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ABSTRACT. The rank subtractivity partial ordering is defined@®*"™ (n > 2)by A <~ B &
rank(B — A) = rank B —rank A, and the star partial orderingly <* B < A*A = A*B A
AA* = BA*. If A andB are normal, we characteriz& <— B. We also show that then
A< " BAAB=BA & A <*B& A <™ BA A? <~ B2 Finally, we remark that some
of our results follow from well-known results on EP matrices.
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1. INTRODUCTION

The rank subtractivity partial ordering (also called the minus partial ordering) is defined on
C™™ (n > 2) by
A <7 B < rank(B — A) = rank B — rank A.
The star partial ordering is defined by

A<'B& A"A=A"BANAA"=BA"

(Actually these partial orderings can also be defined8ri™, m # n, but square matrices are
enough for us.)

There is a great deal of research about characterizatiors @ind <—, see, e.g., [8] and
its references. Hartwig and Styan [8] applied singular value decompositions to this purpose.
In the case of normal matrices, the present authors [10] did some parallel work and further
developments by applying spectral decompostitions in characterzind\s a sequel ta [10],
we will now do similar work with<—.
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In Section 2, we will present two well-known results. The first is a lemma about a matrix
whose rank is equal to the rank of its submatrix. The second is a characterizationfof
general matrices from [8].

In Sectior] 8, we will characterize~ for normal matrices.

Since<* implies <, it is natural to ask for an additional condition, which, together with
<~, is equivalent to<*. Hartwig and Styan [([8, Theorem 2c]), presented ten such conditions
for general matrices. In Sections 4 and 5, we will find two such conditions for normal matrices.

Finally, in Sectior B, we will remark that some of our results follow from well-known results
on EP matrices.

In [10], we proved characterizations &f* for normal matrices independently of general
results from[[8]. In dealing with the characterization<of for normal matrices, an independent
approach seems too complicated, and so we will apply [8].

2. PRELIMINARIES

If 1 <rankA = r < n, thenA can be constructed by starting from a nonsingular
submatrix according to the following lemma. Since this lemma is of independent interest, we
present it more broadly than we would actually need.

Lemma 2.1.Let A € C"*" and1 < r < n, s = n — r. Then the following conditions are
equivalent:
(@) rank A =r.
(b) If E € C™" is a nonsingular submatrix oA, then there are permutation matrices
P,Q € R and matriceR € C**", S € C"** such that

RES RE
A:P(ES E)Q.

Proof. If (a) holds, then proceeding as Ben-Israel and Greville ([3, p. 178]) gives (b). Con-
versely, if (b) holds, then

A:P(IDE(S 1Q
(cf. (22) on [3, p. 178]), and (a) follows. OJ

Next, we recall a characterization gf for general matrices, due to Hartwig and Styan [8]
(and actually stated also for non-square matrices).

Theorem 2.2([8, Theorem 1]) LetA, B € C"*". If a = rank A,b=rankB,1 < a < b < n,
andp = b — q, then the following conditions are equivalent:

(@) A <™ B.
(b) There are unitary matricetl, V € C"*" such that

vav-(3 o)

OO0
and
Y+RES RE O
U*BV = ES E O],
O O O

whereX € R**¢ E € RP*P are diagonal matrices with positive diagonal elements,
R € C**P, andS € CP*,

In fact, U*AV is a singular value decomposition Af. (If b = n, then omit the zero blocks
in the representation di*BV.)
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3. CHARACTERIZATIONS OF A <™ B
Now we characterize~ for normal matrices.

Theorem 3.1.Let A, B € C"*" be normal. Ifa = rank A, b =rankB,1 < a < b <n, and
p = b — a, then the following conditions are equivalent:

(@) A <™ B.

(b) There is a unitary matriXJ € C**" such that

vau-(g o)

OO
and
D+RES RE O
U'BU = ES E O],
(0] O O
whereD € C***, E € CP*P are nonsingular diagonal matrice®® € C**?, and
S e Crxe,

(c) There is a unitary matriXU € C™*" such that

U*AU = <G O>

OO0
and
G+RFS RF O
U*BU = FS F O],
O O O

whereG € C***, F € CP*? are nonsingular matriceR € C**?, andS e CP*°,
(If b = n, then omit the zero blocks in the representation8floBU.)
Proof. We proceed via (b} (c) = (a) = (b).

(b) = (c). Trivial.
(c) = (a). Assume (c). Then

B - A =UCU",
where
RFS RF O
C=| FS F O
@) O O
satisfies

rank C = rank(B — A).
On the other hand, by Lemma 2.1,
rank C =rankF = p =0 — a =rank B — rank A,

and (a) follows.
(a) = (b). Assume that\ andB satisfy (a). Then, with the notations of Theorem 2.2,

vav- (3 o)==

OO0
and
Y+RES RE O
U*BV = ES E O
O O O
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The singular values of a normal matrix are absolute values of its eigenvalues. Therefore the
diagonal matrix of (appropriately ordered) eigenvalueA o D, = X,J, wherelJ is a diagonal
matrix of elements with absolute valueFurthermoreV = UJ~!, and
. B (D O
vav-n,- (5 9)

whereD is the diagonal matrix of nonzero eigenvalues\ofFor details, see, e.gL/[9, p. 417].
To studyU*BYV, let us denote

K O O
J=1{O0O L O
O O M

Y

partitioned adJ*BV above. Now,
Y+RES RE O K O O

U'BU =U'BVJ = ES E O OL O
o O O O O M
YK+RESK REL O D+RESK REL O
= ESK EL O] = ESK EL O
O O O 0] O O
By (a),
. B RESK REL
b—a=rank(B—A) =rankU (B—A)U—rank( ESK EL ) :

DenoteE’ = EL. BecauseéE andL are nonsingulagank E' = b — a. Hence, by Lemmp 2.1,
there are matriceR’ € C**? andS’ € CP** such that

RESK REL\ (R'E'S R'E
ESK EL /) \ ES E )

Consequently,
D+RES RE O
U*BU = E'S E O],
@) O O
and (b) follows. O

Corollary 3.2. Let A,B € C™™. If A is normal,B is Hermitian, andA <~ B, thenA is
Hermitian.

Proof. If rank A = 0 or rank A = rank B, the claim is trivial. Otherwise, with the notations

of Theorem 3.1,
D+RES RE O
) ., B =UBU= ES E O
O O O

SinceB is Hermitian,B’ is also Hermitian. ThereforE* = E andES = (RE)* = ER",
which impliesS = R*, sinceE is nonsingular. Now

D O

I T _
A—UAU—(O o

RER* RE O
A'=B - | ER" E O
O O O
is a difference of Hermitian matrices and so Hermitian. Hence AlspHermitian. O
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4. A< " BANAB=BA S A<'B

The partial ordering<* implies<~. For the proof, apply Theorem 2.2 and the corresponding
characterization oK* ([8, Theorem 2]). In fact, this implication originates with Hartwig!([7,
p. 4, (iii)]) on general star-semigoups.

We are therefore motivated to look for an additional condition, which, togetherwithis
equivalent to<*. First we recall a characterization ¢f* from [10] but formulate it slightly
differently.

Theorem 4.1([10, Theorem 2.1ab], cf. alsbl[8, Theorem 2al]et A, B € C"*™ be normal.
If a = rank A, b=rankB, 1 <a < b <n,andp = b — a, then the following conditions are
equivalent:

(@) A <* B.
(b) There is a unitary matriXJ € C**" such that

... (DO
vau- (8 )

and

D OO
U'BU= |0 E O],
O 0O

whereD € C**® andE € CP*P are nonsingular diagonal matriceqlf b = n, then
omit the third block-row and block-column of zeros in the expressid of

Hartwig and Styan [8] proved the following theorem assuming thandB are Hermitian.
We assume only normality.

Theorem 4.2(cf. [8, Corollary 1ac]) Let A, B € C"*™ be normal. The following conditions
are equivalent:

(@) A <* B,
(b) A<- B A AB = BA.

Proof. If a = rank A andb = rank B satisfya = 0 or a = b, then the claim is trivial. So we
assumd <a <b<n.

(a)= (b). This follows immediately from Theoremns #.1 and|3.1.

(b) = (a). Assume (b). SincA <~ B, we have with the notations of Theorém|3.1

D OO D+RES RE O
U'AU=[(0O0 O O], U*BU = ES E O
O OO O O O
Thus
D?+DRES DRE O
U*ABU = O O O
O O O
and
D?+RESD O O
U*BAU = ESD OO0
O OO0
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SinceAB = BA, alsoU*ABU = U*BAU, which impliesDRE = O andESD = O.
Becausd) andE are nonsingular, we therefore haRe= O andS = O. So

D O O
U'BU=|0 E O],
O OO
and (a) follows from Theorein 4.1. O

5, AK<TBAA?< B’ A<*B
We first note that the conditionr& <~ B andA? <~ B? are independent, evenX andB

are Hermitian.
1 0 5 2
a=(on) B=(1);

rank(B — A) = rank (;l %

and soA <~ B. However,A? <~ B? does not hold, since

> (10 s (29 12 2 a2 (28 12
A‘(o 0)’ B_(m 5)’ B A_<12 5>’

rank (B2 — AQ) =2, rank B2 —rank A2 =2 —1=1.

10 -1 0
A=(oo) P00 0)

thenA? <~ B? holds butA <~ B does not hold.

Example 5.1. If

then
)—1, rank B —rank A =2-1=1,

Example 5.2. If

Gross (|5, Theorem 5]) proved that, in the case of Hermitian nonnegative definite matrices,
the conditionsA <~ B and A? <~ B? together are equivalent tA <* B. Baksalary and
Hauke ([1, Theorem 4]) proved it for all Hermitian matrices. We generalize this result.

Theorem 5.1.Let A, B € C"*" be normal. Assume that
(i) B is Hermitian
or
(i) B — A is Hermitian.
Then the following conditions are equivalent:
(@) A <* B,
(b) A<~ B A A%< B2
Proof. First, assume (i). IfA <~ B, thenA is Hermitian by Corollary 3]2. IfA <* B, then
A <~ B, and soA is Hermitian also in this case. Therefore, both (a) and (b) imply fat
is actually Hermitian, and hence (&) (b) follows from [1, Theorem 4]. The following proof
applies to an alternative.
Second, assume (ii). #f = rank A andb = rank B satisfya = 0 or a = b, then the claim is

trivial. Sowe letl <a < b <n.
(a)= (b). This is an immediate consequence of Theorenijs 4.[ anhd 3.1.
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(b) = (a). Assume (b). SincA <~ B, we have with the notations of Theorém|3.1

D O D+RES RE O
A:U<O O)U*, B=U ES E O] U".
0) O O

SinceB — A is Hermitian,U*(B — A)U is also Hermitian. Therefor& is Hermitian and
S =R* and so
D+ RER" RE O

B=U ER* E O| U
o) O O
Furthermore,
D? O
2 *
A?=TU (o o) U
and
(D + RER*)?2+ RE’R* (D + RER*)RE +RE* O
B?=U | ER*(D + RER") + E’R* ER'RE + E? O | U
o) 0] o)
Now
2 2 H O *
B2-A?=U ( o o)UY
where
1 _ (PRER' + RER'D + (RER")’ + RE’R* DRE + RER'RE + RE?
- ER'D + ER*'RER* + E’R* ER'RE + E? '

Multiplying the second block-row o by —R. from the right and adding the result to the first
block-row is a set of elementary row operations and so does not change the rank. Thus

DRER* DRE
ER'D + ER'RER* + E’R* ER'RE + E?
Furthermore, multiplying the second block-columrifby —R* from the right and adding the
result to the first block-column is a set of elementary column operations, and so

@) DRE
ER'D ER'RE + E?

rank H = rank ( ) =rank H'.

rank H = rank ( ) = rank H”.

SinceA? <~ B?, we therefore have
rank H” = rank(B? — A?) = rank B> —rank A*> = b — a = p.

BecauséER*RE is Hermitian nonnegative definite adtlis Hermitian positive definite, their
sumE' = ER'RE + E? is Hermitian positive definite and hence nonsingular. Applying
Lemma 2.1 toH”, we see that there is a mati$ € CP*“ such that (1S*E’ = DRE and

(2) S*E’'S = O. SinceFE' is positive definite, then (2) implieS = O, and so (1) reduces to
DRE = O, which, in turn, implieR = O by the nonsingularity oD andE. Consequently,

D OO
B=U|O E O| U,
O 0O
and (a) follows from Theorein 4.1. O
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6. REMARKS

A matrix A € C™™ is a group matrix if it belongs to a subset ©f*" which is a group
under matrix multiplication. This happens if and onlyrifnk A2 = rank A (see, e.g.,[]3,
Theorem 4.2] ori[111, Theorem 9.4.2]). A matx € C"*" is an EP matrix ifR(A*) = R(A)
whereR denotes the column space. There are plenty of characterizations for EP matrices, see
Cheng and Tian_[4] and its references. A normal matrix is EP, and an EP matrix is a group
matrix (see, e.g./ [3, p. 159]). The sharp partial ordering between group makieesl B is
defined by

A <*B <« A= AB=BA.

Three of our results follow from well-known results on EP matrices.

First, Corollary 3. is a special case of Lemma 3.1 of Baksalary et al [2], whésessumed
only EP.

Second, lefA andB be group matrices. Then

A<?*B< A< BAAB=BA,
by Mitra ([12, Theorem 2.5]). On the other handAifis EP, then
A<*B& A< B,

by Gross ([6, Remark 1]). Hence Theorem|4.2 follows assuming onlyAhatEP andB is a
group matrix.

Third, Theorem 5]1 with assumption (i) is a special casé of [2, Corollary 3.2], whese
assumed only EP.
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