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ABSTRACT. In this paper we establish the general solution of the functional equation

fQRz+y)+ flx+2y) =6f(x+y)+ f(2x) + f(2y) = 5[f(2) + f(y)]
and investigate its generalized Hyers-Ulam stability in quasi-Banach spaces. The concept of
Hyers-Ulam-Rassias stability originated from Th.M. Rassias’ stability theorem that appeared in
his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math/2Soc.
(1978), 297-300.
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1. INTRODUCTION AND PRELIMINARIES

In 1940, S.M. Ulam([30] gave a talk before the Mathematics Club of the University of Wis-
consin in which he discussed a number of unsolved problems. Among these was the following
guestion concerning the stability of homomorphisms.

Let (G4, *) be a group and letG,, ¢, d) be a metric group with the metrié(-, ). Given
e > 0, does there exist &¢) > 0 such that if a functiorh : G; — G, satisfies the inequality

d(h(z *y), h(z) o h(y)) <0
forall =,y € G, then there is a homomorphishh : G; — G5 with
d(h(z), H(x)) < €
forall x € G,7
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In 1941, D.H. Hyers [9] considered the case of approximately additive funcfiors — £,
whereE’ and £’ are Banach spaces alficatisfiesHyers inequality

1f(x+y) = flz) = fyll <e
forall x,y € E. It was shown that the limit

L(z) = lim J2)

n—00 on

exists for allx € F and that. : £ — E’ is the unique additive function satisfying

1f(z) — L(z)|| <.

T. Aoki [2] and Th.M. Rassias [27] provided a generalization of Hyers’ theorem for additive
and linear mappings, respectively, by allowing the Cauchy difference to be unbounded.

Theorem 1.1(Th.M. Rassias)Let f : £ — E’ be a mapping from a normed vector space
into a Banach spacé’ subject to the inequality

(1.1) 1f (@ +y) = flx) = F)l < e(llz]]” + ly]*)
forall =,y € E, wheree andp are constants witlh > 0 andp < 1. Then the limit
L(z) = lim f(;nx)

exists forallr € F andL : E — FE’is the unique additive mapping which satisfies
2¢

(1.2) 1f (@) = L)l = 5—;,

forall x € E. If p < 0 then inequality[(1]1) holds for, y # 0 and [1.2) forz # 0. Also, if for
eachx € FE the mapping — f(tx) is continuous it € R, thenL is linear.

[”

The inequality[(I.1l) has provided much influence in the development of what is now known
asgeneralized Hyers-Ulam stabilitgr Hyers-Ulam-Rassias stabilitgf functional equations.
P. Gavruta in [7] provided a further generalization of Th.M. Rassias’ theorem. During the last
three decades a number of papers and research monographs have been published on various gen-
eralizations and applications of the generalized Hyers-Ulam stability to a number of functional
equations and mappings (see [4], [6], [8].[11]./[13],/[15] =/[26]). We also refer the readers to
the booksl[1],[[5],[10],[[14] anc [28].

Jun and Kim[[12] introduced the following cubic functional equation

(1.3) fQRr+y)+ f2r —y) =2f(v +y) +2f (v —y) + 12f(x)

and they established the general solution and the generalized Hyers-Ulam stability problem for
the functional equatio. They proved that a functiofi : £, — FE, satisfies the functional
equation(L.3) if and only if there exists a functioB : E; x E; x E; — E, such thatf(z) =
B(z,z,z) forall x € E;, andB is symmetric for each fixed one variable and additive for each
fixed two variables. The functioB is given by

= @ty + ) 4 fw—y =)~ faty—2)— [~y +2)
forall x,y, z € E;.

A. Najati and G.Z. Eskandani [25] established the general solution and investigated the gen-
eralized Hyers-Ulam stability of the following functional equation

fRx+y)+ f(2z —y) =2f(x +y) +2f(x —y) +2f(2z) — 2f(x)
in quasi-Banach spaces.

B(z,y,2)
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In this paper, we deal with the following functional equation derived from cubic and additive
functions:

(14)  fRr+y)+ flz+2y) =6f(x+y)+ f2z) + f(2y) —5[f (=) + f(Y)].
It is easy to see that the functigi{z) = az® + cx is a solution of the functional equation

(3.

The main purpose of this paper is to establish the general solutifand investigate its
generalized Hyers-Ulam stability.

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.1 ([3],[22]). Let X be a real linear space. duasi-normis a real-valued function
on X satisfying the following:

(i) ||z|| > 0forallz € X and||z|| = 0if and only if z = 0;
(i) [[Az|| = |Al[|z] forall A € R and allz € X
(i4) Thereis a constamt” > 1 such that|x + y|| < K(||z| + ||y||) forall z,y € X.

It follows from condition(ii:) that

2n 2n
dowl| <KDYl
i=1 i=1

2n+1

D
i=1

2n+1

< K™Y
i=1

for all integersn > 1 and allxy, s, ..., 22,11 € X.
The pair(X, ||-||) is called aquasi-normed spacé ||-|| is a quasi-norm oX. The smallest
possible K is called themodulus of concavityf ||-||. A quasi-Banach spacis a complete

quasi-normed space.
A quasi-norm||-|| is called ap-norm (0 < p < 1) if

2+ yl|” < llz)I” + [lyl”
forall z,y € X. In this case, a quasi-Banach space is callgeBanach space.

By the Aoki-Rolewicz theorem [29] (see alsd [3]), each quasi-norm is equivalent to some
p-norm. Since it is much easier to work withnorms than quasi-norms, henceforth we restrict
our attention mainly tp-norms.

2. SOLUTIONS OF EQ. (1.4)

Throughout this sectionY andY” will be real vector spaces. Before proceeding to the proof
of Theorenj 2.8 which is the main result in this section, we need the following two lemmas.

Lemma 2.1. If a functionf : X — Y satisfies[(1}4), then the functign: X — Y defined by
g(x) = f(2z) — 8f(x) is additive.

Proof. Let f : X — Y satisfy the functional equatiofi.4). Lettingz = y = 0 in (1.4), we get
that f(0) = 0. Replacingy by 2y in (1.4), we get
(2.1) f2z+2y) + f(z +4y) = 6f(x +2y) + f(2z) + f(4y) — 5[f(2) + [(2y)]
for all z,y € X. Replacingy by  andz by y in (2.1)), we have
(2.2) f2z+2y) + f(da +y) = 6f(2z +y) + f(4x) + f(2y) — 5[f(22) + f(y)]
forall z,y € X. Adding to and using(L.4)), we have
(2.3) 2f(2x +2y) + f(4x +y) + f(z + 4y)
=36f(z+y) + f(4x) + f(dy) + 2[f (22) + f(2y)] — 35[f (=) + f(y)]
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forall z,y € X. Replacingy by —z in (2.3), we get

(2.4)  fBa)+ f(=3xz) = f(4x) + f(—4x) + 2[f (22) + f(—22)] — 35[f (2) + f(—=)]
forallz € X. Lettingy = « in (1.4), we get

(2.5) f(3z) = 4f(2x) = 5f()
forall z € X. Lettingy = —x in (1.4)), we have
(2.6) f(22) + f(=22) = 6[f(2) + f(—=)]

forall z € X. It follows from (2.4)), and(2.6) that f(—z) = — f(z) forallz € X, i.e., f
is odd. Replacing: by x + y andy by —y in and using the oddness ¢f we have

(2.7) fRz+y)+ flz—y) =6f(z) + f(2z +2y) — f(2y) = 5[f(z +y) — f(y)]

for all z,y € X. Replacingy by z andy by z in (2.7), we get

(2.8)  flz+2y) — fle—y)=6f(y) + [z +2y) — f(22) = 5[f(z +y) — f(z)]
forall z,y € X. Adding to (2.8)), we have

(2.9) f2z+y)+ f(z+2y) = 2f(2x+2y) — f(22) — f(2y) = 10f (z +y) + 11[f(2) + [ (y)]
forall z,y € X. It follows from and [2.9) that

(2.10) [z +2y) = 8f(x +y) = f(2x) + f(2y) — 8[f(z) + f(y)]

for all z,y € X, which means that the functian: X — Y is additive. 0J

Lemma 2.2. If a functionf : X — Y satisfies the functional equatidn ([L.4), then the function
h: X — Y defined by:(z) = f(2x) — 2f(z) is cubic .

Proof. Let g : X — Y be a function defined by(z) = f(2z) — 8f(x) for all x € X. By
Lemmd 2.1 and its proof, the functighis odd and the functiop is additive. It is clear that

(2.11) hz) = g(x) +6f(z), [f(22)=g(z)+8f(x)
for all 2 € X. Replacinge by z — y in (1.4)), we have
(212) Rz —y)+ fle+y)=6f(x)+ f(2x —2y) + f(2y) = 5[f(z —y) + [ ()]
for all 2,y € X. Replacingy by —y in(2.12)), we have
(213) [z +y)+ fle—y)=6f(2)+ f(2x+2y) — f(2y) = 5[f(z +y) — f(y)]
forall z,y € X. Adding to (2.13), we get
(2.14) f(2x —y) + f(2x +v)
=12f(x) + f(2x + 2y) + f(2z — 2y) = 6[f(z + y) + f(z — y)]

forall z,y € X. Sinceg is additive, it follows from(2.11)) and(2.14)) that

h(2z +y) + h(2z — y) = 2[h(z +y) + h(z — y)] + 12h(x)
forall z,y € X. So the functiorh is cubic. O

Theorem 2.3. A functionf : X — Y satisfies[(1}4) if and only if there exist functiofis:
X xXxX—=YandA: X — Y such that

f(l’) = C’(x,w,x) + A(J})

for all z € X, where the functiol' is symmetric for each fixed one variable and is additive for
fixed two variables and the functiohis additive.
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Proof. We first assume that the functigh: X — Y satisfies(l.4). Letg,h : X — Y be
functions defined by

g(x) = fQ2x) = 8f(x),  h(x):= [f(22) - 2f(x)

forall z € X. By Lemmag 2.l and 2.2, we achieve that the functipasd/’. are additive and
cubic, respectively, and

(2.15) f(x) = Z[h(z) — g(z)]

forall z € X. Therefore by Theorem 2.1 of [12] there exists a function X x X x X — Y
such thati(z) = 6C(x, z, z) for all z € X, andC'is symmetric for each fixed one variable and
is additive for fixed two variables. So

flz)=C(z,z,z) + A(x)

forall z € X, whereA(z) = —¢g(z) forall z € X.
Conversely, let
flz)=C(z,xz,2) + A(x)
for all x € X, where the functior is symmetric for each fixed one variable and additive for
fixed two variables and the functiofiis additive. By a simple computation one can show that
the functionst — C(z,z,z) and A satisfy the functional equatioh (1.4). So the functipn
satisfies[(1}4). O

3. GENERALIZED HYERS-ULAM STABILITY OF EQ. (1.4)

Throughout this section, assume ttatis a quasi-normed space with quasi-ngfr, and
that)” is ap-Banach space with-norm||-||,. . Let K be the modulus of concavity gif||,- .

In this section, using an idea ofa@ruta [7] we prove the stability of the functional equa-
tion (I1.4) in the spirit of Hyers, Ulam and Rassias. For convenience, we use the following
abbreviation for a given functiofi: X — Y :

Df(z,y) == f(2x +y) + f(z +2y) = 6f(z +y) — f(22) — f(2y) + 5[f (=) + f(y)]
forall x,y € X.
We will use the following lemma in this section.

Lemma 3.1([23]). Let0 < p < 1 and letzy, 2o, .. ., x,, be non-negative real numbers. Then

(3.1) (i xl> < ixf

Theorem 3.2.Lety : X x X — [0, 00) be a function such that

1
(3.2) lim —¢(2"z,2"y) =0

n—oo 2N
forall z,y € X, and

o0

1 . .
(3.3) M(z,y) = 5" (2, 2y) < oo

=0
forall z € X and ally € {0,z,—z/2}. Suppose that a functiofi : X — Y satisfies the
inequalities
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(3.5) 1f (@) + f(—2)lly < ¢(z,0)
forall z,y € X. Then the limit

n+1 - n
Aw) = tim 110~ 8@
exists for allz € X, and the functiom : X — Y is a unique additive function satisfying
K__, 1
(3.6) 1£(22) = 8f(z) — Az) + fO)lly < - [o(2)]7
forall z € X, where

~ K
o(x) = K** M2z, —x) + ?M(aj,x) + KPM (2x,0) + 5" M (x,0).

Proof. Lettingy = x in (3.4), we have

(3.7) 1£(3x) — 4(20) + 5/(@)lly < 5(x,2)

for all z € X. Replacinge by 2z andy by —z in (3.4)), we have

(3.8)  [[f(37) = f(4x) +5f(22) — f(=22) = 6f(x) +5f (=) + f(O)]ly < (22, —2).
Using (3.5)), and(3.8), we have

(3.9) lg(22) = 2g(z) = F(O)lly < ¢(2)

for all z € X, where

2

o(r) =K {Kzgo(%, —z)+ KTgo(a:,a:) + K¢(22,0) 4+ 5¢(z,0)

andg(z) = f(2z) — 8f(z). By Lemmd 3.1 and (3|3), we infer that
(3.10) > 2—2}#(2%) < 0
=0

for all z € X. Replacinge by 2"z in and dividing both sides by 2"+1 we get

1

2n+lg(2n+1x)

(3.11) ‘

1 1 1
- ) = 51 10)| < ot

for all x € X and all non-negative integers SinceY is ap-Banach space, we have

n P

1 1 1
(3.12) WQ(Q ) - 2_m9(2 ) — Z ST f(0)
1=m Y
| I 1 P

1 1 4
D 1
< §_ 5 (22)

for all z € X and all non-negative integersandm with n > m. Therefore we conclude from
(3.10) and [3.1R) that the sequenfg:g(2"x) } is a Cauchy sequencelafor all z € X. Since
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Y is complete, the sequenég%g(Q"x)} converges inY” for all z € X. So we can define the
functionA : X — Y by

1
(3.13) A(x) := lim 2—ng(2”a:)
for all z € X. Lettingm = 0 and passing the limit whem — oc in (3.12)), we get[(3.5). Now,
we show thatd is an additive function. It follows fronj (3.10), (3111) and (3.13) that

[A2z) = 2A(z)[ly

n—oo

1 1
o n+1 n
= lim HZ_”9<2 x) — 2n_lg(2 x)

Y

n—oo

: n L on 1 1
< 2K Jim (H2 0(210) = goal@'a) = 7 £+ gl Ol )

forallz € X. So
(3.14) A(2z) = 2A(x)
for all z € X. On the other hand, it follows from (3.2), (3.4) afnd (3.13) that

: 1 n n
1DA,y)lly = lim 7= Dg(2"2,2"y) |y

< tim 2| Df@ e 2|, + 8 |DF@,2)y )

n—oo 2N

K

for all z,y € X. Hence the functioM satisfies[(1}4). So by Lemnja 2.1, the function—
A(2z) — 8A(z) is additive. Therefore (3.14) implies that the functidns additive.

To prove the uniqueness df, let 7' : X — Y be another additive function satisfyir{g.6).
It follows from (3.3) that

: 1 n 7
Jim oM (2, 2y JLHQOZ—QD 2',2'y) =0

forallz € X and ally € {0,2, —2/2}. Hencelim,, ., 579(2"z) = 0 forall z € X. So it

follows from (3.6) and[(3.13) that
[A(z) = T(2)[[y = lim %HQ(T z) = T(2"z) + fO)lly
Ko 1,
< 5 Jm 5 #2'e) =0
forallz € X. S0A =T. O

Corollary 3.3. Let# be non-negative real number . Suppose that a fungtioX’ — Y satisfies
the inequalities

(3.15) IDf(z,y)lly <0, |f(z)+ f(=2)lly <0
for all x,y € X. Then there exists a unique additive functién X — Y satisfying
K20 ((2K?)P + (2K + K% +10°\» K0
I5(20) = 87(0) = Ay < 5 { EEEER b

forall z € X.
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Proof. It follows from (3.15) that| f(0)||y < 6/4. So the result follows from Theorem .20

Theorem 3.4.Lety : X x X — [0,00) be a function such that
: r oy
lim 2" (—,—) —0
oo~ P \gn on
forall z,y € X, and

o0

o ip, P E E
(3.16) M(z,y) .—;2 © <2i’2i> < 00
forall z € X and ally € {0,z,—z/2}. Suppose that a functiofi : X — Y satisfies the
inequalities
IDf(@ )y < e(@,y),  [If(@)+ f(=2)lly <p(z,0)

forall z,y € X. Then the limit
Alw) = Jim 2 [/ (57) =8/ (37)

exists for allx € X and the functiom : X — Y is a unique additive function satisfying
K

(3.17) 1 (22) = 8f(2) = Aa) Iy < S {B(2)]?
forall x € X, where
() = K*M (2, —x) + };—;Z]M(:c,x) + KPM (22,0) + 5P M (x,0).

Proof. It follows from (3.16)) thaty(0,0) = 0 and sof (0) = 0. We introduce the same defini-
tions forg : X — Y and¢(z) as in the proof of Theoref 3.2. Similar to the proof of Theorem
[3.2, we have

(3.18) lg(22) = 2g(2)lly < é(z)
forall z € X. By Lemmd 3.1 and3.16), we infer that
00 A x
p .
(3.19) Y2 ¢p<2,-) <

=1

forall 2 € X. Replacing: by 52+ in and multiplying both sides by 2", we get

n+1 L n T n T
|20 (5) =29 ()], <20 (55%)

for all x € X and all non-negative integers SinceY is ap-Banach space, we have
n+1 €z __om i P - i+1 X _ ot E
2 <2n+1> 2" <2m> y = Zﬂ; 209 <2i+1> 29 (2)

<> 27 (5)

for all x € X and all non-negative integersandm with n > m. Therefore we conclude from
and [3.20) that the sequen¢®g(z/2")} is a Cauchy sequence 1 for all z € X.
SinceY is complete, the sequené®™g(z/2")} converges iy for all z € X. So we can define
the functionA : X — Y by

p

(3.20) ‘

Y

A(z) := lim 2"g (%)

forall x € X. Lettingm = 0 and passing the limit whem — oo in (3.20)) and applying Lemma
3.7, we get[(3.77).
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The rest of the proof is similar to the proof of Theorem 3.2 and we omit the details. [

Corollary 3.5. Letd,r, s be non-negative real numbers such that > 1 or 0 < r,s < 1.
Suppose that a functiofi: X — Y satisfies the inequalities

(3.21) IDf(zy)lly < 0(lzllx + lyllx),  [1f (@) + f(=2)lly <0zl
forall =,y € X. Then there exists a unique additive functién X — Y satisfying

1f(22) = 8f(x) — A(@)[ly
- K_Q {(2r+1K2)p+K2p+ (2r+1K)p+ mpHxH”’ (2K2)p+K2pH HSP};
2 |20 — 27| X |20 — 2sp|
forall z € X.
Proof. It follows from (3.21) thatf(0) = 0. Hence the result follows from Theorefns]3.2 and
3.4. O

Corollary 3.6. Letd > 0 andr, s > 0 be real numbers such that:= r + s # 1. Suppose that
an odd functionf : X — Y satisfies the inequality

(3.22) IDf(x, y)lly < 0llzlxlyll5
forall z,y € X. Then there exists a unique additive functiédn X — Y satisfying

K30 (142000 )7
I#(20) = 81() ~ Aol < 257 { 20 b el

forall z € X.
Proof. f(0) = 0, sincef is odd. Hence the result follows from Theorgmg 3.2[an{l 3.4. O
Theorem 3.7.Lety : X x X — [0, 00) be a function such that

1
(3.23) lim —(2"x,2"y) =0

n—oo N

forall z,y € X, and

o0

(3.24) M(z,y) = ZW/’”( z,2y) < 00

=0
forall z € X and ally € {0,z,—z/2}. Suppose that a functiofi : X — Y satisfies the
inequalities

(3.25) IDf(z,y)lly < ¥(x,y), [f(z) + f(=2)|ly <¢(z,0)
forall z,y € X. Then the limit
C(w) = Tim —-[f(2"*a) — 2(2")

n—00 8
exists for allr € X, andC' : X — Y is a unique cubic function satisfying
1 K ~
f(2z) = 2f(z) = C(x) + ;f(O)

(3.26) < gl@)

forall z € X, where
~ K?2p

Y(x) = K*M 2z, —x) + ?M(x, x) + KPM(2x,0) + 5°M(z,0).
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Proof. Similar to the proof of Theorein 3.2, we have

(3.27) 1 (4x) = 10f(22) +16f(x) — f(O)]ly < p(x)

forall z € X, where
2

o(z) = K [K2w(2x, —z) + 51/;(93, z) + K(22,0) + 5¢(x,0)] .

2
Leth : X — Y be a function defined bi(z) = f(2z) — 2f(x). Hence(3.27) means
(3.28) [h(22) = 8h(x) — f(O)[ly < ¢(x)
forall z € X. By Lemmd 3.1 and3.24), we infer that
(3.29) 2; G (2') < o0

for all z € X. Replacingr by 2"z in and dividing both sides by 8"+, we get

1
(3.30) < g 9(2")

1
n+1 n

for all x € X and all non-negative integers SinceY is ap-Banach space, we have

n P

1 . . 1
(3.31) Gt h(2 ) — G M(2") = Z o1/ (0)
1=m Y
- 1 i+1 1 i 1 3

1 - 1 .
<% _Z @#(2 )
for all x € X and all non-negative integersandm with n > m. Therefore we conclude from
(3.29) and (3.31) that the sequencé-h(2"z)} is a Cauchy sequence i for all z € X.
SinceY is complete, the sequenég%h@%)} converges for alk € X. So we can define the
functionC : X — Y by:

(3.32) C(z) = lim ih(Q”x)

n—oo &N

forall z € X. Lettingm = 0 and passing the limit whem — oo in (3.31)), we get|(3.25). Now,
we show that the functio@' is cubic. It follows from(3.29)), (3.30) and(3.32) that

1C(22) = 8C(x)ly

1
8n71

1
= lim HS—nh(Q"“m) — h(2"x)

n—oo

Y

n—oo &n

1 1 1
< 8K lim (HWW"H@ — —h(2"x) — 8"“f(0)Hy + 8,11“ Hf(O)Hy>

K
< lim 8—n¢(2"x) =0

for all x € X. Therefore we have
(3.33) C(2z) = 8C(x)
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for all z € X. On the other hand, it follows frorg8.23)), (3.25) and(3.32) that

|DC(x,y)|ly = lim —HDh "x, 2"y)

N 00 8 HY

= lim {||Df (2, 2" y) — 2D f(2", 2"y) |, }

n—oo

< lim — {HDf (27, 2mtly)

n—oo 8N

My +2|Df 2", 2%y }

K
< Jim o [9(2" e, 27 y) + 20(2", 2")] = 0

for all z,y € X. Hence the functiorC' satisfies[(1}4). So by Lemnja 2.2, the function—
C(2z) — 2C(z) is cubic. Hence[(3.33) implies that the functiéhis cubic. To prove the
uniqueness of’, let 7 : X — Y be another cubic function satisfyir{.26). It follows from

(B.24) that
1
lim —pM( x,2"y) nlg)lO g 2'w,2'y) = 0

n—oo N

forallz € X andy € {0,z,—z/2}. Hencehmn_,C>o o @Z)(Q” )=0forallz € X. So it
follows from (3.26) and[(3.32) that

|C(a) = T(@)|ly = lim —||h2" —T(2") + f )y

<£lm—¢(2”) 0

— 8P n—oo 8

forallz € X. SoC =T. O

Corollary 3.8. Let# be non-negative real number. Suppose that a functiolk’ — Y satisfies
the inequalities|(3.15). Then there exists a unique cubic functiotX’ — Y satisfying

K0 { (2K2)7 + (2K + K2 + 10 }i K8

1f(2z) = 2f(z) — C(z)|ly <
forall x € X.

Proof. We get from|(3.1p) that f(0)|| < /4. So the result follows from Theorem 3.7. O
Theorem 3.9.Lety : X x X — [0, 00) be a function such that

hmsw( y):o

n—oo 2"

2 8 —1 28

forall z,y € X, and

o0

. U Yy
(3.34) M(z,y) == ;8 " ( 21) <0
forall z € X and ally € {0,z,—xz/2}. Suppose that a functiofi : X — Y satisfies the
inequalities

IDf(z,y)lly <¥z,y),  1f (@) + f(=2)lly <¢(,0)
forall =,y € X. Then the limit

C(z) = lim 8" [f (zf—1> -2/ (%ﬂ

exists for allxr € X and the functiorC' : X — Y is a unique cubic function satisfying

K

(3.35) 1£(22) = 2f(x) = C@)lly < G @)
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forall z € X, where

~ K?2p
Y(z) = K*M (22, —7) + ?M(x,m) + KPM(2x,0) + 5" M (z,0).

Proof. It follows from (3.34) that)(0,0) = 0 and sof(0) = 0. We introduce the same defini-
tions forh : X — Y and¢(z) as in the proof of Theorefn 3.7. Similar to the proof of Theorem
[3.7, we have

(3.36) 1h(22) — 8h(z)lly < é(z)
forall z € X. By Lemmd 3.1 and (3.34), we infer that
(3.37) 3 grgr (;) <o

=1

for all z € X. Replacingr by 5% in (3.36) and multiplying both sides df3.36) to 8", we get

n+1 xr n xr n Zz
1 (ger) =80 (53) ], <8¢ (75)

for all x € X and all non-negative integers SinceY is ap-Banach space, we have
n+1 z mp (L V| - i+l X ir (%
37 () =87 () [, < X[ (5) -5 (3)

<S5 (50

for all z € X and all non-negative integersandm with n > m. Therefor we conclude from
and [3.38) that the sequenf®'h(x/2")} is a Cauchy sequencelnfor all z € X. Since
Y is complete, the sequen¢8”h(z/2")} converges it for all z € X. So we can define the
functionC : X — Y by

p

(3.38)

Y

C(x) := lim 8"h <£>

n—00 on

forall z € X. Lettingm = 0 and passing the limit whem — oo in (3.38) and applying Lemma
[3.1, we get[(3.35).

The rest of the proof is similar to the proof of Theorem 3.7 and we omit the details. [

Corollary 3.10. Let#, r, s be non-negative real numbers such that > 3 or0 < r,s < 3.
Suppose that a functiofi: X — Y satisfies the inequalities (3]21). Then there exists a unique
cubic functionC' : X — Y satisfying

1f(22) = 2f(x) = C(z)]ly

KO [(2HK2P + K% + (2 HK2P 4100 (KPP + K%\
< 5 v 215 + = 5 I7ll%
2 |8 — 2rp 8P — 27|
forall z € X.
Proof. It follows from (3.21) thatf(0) = 0. Hence the result follows from Theoreins|3.7 and
B.9. O

Corollary 3.11. Let# andr,s > 0 be non-negative real numbers such thai= r + s # 3.
Suppose that an odd functigh: X — Y satisfies the inequality (3.22). Then there exists a
unique cubic functiod' : X — Y satisfying

K% (1420400
I#(20) = 2£(0) = Ol < 75 { T gmr | el
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forall z € X.
Proof. f(0) = 0, sincef is odd. Hence the result follows from Theorgmg 3.7[an{i 3.9. O

Theorem 3.12.Letyp : X x X — [0, 00) be a function such that
1
lim 2—@(2”3:,27@) =0

forall z,y € X, and

[e.9]

1 o
M, (z,y) = Z 5 ? P(2'x, 2'y) < o0
1=0
forall z € X and ally € {0,z,—z/2}. Suppose that a functiofi : X — Y satisfies the
inequalities
IDf(z,y)lly < e(z,y)  1f(2)+ f(=2)ly < ¢(z,0)

for all z,y € X. Then there exist a unique additive functidn: X — Y and a unique cubic
functionC' : X — Y such that

©39) |0 - A - Clo) - 110

forall x € X, where

(z,9) :Zg_ta 2w, 2'y)

< ff_g {4Ga@))P + [Gu()

B =

Y

=0
- K
Ge(x) := K* M, (22, —x) + 7Mc(x, x) + KPM,.(2x,0) + 5P M (x,0),
— K?
0a(x) := K*M,(22, —x) + ?Ma(m, x) + KPM,(2z,0) + 5" M,(z,0).

Proof. By Theorems$ 3]2 and 3.7, there exists an additive functipn X — Y and a cubic
functionCy : X — Y such that

140(2) = f(22) + 8f(2) = FO)lly < < [alz 27,
K _
ICo(e) — F(22) +2f(2) = 2 FO)lly < G [Bu(o)]
for all z € X. Therefore it follows from the last inequalities that

|10+ o)~ geute) - 770)| < g {47t

for all 2 € X. So we obtain[(3.39) by lettingl(z) = —§Aq(z) andC(z) =
z € X.
To prove the uniqueness of andC, let A;,C, : X — Y be further additive and cubic
functions satisfying(3.39). Let’ = A — A; andC’ = C' — C,. Then
]

N

=

=
SR

+ [@e(x)]

}

£Co(x) for all

(3.40) [[A'(z) + C'(z)lly

SKHp@wnum— C(w) - L10)

[0 - a0 - i) - 310

1

< E lig@) + )
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forall x € X. Since . .
lim —@.(2"z) = lim —g,(2"z) =0

n—oo 8np n—oo 27747

for all z € X, then [3.40) implies that

1
lim 8—n||A'(2":17) +C'(2"z)|ly =0

n—oo

forallz € X. SinceA’ is additive and’" is cubic, we get”’ = 0. So it follows from [3.40) that

5K3 __
i Ba@)

for all z € X. Therefored’ = 0. O

Corollary 3.13. Let# be a non-negative real number. Suppose that a functionX — Y
satisfies the inequalitief (3]15). Then there exist a unique additive fun¢tioi — Y and a
unique cubic functiod' : X — Y satisfying

B =

1A (@)[ly <

1£(x) ~ AGw) ~ C@)ly < 56+ 6

forall z € X, where

s K20 QKA+ QK + k7 4107 , | K
“ 2 20 — 1 4’
5 _ K [ QK + 2K + K 4107 » KO
‘2 8 —1 28

Theorem 3.14.Lety : X x X — [0, 00) be a function such that
. Ty
lim 8" (—,—) ~0
Jm 8% (50 5

forall z,y € X, and

o0

._ ip, D 2 ﬂ
M. (x,y) := ;8 P <2i, 21,) < 00
forall z € X and ally € {0,z,—z/2}. Suppose that a functiofi : X — Y satisfies the
inequalities
IDf(z, y)lly <o(z,y)  f(@) + f(=2)ly < ¥(,0)
for all =,y € X. Then there exist a unique additive functidn: X — Y and a unique cubic
functionC : X — Y such that

—~

(3.41) 17(2) ~ A) ~ C@)lly < o {40(a)]

D=

+ [Ye()]

S =

forall x € X, where

Ma(x,y) = > 2" (5. %)

=1

~ K?2p
Ve(x) := K* M, (21, —x) + 7M6($, z) + KPM.(22,0) + 5* M (z,0),
—~ K2
Vo(z) = K* M, (22, —x) + ?Ma(l’, z) + KPM,(22,0) + 5P M, (x,0).
Proof. Applying Theorem$ 3}4 arjd 3.9, we get (3.41). O
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Corollary 3.15. Let 4, r, s be non-negative real numbers such that > 3or0 < r,s < 1.
Suppose that a functiofi: X — Y satisfies the inequalitieg (3]21). Then there exist a unique
additive functiond : X — Y and a unique cubic functio' : X — Y such that

K20

(3.4 I1£(@) = Aw) = C@ly < 5

[0a(2) + 6c()]

forall z € X, where

1

(2P K2 + K2+ (27 K5 100 (KAHP 4+ KPP

(o) = { S fell? + el
(2P 4 K% 4 (K2R 4 10r QKA KPP, )¢

Oc(z) = { & = 2] ]l + anllé’ :

Corollary 3.16. Letd > 0 andr, s > 0 be real numbers such that:= r+s € (0, 1)U(3, +c0).
Suppose that an odd functigh: X — Y satisfies the inequality (3.22). Then there exist a
unique additive function! : X — Y and a unique cubic functiofi' : X — Y such that

K40 1 4 2p(r+1) ’ 1 + p(r+1) ’ \
oo | e} 1ok

12
Theorem 3.17.Letyp : X x X — [0, 00) be a function such that

1
lim —p(2"z,2"y) =0, m 2" (;—n Y > =0

5 v
n—oo 8" n—o0 on

forall z,y € X, and

(343)  [f(2) - Alx) — C(a)]ly <

forall z € X.

- i ry , — 1 i, oi
Ma(xay) = ;2p¢p (57 5) < 09, Mc(x7y) = ; @@p(2 iL‘,2 y) < o0
forall z € X and ally € {0,z,—z/2}. Suppose that a functiofi : X — Y satisfies the
inequalities
IDf (@, y)lly < e(z,y)  1f(@)+ f(=2)ly < ¢(z,0)
for all x,y € X. Then there exist a unique additive functidn: X — Y and a unique cubic
functionC : X — Y such that
2

1£(2) ~ A) ~ C@)ly < T {UE]F + (B )
forall x € X, where

K%
Geo(x) := K* M, (21, —x) + ?Mc(:v, x) + KPM.(2x,0) + 5? M (x, 0),
2p
Do) := K*M, (22, —x) + 7Ma(x,$) + KM, (22,0) + 5 M, (x,0).
Proof. By the assumption, we ggt0) = 0. So the result follows from Theorem 3.4 and Theo-
rem[3.T. O

Corollary 3.18. Letd, r, s be non-negative real numbers such that r, s < 3. Suppose that a
functionf : X — Y satisfies the inequalitie§ (3]21) for ally € X. Then there exists a unique
additive mappingd : X — Y and a unique cubic mapping : X — Y satisfying [(3.4R).

Proof. It follows from (3.21) thatf(0) = 0. Hence the result follows from Corollarigs B.5 and
3.10. O
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Corollary 3.19. Leté, r, s be non-negative real numbers such that \ := r+s < 3. Suppose
that an odd functiorf : X — Y satisfies the inequality (3.22) for all y € X. Then there exists
a unique additive mappingd : X — Y and a unique cubic mapping : X — Y satisfying

@.43).
Proof. f(0) = 0, sincef is odd. Hence the result follows from Corollarfes|3.6 and|3.11.0]
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