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ABSTRACT. The rank subtractivity partial ordering is defined onCn×n (n ≥ 2) by A ≤− B⇔
rank(B−A) = rankB− rankA, and the star partial ordering byA ≤∗ B⇔ A∗A = A∗B ∧
AA∗ = BA∗. If A andB are normal, we characterizeA ≤− B. We also show that then
A ≤− B ∧ AB = BA⇔ A ≤∗ B⇔ A ≤− B ∧ A2 ≤− B2. Finally, we remark that some
of our results follow from well-known results on EP matrices.

Key words and phrases:Rank subtractivity, Minus partial ordering, Star partial ordering, Sharp partial ordering, Normal ma-
trices, EP matrices.

2000Mathematics Subject Classification.15A45, 15A18.

1. I NTRODUCTION

The rank subtractivity partial ordering (also called the minus partial ordering) is defined on
Cn×n (n ≥ 2) by

A ≤− B⇔ rank(B−A) = rankB− rankA.

The star partial ordering is defined by

A ≤∗ B⇔ A∗A = A∗B ∧ AA∗ = BA∗.

(Actually these partial orderings can also be defined onCm×n, m 6= n, but square matrices are
enough for us.)

There is a great deal of research about characterizations of≤∗ and≤−, see, e.g., [8] and
its references. Hartwig and Styan [8] applied singular value decompositions to this purpose.
In the case of normal matrices, the present authors [10] did some parallel work and further
developments by applying spectral decompostitions in characterizing≤∗. As a sequel to [10],
we will now do similar work with≤−.

We thank one referee for alerting us to the results presented in the remark. We thank also the other referee for his/her suggestions.
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In Section 2, we will present two well-known results. The first is a lemma about a matrix
whose rank is equal to the rank of its submatrix. The second is a characterization of≤− for
general matrices from [8].

In Section 3, we will characterize≤− for normal matrices.
Since≤∗ implies≤−, it is natural to ask for an additional condition, which, together with

≤−, is equivalent to≤∗. Hartwig and Styan ([8, Theorem 2c]), presented ten such conditions
for general matrices. In Sections 4 and 5, we will find two such conditions for normal matrices.

Finally, in Section 6, we will remark that some of our results follow from well-known results
on EP matrices.

In [10], we proved characterizations of≤∗ for normal matrices independently of general
results from [8]. In dealing with the characterization of≤− for normal matrices, an independent
approach seems too complicated, and so we will apply [8].

2. PRELIMINARIES

If 1 ≤ rankA = r < n, thenA can be constructed by starting from a nonsingularr × r
submatrix according to the following lemma. Since this lemma is of independent interest, we
present it more broadly than we would actually need.

Lemma 2.1. Let A ∈ Cn×n and 1 ≤ r < n, s = n − r. Then the following conditions are
equivalent:

(a) rankA = r.
(b) If E ∈ Cr×r is a nonsingular submatrix ofA, then there are permutation matrices

P,Q ∈ Rn×n and matricesR ∈ Cs×r, S ∈ Cr×s such that

A = P

(
RES RE
ES E

)
Q.

Proof. If (a) holds, then proceeding as Ben-Israel and Greville ([3, p. 178]) gives (b). Con-
versely, if (b) holds, then

A = P

(
R
I

)
E

(
S I

)
Q

(cf. (22) on [3, p. 178]), and (a) follows. �

Next, we recall a characterization of≤− for general matrices, due to Hartwig and Styan [8]
(and actually stated also for non-square matrices).

Theorem 2.2([8, Theorem 1]). LetA,B ∈ Cn×n. If a = rankA, b = rankB, 1 ≤ a < b ≤ n,
andp = b− a, then the following conditions are equivalent:

(a) A ≤− B.
(b) There are unitary matricesU,V ∈ Cn×n such that

U∗AV =

(
Σ O
O O

)
and

U∗BV =

Σ + RES RE O
ES E O
O O O

 ,

whereΣ ∈ Ra×a, E ∈ Rp×p are diagonal matrices with positive diagonal elements,
R ∈ Ca×p, andS ∈ Cp×a.

In fact,U∗AV is a singular value decomposition ofA. (If b = n, then omit the zero blocks
in the representation ofU∗BV.)
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3. CHARACTERIZATIONS OF A ≤− B

Now we characterize≤− for normal matrices.

Theorem 3.1. LetA,B ∈ Cn×n be normal. Ifa = rankA, b = rankB, 1 ≤ a < b ≤ n, and
p = b− a, then the following conditions are equivalent:

(a) A ≤− B.
(b) There is a unitary matrixU ∈ Cn×n such that

U∗AU =

(
D O
O O

)
and

U∗BU =

D + RES RE O
ES E O
O O O

 ,

whereD ∈ Ca×a, E ∈ Cp×p are nonsingular diagonal matrices,R ∈ Ca×p, and
S ∈ Cp×a.

(c) There is a unitary matrixU ∈ Cn×n such that

U∗AU =

(
G O
O O

)
and

U∗BU =

G + RFS RF O
FS F O
O O O

 ,

whereG ∈ Ca×a, F ∈ Cp×p are nonsingular matrices,R ∈ Ca×p, andS ∈ Cp×a.

(If b = n, then omit the zero blocks in the representations ofU∗BU.)

Proof. We proceed via (b)⇒ (c)⇒ (a)⇒ (b).
(b)⇒ (c). Trivial.
(c)⇒ (a). Assume (c). Then

B−A = UCU∗,

where

C =

RFS RF O
FS F O
O O O


satisfies

rankC = rank(B−A).

On the other hand, by Lemma 2.1,

rankC = rankF = p = b− a = rankB− rankA,

and (a) follows.
(a)⇒ (b). Assume thatA andB satisfy (a). Then, with the notations of Theorem 2.2,

U∗AV =

(
Σ O
O O

)
= Σ0

and

U∗BV =

Σ + RES RE O
ES E O
O O O

 .

J. Inequal. Pure and Appl. Math., 9(1) (2008), Art. 4, 8 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 JORMA K. M ERIKOSKI AND X IAOJI L IU

The singular values of a normal matrix are absolute values of its eigenvalues. Therefore the
diagonal matrix of (appropriately ordered) eigenvalues ofA isD0 = Σ0J, whereJ is a diagonal
matrix of elements with absolute value1. Furthermore,V = UJ−1, and

U∗AU = D0 =

(
D O
O O

)
,

whereD is the diagonal matrix of nonzero eigenvalues ofA. For details, see, e.g., [9, p. 417].
To studyU∗BV, let us denote

J =

K O O
O L O
O O M

 ,

partitioned asU∗BV above. Now,

U∗BU = U∗BVJ =

Σ + RES RE O
ES E O
O O O

 K O O
O L O
O O M


=

ΣK + RESK REL O
ESK EL O
O O O

 =

D + RESK REL O
ESK EL O
O O O

 .

By (a),

b− a = rank(B−A) = rankU∗(B−A)U = rank

(
RESK REL
ESK EL

)
.

DenoteE′ = EL. BecauseE andL are nonsingular,rankE′ = b − a. Hence, by Lemma 2.1,
there are matricesR′ ∈ Ca×p andS′ ∈ Cp×a such that(

RESK REL
ESK EL

)
=

(
R′E′S′ R′E′

E′S′ E′

)
.

Consequently,

U∗BU =

D + R′E′S′ R′E′ O
E′S′ E′ O
O O O

 ,

and (b) follows. �

Corollary 3.2. Let A,B ∈ Cn×n. If A is normal,B is Hermitian, andA ≤− B, thenA is
Hermitian.

Proof. If rankA = 0 or rankA = rankB, the claim is trivial. Otherwise, with the notations
of Theorem 3.1,

A′ = U∗AU =

(
D O
O O

)
, B′ = U∗BU =

D + RES RE O
ES E O
O O O

 .

SinceB is Hermitian,B′ is also Hermitian. ThereforeE∗ = E andES = (RE)∗ = ER∗,
which impliesS = R∗, sinceE is nonsingular. Now

A′ = B′ −

RER∗ RE O
ER∗ E O
O O O


is a difference of Hermitian matrices and so Hermitian. Hence alsoA is Hermitian. �
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4. A ≤− B ∧ AB = BA⇔ A ≤∗ B

The partial ordering≤∗ implies≤−. For the proof, apply Theorem 2.2 and the corresponding
characterization of≤∗ ([8, Theorem 2]). In fact, this implication originates with Hartwig ([7,
p. 4, (iii)]) on general star-semigoups.

We are therefore motivated to look for an additional condition, which, together with≤−, is
equivalent to≤∗. First we recall a characterization of≤∗ from [10] but formulate it slightly
differently.

Theorem 4.1([10, Theorem 2.1ab], cf. also [8, Theorem 2ab]). Let A,B ∈ Cn×n be normal.
If a = rankA, b = rankB, 1 ≤ a < b ≤ n, andp = b − a, then the following conditions are
equivalent:

(a) A ≤∗ B.
(b) There is a unitary matrixU ∈ Cn×n such that

U∗AU =

(
D O
O O

)
and

U∗BU =

D O O
O E O
O O O

 ,

whereD ∈ Ca×a andE ∈ Cp×p are nonsingular diagonal matrices.(If b = n, then
omit the third block-row and block-column of zeros in the expression ofB.)

Hartwig and Styan [8] proved the following theorem assuming thatA andB are Hermitian.
We assume only normality.

Theorem 4.2(cf. [8, Corollary 1ac]). Let A,B ∈ Cn×n be normal. The following conditions
are equivalent:

(a) A ≤∗ B,
(b) A ≤− B ∧ AB = BA.

Proof. If a = rankA andb = rankB satisfya = 0 or a = b, then the claim is trivial. So we
assume1 ≤ a < b ≤ n.

(a)⇒ (b). This follows immediately from Theorems 4.1 and 3.1.
(b)⇒ (a). Assume (b). SinceA ≤− B, we have with the notations of Theorem 3.1

U∗AU =

D O O
O O O
O O O

 , U∗BU =

D + RES RE O
ES E O
O O O

 .

Thus

U∗ABU =

D2 + DRES DRE O
O O O
O O O


and

U∗BAU =

D2 + RESD O O
ESD O O
O O O

 .
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SinceAB = BA, alsoU∗ABU = U∗BAU, which impliesDRE = O andESD = O.
BecauseD andE are nonsingular, we therefore haveR = O andS = O. So

U∗BU =

D O O
O E O
O O O

 ,

and (a) follows from Theorem 4.1. �

5. A ≤− B ∧ A2 ≤− B2 ⇔ A ≤∗ B

We first note that the conditionsA ≤− B andA2 ≤− B2 are independent, even ifA andB
are Hermitian.

Example 5.1. If

A =

(
1 0
0 0

)
, B =

(
5 2
2 1

)
,

then

rank(B−A) = rank

(
4 2
2 1

)
= 1, rankB− rankA = 2− 1 = 1,

and soA ≤− B. However,A2 ≤− B2 does not hold, since

A2 =

(
1 0
0 0

)
, B2 =

(
29 12
12 5

)
, B2 −A2 =

(
28 12
12 5

)
,

rank
(
B2 −A2

)
= 2, rankB2 − rankA2 = 2− 1 = 1.

Example 5.2. If

A =

(
1 0
0 0

)
, B =

(
−1 0
0 0

)
,

thenA2 ≤− B2 holds butA ≤− B does not hold.

Gross ([5, Theorem 5]) proved that, in the case of Hermitian nonnegative definite matrices,
the conditionsA ≤− B andA2 ≤− B2 together are equivalent toA ≤∗ B. Baksalary and
Hauke ([1, Theorem 4]) proved it for all Hermitian matrices. We generalize this result.

Theorem 5.1.LetA,B ∈ Cn×n be normal. Assume that

(i) B is Hermitian

or

(ii) B−A is Hermitian.

Then the following conditions are equivalent:

(a) A ≤∗ B,
(b) A ≤− B ∧ A2 ≤− B2.

Proof. First, assume (i). IfA ≤− B, thenA is Hermitian by Corollary 3.2. IfA ≤∗ B, then
A ≤− B, and soA is Hermitian also in this case. Therefore, both (a) and (b) imply thatA
is actually Hermitian, and hence (a)⇔ (b) follows from [1, Theorem 4]. The following proof
applies to an alternative.

Second, assume (ii). Ifa = rankA andb = rankB satisfya = 0 or a = b, then the claim is
trivial. So we let1 ≤ a < b ≤ n.

(a)⇒ (b). This is an immediate consequence of Theorems 4.1 and 3.1.
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(b)⇒ (a). Assume (b). SinceA ≤− B, we have with the notations of Theorem 3.1

A = U

(
D O
O O

)
U∗, B = U

D + RES RE O
ES E O
O O O

U∗.

SinceB − A is Hermitian,U∗(B − A)U is also Hermitian. ThereforeE is Hermitian and
S = R∗, and so

B = U

D + RER∗ RE O
ER∗ E O
O O O

U∗.

Furthermore,

A2 = U

(
D2 O
O O

)
U∗

and

B2 = U

 (D + RER∗)2 + RE2R∗ (D + RER∗)RE + RE2 O
ER∗(D + RER∗) + E2R∗ ER∗RE + E2 O

O O O

U∗.

Now

B2 −A2 = U

(
H O
O O

)
U∗,

where

H =

(
DRER∗ + RER∗D + (RER∗)2 + RE2R∗ DRE + RER∗RE + RE2

ER∗D + ER∗RER∗ + E2R∗ ER∗RE + E2

)
.

Multiplying the second block-row ofH by−R from the right and adding the result to the first
block-row is a set of elementary row operations and so does not change the rank. Thus

rankH = rank

(
DRER∗ DRE

ER∗D + ER∗RER∗ + E2R∗ ER∗RE + E2

)
= rankH′.

Furthermore, multiplying the second block-column ofH′ by−R∗ from the right and adding the
result to the first block-column is a set of elementary column operations, and so

rankH′ = rank

(
O DRE

ER∗D ER∗RE + E2

)
= rankH′′.

SinceA2 ≤− B2, we therefore have

rankH′′ = rank(B2 −A2) = rankB2 − rankA2 = b− a = p.

BecauseER∗RE is Hermitian nonnegative definite andE is Hermitian positive definite, their
sum E′ = ER∗RE + E2 is Hermitian positive definite and hence nonsingular. Applying
Lemma 2.1 toH′′, we see that there is a matrixS ∈ Cp×a such that (1)S∗E′ = DRE and
(2) S∗E′S = O. SinceE′ is positive definite, then (2) impliesS = O, and so (1) reduces to
DRE = O, which, in turn, impliesR = O by the nonsingularity ofD andE. Consequently,

B = U

D O O
O E O
O O O

U∗,

and (a) follows from Theorem 4.1. �
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6. REMARKS

A matrix A ∈ Cn×n is a group matrix if it belongs to a subset ofCn×n which is a group
under matrix multiplication. This happens if and only ifrankA2 = rankA (see, e.g., [3,
Theorem 4.2] or [11, Theorem 9.4.2]). A matrixA ∈ Cn×n is an EP matrix ifR(A∗) = R(A)
whereR denotes the column space. There are plenty of characterizations for EP matrices, see
Cheng and Tian [4] and its references. A normal matrix is EP, and an EP matrix is a group
matrix (see, e.g., [3, p. 159]). The sharp partial ordering between group matricesA andB is
defined by

A ≤# B⇔ A2 = AB = BA.

Three of our results follow from well-known results on EP matrices.
First, Corollary 3.2 is a special case of Lemma 3.1 of Baksalary et al [2], whereA is assumed

only EP.
Second, letA andB be group matrices. Then

A ≤# B⇔ A ≤− B ∧ AB = BA,

by Mitra ([12, Theorem 2.5]). On the other hand, ifA is EP, then

A ≤# B⇔ A ≤∗ B,

by Gross ([6, Remark 1]). Hence Theorem 4.2 follows assuming only thatA is EP andB is a
group matrix.

Third, Theorem 5.1 with assumption (i) is a special case of [2, Corollary 3.2], whereA is
assumed only EP.
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