and suppy C Cy, such that for any € R? andn € N, we have

+Zgo

PE) =1

and

() + D w(2776) = (277F).

p=0
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Remark3. Itis not hard to see that for argyc R?

(3.4)

N | —

<O+ PR <2

Definition 3.2. Let A\ € R. For y in S(R?), we define the pseudo-differential-
difference operatog (A1) by

Littlewood-Paley Decomposition
fD(X(AT)U) = X()\f)f‘p(u), u e S/(Rd) Hatem Mejjaoli

.- . . . . . vol. 9, iss. 4, art. 95, 2008
Definition 3.3. For u in §'(R?), we define its Littlewood-Paley decomposition asso-

ciated with the Dunkl operators (or dyadic decompositi¢A),u}>> ;| asA_ju =

Y(T)uand forg > 0, Ayu = (2797 )u. Title Page
Now we go to see in which case we can have the identity Contents
Id = Z A,. <« >
p2-1 < >

This is described by the following proposition.
Proposition 3.4. For u in §'(R?), we haveu = >-° | A,u, in the sense of’(R?).

Page 14 of 46
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= <Z fD<Apu>,fD<f>> = <Z Apu7f>-

p=—1 p=-1

The proof is finished. O

3.2. The Generalized Sobolev Spaces

Littlewood-Paley Decomposition

In this subsection we will give a characterization of Sobolev spaces associated with
the Dunkl operators by a Littlewood-Paley decomposition. First, we recall the defi-
nition of these spaces (sed).
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Proof. For all¢ in R?, we have

Fp(Snu—u)(§) = (¥(27"¢) — 1) Fp(u)(E).

Hence

lim Fp(Spu—u)(§) =0.

n—oo

On the other hand
(L €171 FD(Suu = w)(©)F < 201+ €)1 Fo () (E) -

Hatem Mejjaoli
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Hence

1
§||U|%1;(Rd) < Z 1Aqull?

Hi(RY) < 2[|uj
g=—1

Thus from this andd.7) we deduce the result. O]

2
HE(RY)"

The following theorem is a consequence of Proposifioh

Theorem 3.8.Letu be inS'(RY) andu = >_o>—1 Aquits Littlewood-Paley decom-
position. The following are equivalent: -

) ue H(RY).
1) I D (VAW u||L2(Rd < 0.
i) (| Agull 2 ey < €27, with {c} € 12

Remarkd. Since foru in S'(RY) we haveA,u in 8'(RY) andsupp Fp(A,u) C C,,
from Theoren?.3ii) we deduce that\,u is in £(R?).

The following propositions will be very useful.

Proposition 3.9. LetC be an annulus ifR¢ and s in R. Let (u,),cx be a sequence
of smooth functions. If the sequer{eg),cy satisfies

supp Fp(u,) C 2C  and [upllp2@ey < Cep27 {cp} € 12,
then we have

u:ZupeH,j(Rd) and  ||ul

p=>0

1
2
ey < C(s (Z 2P| ’uPHL2(]Rd)> :

p>0
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Proof. SinceC and(y are two annuli, there exists an integéy so that
lp—q| > Ny = 2pC’0ﬂ2q6’ = g.
It is clear that
lp —q| > No = Fp(Au,) =0.

Then
Agu = Z Aguy.

[p—q|<No
By the triangle inequality and definition &f,«, we deduce that

IAull 2y < Y Ilupllr2 e
Ip—q|<No

Thus the Cauchy-Schwartz inequality implies that

Z 22qs||Aqu||%z(Rd) <C Z 92(a—p)s <Z 22p5||up||%i(Rd)> .

q>0 q/lp—q|<No p>0
From Theorens.8we deduce that ifu, || 2 ge) < Cc,277° thenu € HY(RY). O

Proposition 3.10. Let K > 0 ands > 0. Let(u,),en be a sequence of smooth
functions. If the sequende, ),y satisfies

supp Fp(up) C B(0, K2°) and  |jupl|p2mey < Cp27, {c,} € 12,

then we have

N

u:ZuI,EH;(Rd) and  |jul

p=>0

mrey < C(s) (Z 22p8||“p“%§(n§d)>

q>0
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Proof. Sincesupp Fp(u,) C B(0, K2P), there existsV; such that
Aqu = Z Aquy,.
p=q—N1
So, we get that
2| Aqul| 2(ray < Z 2% ||upl| L2 (may
p=q—N1

= Z Q(H)szpsﬂupﬂLi(Rd)-

p>q—N1
Sinces > 0, the Cauchy-Schwartz inequality implies

22N15

222qSHAquHii(Rd) < 19— Z 22psHUp”%§(Rd)‘
q p
From Theoren8.8we deduce the result. O

Proposition 3.11.Lets > 0 and(u,),en be a sequence of smooth functions. If the
sequenceu, ),cy satisfies

u, € E(RY) and forall u € N, [T up | 12 (may < Ce, 27 P fe) Ve 2

then we have

[NIE

u=Y u, € Hi(RY) and |ul

p=>0

) < C(s) (Z 22ps||“p||%§(w)>

p=>0
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Proof. By the assumption we first have = >~ u, € L7(R%). Takep € N¢ with
|1l = 50 > 5 > 0, andy, (§) = x(277¢) € D(RY) with supp x € B(0,2), x(£) =1,
1€]| < 1and0 < x < 1, then

supp Xp(1 — xp) C {€ € RY; 2% < ¢ < 272}
Set

Fo(up)(€) = xp()Fp(p)(€) + (1 = Xp(€)) F (up) (€)
= Fo(u”)() + Fo(u?)(€),

and we have
Hup”%g(md) = ||-7:D<Up)‘|ig(ﬂz<d)

= | [mtinera@ies [ 1Fau@raen

2 [ 1) OP IO~ xp(en(€)de]
Sincel < x,(€)(1 — x,(§)) < 1, we deduce that
2 2 ops
45 Vg ety - 11957 g ey < ol ey < 27
Similarly, using Theorem 3.1 o8], we obtain
< 2g2smso),

2 2
Huz(ol)HH;O(Rd) + Hu}(?Z)HHzO(Rd) < Hup”?{,jo(ﬂ%d)

Setu) =3 u), u® = >, u?, thenu = u® + u®, and from Propositiof. 10
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we deduce that(") belongs toH; (R?). Foru® the definition ofu”’ gives that

184 an = [ | 3 o0 Fou2)0)| nlehie

p<g+1
Thus by the Cauchy-Schwartz inequality we have

HAq(U(z))”ig(Rd)

< (Z 2””“‘”) (/ > 22“5-8(”|so<2-q§>fD<uf>><g>|2wk<5>d£>

p<q+1 p<q+1

1 — 27 AaH(s=s0) .
S 1— 2—(5—50) 2 2% Z 22p( 2 HAq (US))‘

p<q+1

2
HO Ry

Moreover, since, > s > 0,
1 — 2—2(¢+2)(s—s0)
1 — 2 (s=s0)
andC'is independent of. Now set

=2 2T A ()]

p<q+1
then

Z 22q5||A€'(“(2))||ii(Rd) < Z cg < 22217(8—80) H%Q)‘

g>—1 g>—1 p

Thus by Theorens.8we deduce that® = Y~ A,(u®) belongs toif;(R). [

-2 -2
9-2as0 < (1972

2
H;O (Rd) )

Q.

2
H 0 (Rd) <

Corollary 3.12. The spaceg/;(R?) do not depend on the choice of the function
andt used in the Definitiors.3.
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3.3. The Generalized Holder Spaces

Definition 3.13. For o in R, we define the Holder spac&’(R?) associated with the
Dunkl operators as the set afe S'(R¢Y) satisfying

||U||C,3(Rd) = pS>11P1 2pa||Apu||Lg°(Rd) < 00,

whereu =3 . | Ajuis its Littlewood-Paley decomposition.

In the following proposition we give sufficient conditions so that the séries;,
belongs to the Holder spaces associated with the Dunkl operators.

Proposition 3.14.

i) LetC be an annulus iR? and o € R. Let (u,),e be a sequence of smooth
functions. If the sequende,, ),y satisfies

supp Fp(up) C 2°C  and HupHLIO(O(]Rd) < C27Pe,

then we have

u = Zup € C*(R%) and [ullceraey < Cla) sulg 27 (| up || Lo (ma)-

>0 P>

i) LetK > 0anda > 0. Let(u,),en be a sequence of smooth functions. If the
sequenceu, ),y satisfies

supp Fp(up) C B(0, K2°) and  [Jup||peo ey < C2777,
then we have

u = Zup € C¢(R?) and [ullceray < Cla) suIO) 2P ||| Loo (may -

>0 P>
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Proof. The proof uses the same idea as for Propositioaand3.10, ]

Proposition 3.15. The distribution defined by
g(x) = ZK(ix, 2Pe),  with e=(1,...,1),

p>0
belongs taC? (R¢) and does not belong tb° (R?).

Proposition 3.16.Lete €]0, 1[and f in C¢(RY), then there exists a positive constant

C' such that c 07
Cs(Rd)
1l mey < = fllcoay log | e+ g i | .
HEED = IIGED £ llcomay

Proof. Sincef = sz_l A, f,
Iy < D0 1A e + D 1A Fllze ey,

p<N-1 p>N

with N is a positive integer that will be chosen later. Sifce C¢(R?), using the
definition of generalized Holderien norms, we deduce that

2—(N—1)6

[fllzee ey < (N + D fllcomey + ﬁ”f”(}g(ﬂ%d)'

We take 0/l
1 .
N=1+|-log, = tGEI
€ ||f||cg(Rd)
we obtain c T
Cs (RY)
|f|oo d§—|f oray |1+ log | ——F—= .
’ ‘ L (R4) c ‘ HCk(R ) HfHC]g(Rd)
This implies the result. ]
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Now we give the characterization &f (R?) spaces by using the dyadic decom-
position.
If (f;);en is @ sequence df? (RY)-functions, we set

I ey = (Zm ) :

JeH L (RY)
the norm inLf (R, I(N)).

Theorem 3.17 (Littlewood-Paley decomposition of.f (R%)). Let f be inS'(R?)
and1 < p < oo. Then the following assertions are equivalent

) fe LR,

i) Sof € LR and (3,0 185 (@))€ LR(RY).

Moreover, the following norms are equivalent :
3
1 fllzp ey and  [[Sof [y @e) + (Z|Ajf(:v)l2)
jEN P @)

Proof. If fisin L?(RY), then from Propositios.7 we have

%
(Z IAjf(l‘)|2> < 1£11Z2 ey-
Jen 13 (RY)

Thus the mapping
Avc f = (A f)jen,
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is bounded fron 2 (R?) into L7 (R?, 1*(N)).
On the other hand, from properties,ofwve see that
(@i ()]l < Cll|| 9427, for  # 0,
10y, 75 (x))sllie < Cllz]| =9+, forax #0,i=1,....,d,
where ’ |
Zj(w) = 2 FRH ) (2).

We may then apply the theory of singular integrals to this mappintsee [L4]).

Thus we deduce that

18 fllzraey < Cprllfllzr@ey, forl <p < oo.

The converse uses the same idea. Indeed we put

1
ﬁgj = Z Szjﬂ'-

i=—1
From Propositiors.7 the mapping
Az s (fj)jen = > fi*p o
JEN
is bounded from_2 (R%, /(N)) into L7 (RY).
On the other hand, from properties,pfve see that
(65 (@))slliz < Cll]| 747, forz £ 0,
||(ayz$](x))]||12 < OHx“_(dJ’_Qwa forz 7é 0,1=1,...,d
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We may then apply the theory of singular integrals to this mappin¢see [L4]).
Thus we obtain

S OAf

JEN

< CorllAjifllLeae)-
Ly(®)

Title Page

Contents

N
PG

E
h
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4. Applications

4.1. Estimates of the Product of Two Functions

Proposition 4.1.

i) Letu,v € C¥(R?) anda > 0 thenuv € C2(R?), and

||UUHC;3(Rd) <C [||U||Lgo(Rd)||U||Cg(Rd) + ||U||L;°(Rd)||u||cg(mad)] .
i) Letu,v € Hi(RY) N L*(R?Y) ands > 0 thenuv € Hi(R?), and

vl gy < C [llulageeeny 0]l mgcrey + Nolage ey el ey |-

Proof. Letu = »_ Ayuandv = }  A,v be their Littlewood-Paley decomposi-
tions. Then we have

uv = Z AyulAgv

P.g
= Z Z Apulgv + Z Z Apulgv

q p<g-—1 q p>q

= Z Z Apulgv + Z Z Apul v

q p<g—1 p q<p

= Z Squlgv + Z Spr1VAu
q p

:21:+22:.
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We have
supp (Fp(Squlv)) = supp (Fp(Agv) *p Fp(Syu)).

Hence from Theorer.2 we deduce thatupp (Fp(S,ul,v)) C B(0,C29).
i) If v andv are inC¢(R?), then we have

HSqUAqUHL;O(Rd) < HSqUHL;o(Rd)||AqU||L;°(Rd),
< Cllull e ey 10l o may 279

From Propositiors.14ii) we deduce

2.

1

< Cllull e ey 10l o (ray -

C2(R9)

Similarly we prove that

>

2

< Ollvll e @ay lull e may,
O (R)

and this implies the result.
ii) If wandv are inH;(R%), then we have

15qulgl 2z ey < [15qull Lo ey | Al 22 (R

< Cllull e ey 10| s ety g2

Thus Propositiors.10gives

b

1

< CH“HL?(R‘UHM
H;(R9)

HE(R4)-
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Similarly, we prove that

and this implies the result.

2

2

< Ol pee wayllull s ey

HE(RY)

Corollary 4.2. For s > 4 4+ ~, H;(RY) is an algebra.

4.2. Sobolev Embedding Theorem

Using the Littlewood-Paley decomposition, we have a very simple proof of Sobolev

embedding theorems:

Theorem 4.3.Foranys > v + g, we have the continuous embedding

Proof. Let u be in H(R?), u = >_p>_1Apu the Littlewood-Paley decomposition.

Hi(RY) — €275 (RY),

Takeo in D(R?) such thatp(¢) = 1 onCy, and

supp ¢ C Cj = {§ e RY,

1
3

Settinge, (&) = ¢(277¢), we obtain
Fp(Apu)(§) = Fp(Apu)(§)o(277E).

ﬂmﬁ}
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Hence

Apu(z) = [ Fp(Apu)(§)o(2778) K (i, §)wi(§)dE,

R4

@) < [ Fp (A ©ll6(2 e onl)

The Cauchy-Schwartz inequality and Theoréragive that

Littlewood-Paley Decomposition

Hatem Mejjaoli

||APU||L20(Rd) < (/Rd |fD(ApU)(§)|2wk(§)d§) 2 </Rd |¢(2—p§)|2wk(§)d§) : vol. 9, iss. 4, art. 95, 2008

Ld
<2 2)HAp“HLz(W)

Title Page
—p(s—y—%2)
< (2 > - Contents
_~N—d
Then from Definition3.13we deduce that € C; '~ *(R9). O 4« »
Theorem 4.4.Forany0 < s < v+ g’, we have the continuous embedding < 4
H]j(Rd) SN Li (Rd>, Page 30 of 46
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For A > 0, we setf =

ZQJ‘ZA Ajf-

We have

fl,A + fQ’A with fLA = 22j<A Ajf and fQ’A =

< Z 1A fll Lo (ray <

21<A

D IFD(A )l pes:

21<A

1 fr,all Lo (ray

Using the Cauchy-Schwartz inequality, the Parseval’s identity associated with the
Dunkl operators and Theorefs, we obtain

> 20T e ]

21<A

Hy(RY) < CA7+7_S||f’

||f1,AHLz°(Rd Hi (R4

On the other hand for all > 0, we have

mk{|f| > A} < my {|fl,A| > %} + my {’f2,A| > %}

From (4.2) we infer that if we take

A =
A=Ay = —pi— ,
* 7 \ACT g ey

/i, AAHL(’O(R"Z) <

A
my, {|f1,A)\| > 5} =0.

4.2)

then

=] >

Hence

,,\,
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From (4.1) and ¢.2) we deduce that

g <0 [ 0 {2l o] = Apan
0

Moreover the Bienaymé-Tchebytchev inequality yields

4
mk{2|f2,AA| > )\} < ﬁHfQ,A)\H%i(Rd)'

Thus we obtain -
[P s T VN PN

On the other hand, by using the Cauchy-Schwartz inequality far:alD, we have

2

ol = [ | 3 85f@)| nta)ds

29> Ay
/ > 27N f(a) Pwr(z)da | | ) 27F
20> A, 20> Ay

< AT Y A g

2>A,

So by using the definition ofl, and the Fubini theorem, we can write

17180y <P / VAT S 22| I gy dA

20> A,
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2

od
402](’Y+§—3) s
/ ”f”Hk(Rd) )\p_g_

2¢e <
2 2 —
<c A (40 fllaga) T 22 A 1
j>-170
-2 j(p— d_g
< CHf’ Z;(Rd) Z 2/ P=2)0rty )HAJ'fH%i(Rd)
j>-1
—2 S
< C'||f| Zi(Rd) Z 2% ||A]f||%i(]Rd) < CHf| IEJZ(Rd)
j>-1
This implies the result. []

Definition 4.5. We define the spad8\ O, as the set of functions € L, ,(R%)
satisfying

1
sup ———— u(r) — up|lwg(z)dr < oo,
s [ fute) = uplen(o)
where 1
B = B(x¢,R), up= W(B)/Bu(x)wk(x)dx
denote the average afon B andmesy(B) :/wk(x)dx.
B

Theorem 4.6. We have the continuous embedding
d
H:(RY) < BMO.

d
Proof. For R > 0 small enough, lelV be such tha2" = [1]. Letu beinH2 " (R?).
Setu = v + u® with

N-1
uM = Z Ayu and u® = Z Ayu.

p=—1 p>N
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From the Cauchy-Schwartz inequality we have

(@ /B fu(z) —uB|wk(x)dx>2 < m /B lu(z) — upPwr(0)de

It is easy to see that this implies

(m% / |u<x>—u3|wk<x>das)2
) [/) v) —uf) | wnla dx+/( @) —ug)‘zwk(x)dx].

Moreover, from the mean value theorem, we have

o [ 0@ [ watoitr < [ D) ety

mesy (B mes(B)
< R*||Du 700 -

By (2.7) we deduce that

1Du™ | e ey < /Rd €117 () (€)lwi (§)dé.

By recalling thatsupp Fp(A,u) C C, and|Fp(Ayu)(§)| < |Fp(u)(€)], we apply
the Parseval identity associated with the Dunkl operators and the Cauchy-Schwartz
inequality. We deduce that

> [ 1eFo ket >d5>

p=—1
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< R2 / Q*Z’dew d U 2 < C22NR2 u 2 .
it (I g, < OEY R

For the second term, we have
2
@ (g < __ 2 @) ()2

g [ @) = Parlae < —— s [ ) P

< CR / | F (1) (€) P (€) e
ll€]|>2N

< C2VR)™ " ||ul? ,
ch

§+V(Rd).
Hence,

1 2
. — — < 2, .
43 (g e ekatds) <l

We have proved4.3) for small R, sinceu & H,C%”(Rd) C L2(R%), (4.9 is evident
for R > R, with constanC' = C(R,). This implies the continuous embedding

d
H27(RY — BMO.

4.3. Gagliardo-Nirenberg Inequality

We will use the generalized Sobolev spatg” (R?) associated with the Dunkl op-
erators defined as

Wy (RY) = {u e S'(RY : (—Ap)2u e L(RY},
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with ;
ANy = Z Tj2u.
j=1

The main result of this subsection is the following theorem.

Theorem 4.7.Let f be inW,""(R%) N Li(R?) with ¢, € [1,00] ands > 0. Thenf
belongs toV”(R), and we have

H(_Ak)%f‘

< Oy | (2002 1]

1-6
LZ(Rd) 9

Ly (&)
wherel = 2 + 10,1 = (1 - §)s and €]0, 1.

Proof. First, we prove this theorem fgrandr in |1, c]. Let f be inS(RY). Itis
easy to see that

(ORI =Y (AN Y (—A) T A (A5 S),

j<A j>A

whereA will be chosen later.
On the other hand, by a simple calculationgifs a homogenous function in
C*>(R*) of degreemn, we can write

(4.4) a <(—Ak)%> Ajf = PGy Y A,
l7—3'1<1

whered,; is defined byl,;z = 27z, » € R? andb is in S(R?) such that

Fo(b)(€) = ¢(©a(lEl)-
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We proceed as inlp, p. 21] to obtain
(4.5) o ((=00)) 250 (@)] < 2 My f (@),

where M, (f) is a maximal function off associated with the Dunkl operators (see
[13)]).

Hence by applying4.5) for a(r) = r* anda(r) = r'=", we get
’(—Ak)%f(l’)‘ <C <Z 21 M. f () + sz(t_s)Mk((—Akf)g)(fﬁ)>
j<A J>A

< C2AMf(z) + C29AM, ((—A1)3 1) (2).
We minimize overA to obtain
t l_ﬁ El %
(—anif@)] < o(Mf@) (M (o050 @)
By this inequality and the Hoélder inequality, we have
[CYSEY, < C|| My 1l gy || Mi((—200)% )

withg =1 — 1,
Now, we apply Theorem 6.1 ol ] to deduce the result if andr €)1, o¢].
Now, we assume = r = 1. Let f be inS(R%). We have

1-6
LZ(Rd) )

LY (R)

|Cavir],, o < [ECa0iar] #3207 A (204)
J<A L1 (RY) J>A LL(RY)
S CQ(I—G)SAHJC”L}C(Rd) + Cz—@sA H(_Ak)ngLi(Rd) )
By minimizing overA, we obtain the result. ]
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5. Paraproduct Associated with the Dunkl Operators

In this section, we are going to study how the product acts on Sobolev and Hélder
spaces associated with the Dunkl operators. This could be very useful in nonlinear
partial differential-difference equations. Of course, we shall use the Littlewood-

Paley decomposition associated with the Dunkl operators. Let us consider two tem-

perate distributions andv. We write
U= ZAPU and v = ZAqU.
p q
Formally, the product can be written as
uv = Z Apul .

pq

Now we introduce the paraproduct operator associated with the Dunkl operators.

Definition 5.1. We define the paraproduct operafidy, : S'(R?) — S’'(R?) by

Mu = Z(Sq,g a)Aqu,

q>1

whereu € §'(R%); {A,a} and{A,u} are the Littlewood-Paley decompositions and
Sqa =3 Aya.

p<g—1

Let R indicate the following bilinear symmetric operator S{R?) defined by

R(u,v) = Z Ayul v,

lp—q|<1

forall u,v € S'(R%).
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Obviously from Definition5.1it is clear that

wo = I, v 4+ I,u + R(u,v).

The following theorems describe the action of the paraproduct and remainder on the
Sobolov and the Hoélder spaces associated with the Dunkl operators.

Theorem 5.2. There exists a positive constafitsuch that the operatoll has the
following properties:
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Title Page
stt+1 .
B | 2ot ety s rety, e+t metyy < ¢, foralls,twiths+t>0andt < 0. i
A || e rayop (.ot may < S5, forall s, ¢ with s +¢ > 0 andt < 0. « »
5. ||11)| d < CSHETL withs 4+ ¢ > 4 + ¢ and N X
L(HF(RY)x Hy (RY), H}, g (RY))
s < g_’_% Page 39 of 46
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Applying Propositior3.14ii), we obtain

HHUU|

2) If uwisin LE(RY) andv is in H; (RY), then we have

cs@a) < COllull poemay ||v|

O3 (RY)-

[5g—2ulqull 2 ey < [[Sg—2ull e re) | Agvll 12 (ma)

Thus Propositiors.10gives

< Cllull oo @ay |01 73 (rey €42

HHuU”Hg(Rd) < CHUHLZO(R“Z)HUHH;;(RGZ)’

this implies the result.

3) Letu be inC!(R?) andv in Hi(R?). We have

”SquUAqUHLi(Rd) < quduHLgO(Rd)HAqUHLi(Rd)-

Sincet < 0, we estimate|.S;_oul|;=ra) in a different way. In fact,S, u =

> p<q—s Apu. Sinceu € C(R?) andt < 0, we obtain

—qs

_ C -
1Sg—2ul| Lo may < [lullcr may Z 27 < —2 “ullot ra)-

Hence

C

p<g—3

||Sq—QUAqU||Lﬁ(Rd) S __tQ_q(t+S)CQ||u”Ci(Rd)||U|

Thus Propositiors.10gives the result.
The proof of 4) uses the same idea.

Hi (R

Cq € 12
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5) We have
HSqﬂUHLgo(Rd) < HFD<SQ*QU)HL,£(]R‘1)
< /Rd 2721+ 1€117) 7 [Fo(u) (€I + 1€]7) 2w (&) dE.

The Cauchy-Schwartz inequality implies that

I8-2ullzwn < ( [ 10G2OP0+ 12 ) T

HE(R%),

1
2
< Cxi (/ !w<t>12<1+22<q-2>utu2>-5wk<t>d’f) g e
B(0,1)

If s >0,

i —S
HSq—Z“HL;O(Rd) < 0245 t7=9) </B

< 0295+71=9),

|w<t>|2||tu28wk<t>dt)

(0,1)

If s <0,

2

d —S
||Sq—2UHLg°(Rd) < 24z H=9) (/
B

< 215 +7-9)

() + utu%-mmdt)

(0,1)

By proceeding as in the previous cases we deduce the result. O

Theorem 5.3. There exists a positive constafitsuch that the operatoll has the
following properties:
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1. If a € LE(RY) is radial, then for anys in R, we have

el 2o (ma).0 ey < Cllallze @a, 1| £az ey, 2 mayy < Cllal| poe ray-

2. If a € CL(RY) is radial with ¢ < 0, then for alls, we have

Il £z (may et ayy < Cllallegwa, MLl £ (o3 ey, cott ey < Cllallor@e)-

3. If a € H{(R") is radial, then for alls, t with s < ¢ + ~, we have

ML, < Cllal g me

) stt—y—g
H(RY),H, 2 (R))

Proof. From the relation4.19 and Definition2.6 we deduce that there exists an

annulus(j*o such thasupp Fp(S,—2aAu) C 2q50. Thus we proceed as in the proof
of Theorem4.3and using Propositioris. 9 and3.14i), we obtain the result. ]

Remarks. In the casdV = Z¢ the assumption thatis radial is not necessary.

Theorem 5.4. There exists a positive constafitsuch that the operatok has the
following properties:

2. ||R“[:(Ci(]Rd)XC}:(Rd),Cert(Rd)) S %t;l, fOf a.” S, t W|th S + t > 0
Cs+t+1 . d
3. HRHL(H;(Rd)xH;(Rd),H;“‘”‘%(Rd)) S forall s,t withs +¢ > v + 7.

Proof. By the definition of the remainder operator

1
R(u,v) =Y R, with R, = A, julpw.
q

i=—1
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By the definition ofA,, the support of the Dunkl transform @i, is included in
B(0,C2). Then, to prove 1) it is sufficient to estima&, || .2 z«). In fact, we have

1
1Rallz ey < 120Nz ey D I1Ag—sttll e -

1=—1
Using the facts that € C!(R?) andv € H;(R%), we obtain

1
H(RY) Z 27@71)2&”“”02(]1%01); Cq € I

i=—1

< C’ch_Q(s+t)HU||c,§(Rd)||U|

||Rq||Li(Rd) < 27%¢||v]

HE(RY)-

Now we apply Propositiofs.10to conclude the proof. The proof of the second case
uses the same idea. We want to prove 3). We g v) = > R,. We proceed
asinl), so

1
”RqHLi(Rd) < CHFD(ALIU)HLi(Rd) Z ”Aq—iu”Lgo(Rd)a

i=—1

1
< C||~7:D(Aqv)||Lg(Rd) Z ||fD(Aq—iu)||L}€(]Rd)~

i=—1

Using the fact that € H;(R?), we obtain

1
HRqHLi(Rd) < CCq2_thUHH,g(Rd) Z HFD(Aq%U)”L;(R% Cq € .

i=—1
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On the other hand, by the Cauchy-Schwartz inequality we have

1FD(Ag-it) ||y rey < /Iso SO (L [IEN) = (L4 [1€1%) 2 Fo(u) (€)wn(€)de

< Nl gz (/ P2 21+ ) <>ds)1

d 9 9 ) 9 % Littlewood-Paley Decomposition
< C20F D) | gy ey (/ () (L + 27479t >—w<t>d’f) o

Hatem Mejjaoli

4 vol. 9, iss. 4, art. 95, 2008
< (29(r+5—s)

Hence

., Title Page
d_g 2
||Rq||L§(Rd) < 2455 t)cq, cq € 12

Contents
Then we conclude the result by using Propositioh), « "
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