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ABSTRACT. In this paper we establish the general solution of the functional equation

f(2x + y) + f(x + 2y) = 6f(x + y) + f(2x) + f(2y)− 5[f(x) + f(y)]

and investigate its generalized Hyers-Ulam stability in quasi-Banach spaces. The concept of
Hyers-Ulam-Rassias stability originated from Th.M. Rassias’ stability theorem that appeared in
his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.72
(1978), 297–300.
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1. I NTRODUCTION AND PRELIMINARIES

In 1940, S.M. Ulam [30] gave a talk before the Mathematics Club of the University of Wis-
consin in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

Let (G1, ∗) be a group and let(G2, �, d) be a metric group with the metricd(·, ·). Given
ε > 0, does there exist aδ(ε) > 0 such that if a functionh : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1, then there is a homomorphismH : G1 → G2 with

d(h(x), H(x)) < ε

for all x ∈ G1?
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In 1941, D.H. Hyers [9] considered the case of approximately additive functionsf : E → E ′,
whereE andE ′ are Banach spaces andf satisfiesHyers inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for allx ∈ E and thatL : E → E ′ is the unique additive function satisfying

‖f(x)− L(x)‖ ≤ ε.

T. Aoki [2] and Th.M. Rassias [27] provided a generalization of Hyers’ theorem for additive
and linear mappings, respectively, by allowing the Cauchy difference to be unbounded.

Theorem 1.1(Th.M. Rassias). Let f : E → E ′ be a mapping from a normed vector spaceE
into a Banach spaceE ′ subject to the inequality

(1.1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E, whereε andp are constants withε > 0 andp < 1. Then the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for allx ∈ E andL : E → E ′ is the unique additive mapping which satisfies

(1.2) ‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. If p < 0 then inequality (1.1) holds forx, y 6= 0 and (1.2) forx 6= 0. Also, if for
eachx ∈ E the mappingt 7→ f(tx) is continuous int ∈ R, thenL is linear.

The inequality (1.1) has provided much influence in the development of what is now known
asgeneralized Hyers-Ulam stabilityor Hyers-Ulam-Rassias stabilityof functional equations.
P. Ğavruta in [7] provided a further generalization of Th.M. Rassias’ theorem. During the last
three decades a number of papers and research monographs have been published on various gen-
eralizations and applications of the generalized Hyers-Ulam stability to a number of functional
equations and mappings (see [4], [6], [8], [11], [13], [15] – [26]). We also refer the readers to
the books [1], [5], [10], [14] and [28].

Jun and Kim [12] introduced the following cubic functional equation

(1.3) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

and they established the general solution and the generalized Hyers-Ulam stability problem for
the functional equation(1.3). They proved that a functionf : E1 → E2 satisfies the functional
equation(1.3) if and only if there exists a functionB : E1 × E1 × E1 → E2 such thatf(x) =
B(x, x, x) for all x ∈ E1, andB is symmetric for each fixed one variable and additive for each
fixed two variables. The functionB is given by

B(x, y, z) =
1

24
[f(x+ y + z) + f(x− y − z)− f(x+ y − z)− f(x− y + z)]

for all x, y, z ∈ E1.
A. Najati and G.Z. Eskandani [25] established the general solution and investigated the gen-

eralized Hyers-Ulam stability of the following functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 2f(2x)− 2f(x)

in quasi-Banach spaces.
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In this paper, we deal with the following functional equation derived from cubic and additive
functions:

(1.4) f(2x+ y) + f(x+ 2y) = 6f(x+ y) + f(2x) + f(2y)− 5[f(x) + f(y)].

It is easy to see that the functionf(x) = ax3 + cx is a solution of the functional equation
(1.4).

The main purpose of this paper is to establish the general solution of(1.4) and investigate its
generalized Hyers-Ulam stability.

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.1 ([3, 29]). Let X be a real linear space. Aquasi-normis a real-valued function
onX satisfying the following:

(i) ‖x‖ ≥ 0 for all x ∈ X and‖x‖ = 0 if and only if x = 0;
(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and allx ∈ X;

(iii) There is a constantK ≥ 1 such that‖x+ y‖ ≤ K(‖x‖+ ‖y‖) for all x, y ∈ X.

It follows from condition(iii) that∥∥∥∥∥
2n∑
i=1

xi

∥∥∥∥∥ ≤ Kn

2n∑
i=1

‖xi‖,

∥∥∥∥∥
2n+1∑
i=1

xi

∥∥∥∥∥ ≤ Kn+1

2n+1∑
i=1

‖xi‖

for all integersn ≥ 1 and allx1, x2, . . . , x2n+1 ∈ X.
The pair(X, ‖·‖) is called aquasi-normed spaceif ‖·‖ is a quasi-norm onX. The smallest

possibleK is called themodulus of concavityof ‖·‖ . A quasi-Banach spaceis a complete
quasi-normed space.

A quasi-norm‖·‖ is called ap-norm(0 < p ≤ 1) if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called ap-Banach space.
By the Aoki-Rolewicz theorem [29] (see also [3]), each quasi-norm is equivalent to some

p-norm. Since it is much easier to work withp-norms than quasi-norms, henceforth we restrict
our attention mainly top-norms.

2. SOLUTIONS OF EQ. (1.4)

Throughout this section,X andY will be real vector spaces. Before proceeding to the proof
of Theorem 2.3 which is the main result in this section, we need the following two lemmas.

Lemma 2.1. If a functionf : X → Y satisfies (1.4), then the functiong : X → Y defined by
g(x) = f(2x)− 8f(x) is additive.

Proof. Let f : X → Y satisfy the functional equation(1.4). Lettingx = y = 0 in (1.4), we get
thatf(0) = 0. Replacingy by 2y in (1.4), we get

(2.1) f(2x+ 2y) + f(x+ 4y) = 6f(x+ 2y) + f(2x) + f(4y)− 5[f(x) + f(2y)]

for all x, y ∈ X. Replacingy by x andx by y in (2.1), we have

(2.2) f(2x+ 2y) + f(4x+ y) = 6f(2x+ y) + f(4x) + f(2y)− 5[f(2x) + f(y)]

for all x, y ∈ X. Adding(2.1) to (2.2) and using(1.4), we have

(2.3) 2f(2x+ 2y) + f(4x+ y) + f(x+ 4y)

= 36f(x+ y) + f(4x) + f(4y) + 2[f(2x) + f(2y)]− 35[f(x) + f(y)]
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for all x, y ∈ X. Replacingy by−x in (2.3), we get

(2.4) f(3x) + f(−3x) = f(4x) + f(−4x) + 2[f(2x) + f(−2x)]− 35[f(x) + f(−x)]
for all x ∈ X. Lettingy = x in (1.4), we get

(2.5) f(3x) = 4f(2x)− 5f(x)

for all x ∈ X. Lettingy = −x in (1.4), we have

(2.6) f(2x) + f(−2x) = 6[f(x) + f(−x)]
for all x ∈ X. It follows from (2.4), (2.5) and(2.6) thatf(−x) = −f(x) for all x ∈ X, i.e.,f
is odd. Replacingx by x+ y andy by−y in (1.4) and using the oddness off , we have

(2.7) f(2x+ y) + f(x− y) = 6f(x) + f(2x+ 2y)− f(2y)− 5[f(x+ y)− f(y)]

for all x, y ∈ X. Replacingy by x andy by x in (2.7), we get

(2.8) f(x+ 2y)− f(x− y) = 6f(y) + f(2x+ 2y)− f(2x)− 5[f(x+ y)− f(x)]

for all x, y ∈ X. Adding(2.7) to (2.8), we have

(2.9) f(2x+ y)+f(x+2y) = 2f(2x+2y)−f(2x)−f(2y)−10f(x+ y)+11[f(x)+f(y)]

for all x, y ∈ X. It follows from (1.4) and (2.9) that

(2.10) f(2x+ 2y)− 8f(x+ y) = f(2x) + f(2y)− 8[f(x) + f(y)]

for all x, y ∈ X, which means that the functiong : X → Y is additive. �

Lemma 2.2. If a functionf : X → Y satisfies the functional equation (1.4), then the function
h : X → Y defined byh(x) = f(2x)− 2f(x) is cubic .

Proof. Let g : X → Y be a function defined byg(x) = f(2x) − 8f(x) for all x ∈ X. By
Lemma 2.1 and its proof, the functionf is odd and the functiong is additive. It is clear that

(2.11) h(x) = g(x) + 6f(x), f(2x) = g(x) + 8f(x)

for all x ∈ X. Replacingx by x− y in (1.4), we have

(2.12) f(2x− y) + f(x+ y) = 6f(x) + f(2x− 2y) + f(2y)− 5[f(x− y) + f(y)]

for all x, y ∈ X. Replacingy by−y in(2.12), we have

(2.13) f(2x+ y) + f(x− y) = 6f(x) + f(2x+ 2y)− f(2y)− 5[f(x+ y)− f(y)]

for all x, y ∈ X. Adding(2.12) to (2.13), we get

(2.14) f(2x− y) + f(2x+ y)

= 12f(x) + f(2x+ 2y) + f(2x− 2y)− 6[f(x+ y) + f(x− y)]

for all x, y ∈ X. Sinceg is additive, it follows from(2.11) and(2.14) that

h(2x+ y) + h(2x− y) = 2[h(x+ y) + h(x− y)] + 12h(x)

for all x, y ∈ X. So the functionh is cubic. �

Theorem 2.3. A functionf : X → Y satisfies (1.4) if and only if there exist functionsC :
X ×X ×X → Y andA : X → Y such that

f(x) = C(x, x, x) + A(x)

for all x ∈ X, where the functionC is symmetric for each fixed one variable and is additive for
fixed two variables and the functionA is additive.
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Proof. We first assume that the functionf : X → Y satisfies(1.4). Let g, h : X → Y be
functions defined by

g(x) := f(2x)− 8f(x), h(x) := f(2x)− 2f(x)

for all x ∈ X. By Lemmas 2.1 and 2.2, we achieve that the functionsg andh are additive and
cubic, respectively, and

(2.15) f(x) =
1

6
[h(x)− g(x)]

for all x ∈ X. Therefore by Theorem 2.1 of [12] there exists a functionC : X ×X ×X → Y
such thath(x) = 6C(x, x, x) for all x ∈ X, andC is symmetric for each fixed one variable and
is additive for fixed two variables. So

f(x) = C(x, x, x) + A(x)

for all x ∈ X, whereA(x) = −1
6
g(x) for all x ∈ X.

Conversely, let
f(x) = C(x, x, x) + A(x)

for all x ∈ X, where the functionC is symmetric for each fixed one variable and additive for
fixed two variables and the functionA is additive. By a simple computation one can show that
the functionsx 7→ C(x, x, x) andA satisfy the functional equation (1.4). So the functionf
satisfies (1.4). �

3. GENERALIZED HYERS-ULAM STABILITY OF EQ. (1.4)

Throughout this section, assume thatX is a quasi-normed space with quasi-norm‖·‖X and
thatY is ap-Banach space withp-norm‖·‖Y . LetK be the modulus of concavity of‖·‖Y .

In this section, using an idea of Găvruta [7] we prove the stability of the functional equa-
tion (1.4) in the spirit of Hyers, Ulam and Rassias. For convenience, we use the following
abbreviation for a given functionf : X → Y :

Df(x, y) := f(2x+ y) + f(x+ 2y)− 6f(x+ y)− f(2x)− f(2y) + 5[f(x) + f(y)]

for all x, y ∈ X.
We will use the following lemma in this section.

Lemma 3.1([23]). Let0 ≤ p ≤ 1 and letx1, x2, . . . , xn be non-negative real numbers. Then

(3.1)

(
n∑

i=1

xi

)p

≤
n∑

i=1

xp
i .

Theorem 3.2.Letϕ : X ×X → [0,∞) be a function such that

(3.2) lim
n→∞

1

2n
ϕ(2nx, 2ny) = 0

for all x, y ∈ X, and

(3.3) M(x, y) :=
∞∑
i=0

1

2ip
ϕp(2ix, 2iy) <∞

for all x ∈ X and all y ∈ { 0, x,−x/2 }. Suppose that a functionf : X → Y satisfies the
inequalities

(3.4) ‖Df(x, y)‖Y ≤ ϕ(x, y),
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(3.5) ‖f(x) + f(−x)‖Y ≤ ϕ(x, 0)

for all x, y ∈ X. Then the limit

A(x) = lim
n→∞

f(2n+1x)− 8f(2nx)

2n

exists for allx ∈ X, and the functionA : X → Y is a unique additive function satisfying

(3.6) ‖f(2x)− 8f(x)− A(x) + f(0)‖Y ≤ K

2
[ϕ̃(x)]

1
p

for all x ∈ X, where

ϕ̃(x) = K2pM(2x,−x) +
K2p

2p
M(x, x) +KpM(2x, 0) + 5pM(x, 0).

Proof. Lettingy = x in (3.4), we have

(3.7) ‖f(3x)− 4f(2x) + 5f(x)‖Y ≤ 1

2
ϕ(x, x)

for all x ∈ X. Replacingx by 2x andy by−x in (3.4), we have

(3.8) ‖f(3x)− f(4x) + 5f(2x)− f(−2x)− 6f(x) + 5f(−x) + f(0)‖Y ≤ ϕ(2x,−x).

Using(3.5), (3.7) and(3.8), we have

(3.9) ‖g(2x)− 2g(x)− f(0)‖Y ≤ φ(x)

for all x ∈ X, where

φ(x) = K

[
K2ϕ(2x,−x) +

K2

2
ϕ(x, x) +Kϕ(2x, 0) + 5ϕ(x, 0)

]
andg(x) = f(2x)− 8f(x). By Lemma 3.1 and (3.3), we infer that

(3.10)
∞∑
i=0

1

2ip
φp(2ix) <∞

for all x ∈ X. Replacingx by 2nx in (3.9) and dividing both sides of(3.9) by 2n+1, we get

(3.11)

∥∥∥∥ 1

2n+1
g(2n+1x)− 1

2n
g(2nx)− 1

2n+1
f(0)

∥∥∥∥
Y

≤ 1

2n+1
φ(2nx)

for all x ∈ X and all non-negative integersn. SinceY is ap-Banach space, we have∥∥∥∥∥ 1

2n+1
g(2n+1x)− 1

2m
g(2mx)−

n∑
i=m

1

2i+1
f(0)

∥∥∥∥∥
p

Y

(3.12)

≤
n∑

i=m

∥∥∥∥ 1

2i+1
g(2i+1x)− 1

2i
g(2ix)− 1

2i+1
f(0)

∥∥∥∥p

Y

≤ 1

2p

n∑
i=m

1

2ip
φp(2ix)

for all x ∈ X and all non-negative integersn andm with n ≥ m. Therefore we conclude from
(3.10) and (3.12) that the sequence

{
1
2n g(2

nx)
}

is a Cauchy sequence inY for all x ∈ X. Since
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Y is complete, the sequence
{

1
2n g(2

nx)
}

converges inY for all x ∈ X. So we can define the
functionA : X → Y by

(3.13) A(x) := lim
n→∞

1

2n
g(2nx)

for all x ∈ X. Lettingm = 0 and passing the limit whenn→∞ in (3.12), we get (3.6). Now,
we show thatA is an additive function. It follows from (3.10), (3.11) and (3.13) that

‖A(2x)− 2A(x)‖Y

= lim
n→∞

∥∥∥∥ 1

2n
g(2n+1x)− 1

2n−1
g(2nx)

∥∥∥∥
Y

≤ 2K lim
n→∞

(∥∥∥∥ 1

2n+1
g(2n+1x)− 1

2n
g(2nx)− 1

2n+1
f(0)

∥∥∥∥
Y

+
1

2n+1
‖f(0)‖Y

)
≤ lim

n→∞

K

2n
φ(2nx) = 0

for all x ∈ X. So

(3.14) A(2x) = 2A(x)

for all x ∈ X. On the other hand, it follows from (3.2), (3.4) and (3.13) that

‖DA(x, y)‖Y = lim
n→∞

1

2n
‖Dg(2nx, 2ny)‖Y

≤ lim
n→∞

K

2n

{∥∥Df(2n+1x, 2n+1y)
∥∥

Y
+ 8 ‖Df(2nx, 2ny)‖Y

}
≤ lim

n→∞

K

2n

[
ϕ(2n+1x, 2n+1y) + 8ϕ(2nx, 2ny)

]
= 0

for all x, y ∈ X. Hence the functionA satisfies (1.4). So by Lemma 2.1, the functionx 7→
A(2x)− 8A(x) is additive. Therefore (3.14) implies that the functionA is additive.

To prove the uniqueness ofA, let T : X → Y be another additive function satisfying(3.6).
It follows from (3.3) that

lim
n→∞

1

2np
M(2nx, 2ny) = lim

n→∞

∞∑
i=n

1

2ip
ϕp(2ix, 2iy) = 0

for all x ∈ X and ally ∈ { 0, x,−x/2 }. Hencelimn→∞
1

2np ϕ̃(2nx) = 0 for all x ∈ X. So it
follows from (3.6) and (3.13) that

‖A(x)− T (x)‖p
Y = lim

n→∞

1

2np
‖g(2nx)− T (2nx) + f(0)‖p

Y

≤ Kp

2p
lim

n→∞

1

2np
ϕ̃(2nx) = 0

for all x ∈ X. SoA = T. �

Corollary 3.3. Letθ be non-negative real number . Suppose that a functionf : X → Y satisfies
the inequalities

(3.15) ‖Df(x, y)‖Y ≤ θ, ‖f(x) + f(−x)‖Y ≤ θ

for all x, y ∈ X. Then there exists a unique additive functionA : X → Y satisfying

‖f(2x)− 8f(x)− A(x)‖Y ≤ K2θ

2

{
(2K2)p + (2K)p +K2p + 10p

2p − 1

} 1
p

+
Kθ

4

for all x ∈ X.
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Proof. It follows from (3.15) that‖f(0)‖Y ≤ θ/4. So the result follows from Theorem 3.2.�

Theorem 3.4.Letϕ : X ×X → [0,∞) be a function such that

lim
n→∞

2nϕ
( x

2n
,
y

2n

)
= 0

for all x, y ∈ X, and

(3.16) M(x, y) :=
∞∑
i=1

2ipϕp
( x

2i
,
y

2i

)
<∞

for all x ∈ X and all y ∈ { 0, x,−x/2 }. Suppose that a functionf : X → Y satisfies the
inequalities

‖Df(x, y)‖Y ≤ ϕ(x, y), ‖f(x) + f(−x)‖Y ≤ ϕ(x, 0)

for all x, y ∈ X. Then the limit

A(x) = lim
n→∞

2n
[
f
( x

2n−1

)
− 8f

( x
2n

)]
exists for allx ∈ X and the functionA : X → Y is a unique additive function satisfying

(3.17) ‖f(2x)− 8f(x)− A(x)‖Y ≤ K

2
[ϕ̃(x)]

1
p

for all x ∈ X, where

ϕ̃(x) = K2pM(2x,−x) +
K2p

2p
M(x, x) +KpM(2x, 0) + 5pM(x, 0).

Proof. It follows from (3.16) thatϕ(0, 0) = 0 and sof(0) = 0. We introduce the same defini-
tions forg : X → Y andφ(x) as in the proof of Theorem 3.2. Similar to the proof of Theorem
3.2, we have

(3.18) ‖g(2x)− 2g(x)‖Y ≤ φ(x)

for all x ∈ X. By Lemma 3.1 and(3.16), we infer that

(3.19)
∞∑
i=1

2ipφp
( x

2i

)
<∞

for all x ∈ X. Replacingx by x
2n+1 in (3.18) and multiplying both sides of(3.18) by 2n, we get∥∥∥2n+1g
( x

2n+1

)
− 2ng

( x
2n

)∥∥∥
Y
≤ 2nφ

( x

2n+1

)
for all x ∈ X and all non-negative integersn. SinceY is ap-Banach space, we have∥∥∥2n+1g

( x

2n+1

)
− 2mg

( x

2m

)∥∥∥p

Y
≤

n∑
i=m

∥∥∥2i+1g
( x

2i+1

)
− 2ig

( x
2i

)∥∥∥p

Y
(3.20)

≤
n∑

i=m

2ipφp
( x

2i+1

)
for all x ∈ X and all non-negative integersn andm with n ≥ m. Therefore we conclude from
(3.19) and (3.20) that the sequence{2ng(x/2n)} is a Cauchy sequence inY for all x ∈ X.
SinceY is complete, the sequence{2ng(x/2n)} converges inY for all x ∈ X. So we can define
the functionA : X → Y by

A(x) := lim
n→∞

2ng
( x

2n

)
for all x ∈ X. Lettingm = 0 and passing the limit whenn→∞ in (3.20) and applying Lemma
3.1, we get (3.17).
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The rest of the proof is similar to the proof of Theorem 3.2 and we omit the details. �

Corollary 3.5. Let θ, r, s be non-negative real numbers such thatr, s > 1 or 0 < r, s < 1.
Suppose that a functionf : X → Y satisfies the inequalities

(3.21) ‖Df(x, y)‖Y ≤ θ(‖x‖r
X + ‖y‖s

X), ‖f(x) + f(−x)‖Y ≤ θ‖x‖r
X

for all x, y ∈ X. Then there exists a unique additive functionA : X → Y satisfying

‖f(2x)− 8f(x)− A(x)‖Y

≤ Kθ

2

{
(2r+1K2)p +K2p + (2r+1K)p + 10p

|2p − 2rp|
‖x‖rp

X +
(2K2)p +K2p

|2p − 2sp|
‖x‖sp

X

} 1
p

for all x ∈ X.

Proof. It follows from (3.21) thatf(0) = 0. Hence the result follows from Theorems 3.2 and
3.4. �

Corollary 3.6. Let θ ≥ 0 andr, s > 0 be real numbers such thatλ := r + s 6= 1. Suppose that
an odd functionf : X → Y satisfies the inequality

(3.22) ‖Df(x, y)‖Y ≤ θ‖x‖r
X‖y‖s

Y

for all x, y ∈ X. Then there exists a unique additive functionA : X → Y satisfying

‖f(2x)− 8f(x)− A(x)‖Y ≤ K3θ

2

{
1 + 2p(r+1)

|2p − 2λp|

} 1
p

‖x‖λ
X

for all x ∈ X.

Proof. f(0) = 0, sincef is odd. Hence the result follows from Theorems 3.2 and 3.4. �

Theorem 3.7.Letψ : X ×X → [0,∞) be a function such that

(3.23) lim
n→∞

1

8n
ψ(2nx, 2ny) = 0

for all x, y ∈ X, and

(3.24) M(x, y) :=
∞∑
i=0

1

8ip
ψp(2ix, 2iy) <∞

for all x ∈ X and all y ∈ { 0, x,−x/2 }. Suppose that a functionf : X → Y satisfies the
inequalities

(3.25) ‖Df(x, y)‖Y ≤ ψ(x, y), ‖f(x) + f(−x)‖Y ≤ ψ(x, 0)

for all x, y ∈ X. Then the limit

C(x) = lim
n→∞

1

8n
[f(2n+1x)− 2f(2nx)]

exists for allx ∈ X, andC : X → Y is a unique cubic function satisfying

(3.26)

∥∥∥∥f(2x)− 2f(x)− C(x) +
1

7
f(0)

∥∥∥∥
Y

≤ K

8
[ψ̃(x)]

1
p

for all x ∈ X, where

ψ̃(x) := K2pM(2x,−x) +
K2p

2p
M(x, x) +KpM(2x, 0) + 5pM(x, 0).
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Proof. Similar to the proof of Theorem 3.2, we have

(3.27) ‖f(4x)− 10f(2x) + 16f(x)− f(0)‖Y ≤ φ(x)

for all x ∈ X, where

φ(x) = K

[
K2ψ(2x,−x) +

K2

2
ψ(x, x) +Kψ(2x, 0) + 5ψ(x, 0)

]
.

Let h : X → Y be a function defined byh(x) = f(2x)− 2f(x). Hence(3.27) means

(3.28) ‖h(2x)− 8h(x)− f(0)‖Y ≤ φ(x)

for all x ∈ X. By Lemma 3.1 and(3.24), we infer that

(3.29)
∞∑
i=0

1

8ip
φp(2ix) <∞

for all x ∈ X. Replacingx by 2nx in (3.28) and dividing both sides of(3.28) by 8n+1, we get

(3.30)

∥∥∥∥ 1

8n+1
h(2n+1x)− 1

8n
h(2nx)− 1

8n+1
f(0)

∥∥∥∥
Y

≤ 1

8n+1
φ(2nx)

for all x ∈ X and all non-negative integersn. SinceY is ap-Banach space, we have∥∥∥∥∥ 1

8n+1
h(2n+1x)− 1

8m
h(2mx)−

n∑
i=m

1

8i+1
f(0)

∥∥∥∥∥
p

Y

(3.31)

≤
n∑

i=m

∥∥∥∥ 1

8i+1
h(2i+1x)− 1

8i
h(2ix)− 1

8i+1
f(0)

∥∥∥∥p

Y

≤ 1

8p

n∑
i=m

1

8ip
φp(2ix)

for all x ∈ X and all non-negative integersn andm with n ≥ m. Therefore we conclude from
(3.29) and (3.31) that the sequence

{
1
8nh(2

nx)
}

is a Cauchy sequence inY for all x ∈ X.

SinceY is complete, the sequence
{

1
8nh(2

nx)
}

converges for allx ∈ X. So we can define the
functionC : X → Y by:

(3.32) C(x) = lim
n→∞

1

8n
h(2nx)

for all x ∈ X. Lettingm = 0 and passing the limit whenn→∞ in (3.31), we get (3.26). Now,
we show that the functionC is cubic. It follows from(3.29), (3.30) and(3.32) that

‖C(2x)− 8C(x)‖Y

= lim
n→∞

∥∥∥∥ 1

8n
h(2n+1x)− 1

8n−1
h(2nx)

∥∥∥∥
Y

≤ 8K lim
n→∞

(∥∥∥∥ 1

8n+1
h(2n+1x)− 1

8n
h(2nx)− 1

8n+1
f(0)

∥∥∥∥
Y

+
1

8n+1
‖f(0)‖Y

)
≤ lim

n→∞

K

8n
φ(2nx) = 0

for all x ∈ X. Therefore we have

(3.33) C(2x) = 8C(x)
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for all x ∈ X. On the other hand, it follows from(3.23), (3.25) and(3.32) that

‖DC(x, y)‖Y = lim
n→∞

1

8n

∥∥Dh(2nx, 2ny)
∥∥

Y

= lim
n→∞

1

8n

{∥∥Df(2n+1x, 2n+1y)− 2Df(2nx, 2ny)
∥∥

Y

}
≤ lim

n→∞

K

8n

{∥∥Df(2n+1x, 2n+1y)
∥∥

Y
+ 2
∥∥Df(2nx, 2ny)

∥∥
Y

}
≤ lim

n→∞

K

8n

[
ψ(2n+1x, 2n+1y) + 2ψ(2nx, 2ny)

]
= 0

for all x, y ∈ X. Hence the functionC satisfies (1.4). So by Lemma 2.2, the functionx 7→
C(2x) − 2C(x) is cubic. Hence (3.33) implies that the functionC is cubic. To prove the
uniqueness ofC, let T : X → Y be another cubic function satisfying(3.26). It follows from
(3.24) that

lim
n→∞

1

8np
M(2nx, 2ny) = lim

n→∞

∞∑
i=n

1

8ip
ψp(2ix, 2iy) = 0

for all x ∈ X andy ∈ { 0, x,−x/2 }. Hencelimn→∞
1

8np ψ̃(2nx) = 0 for all x ∈ X. So it
follows from (3.26) and (3.32) that

‖C(x)− T (x)‖p
Y = lim

n→∞

1

8np

∥∥h(2nx)− T (2nx) +
1

7
f(0)

∥∥p

Y

≤ Kp

8p
lim

n→∞

1

8np
ψ̃(2nx) = 0

for all x ∈ X. SoC = T. �

Corollary 3.8. Letθ be non-negative real number. Suppose that a functionf : X → Y satisfies
the inequalities (3.15). Then there exists a unique cubic functionC : X → Y satisfying

‖f(2x)− 2f(x)− C(x)‖Y ≤ K2θ

2

{
(2K2)p + (2K)p +K2p + 10p

8p − 1

} 1
p

+
Kθ

28

for all x ∈ X.

Proof. We get from (3.15) that‖f(0)‖ ≤ θ/4. So the result follows from Theorem 3.7. �

Theorem 3.9.Letψ : X ×X → [0,∞) be a function such that

lim
n→∞

8nψ
( x

2n
,
y

2n

)
= 0

for all x, y ∈ X, and

(3.34) M(x, y) :=
∞∑
i=1

8ipψp
( x

2i
,
y

2i

)
<∞

for all x ∈ X and all y ∈ { 0, x,−x/2 }. Suppose that a functionf : X → Y satisfies the
inequalities

‖Df(x, y)‖Y ≤ ψ(x, y), ‖f(x) + f(−x)‖Y ≤ ψ(x, 0)

for all x, y ∈ X. Then the limit

C(x) = lim
n→∞

8n
[
f
( x

2n−1

)
− 2f

( x
2n

)]
exists for allx ∈ X and the functionC : X → Y is a unique cubic function satisfying

(3.35) ‖f(2x)− 2f(x)− C(x)‖Y ≤ K

8
[ψ̃(x)]

1
p
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for all x ∈ X, where

ψ̃(x) = K2pM(2x,−x) +
K2p

2p
M(x, x) +KpM(2x, 0) + 5pM(x, 0).

Proof. It follows from (3.34) thatψ(0, 0) = 0 and sof(0) = 0. We introduce the same defini-
tions forh : X → Y andφ(x) as in the proof of Theorem 3.7. Similar to the proof of Theorem
3.7, we have

(3.36) ‖h(2x)− 8h(x)‖Y ≤ φ(x)

for all x ∈ X. By Lemma 3.1 and (3.34), we infer that

(3.37)
∞∑
i=1

8ipφp
( x

2i

)
<∞

for all x ∈ X. Replacingx by x
2n+1 in (3.36) and multiplying both sides of(3.36) to 8n, we get∥∥∥8n+1h
( x

2n+1

)
− 8nh

( x
2n

)∥∥∥
Y
≤ 8nφ

( x

2n+1

)
for all x ∈ X and all non-negative integersn. SinceY is ap-Banach space, we have∥∥∥8n+1h

( x

2n+1

)
− 8mh

( x

2m

)∥∥∥p

Y
≤

n∑
i=m

∥∥∥8i+1h
( x

2i+1

)
− 8ih

( x
2i

)∥∥∥p

Y
(3.38)

≤
n∑

i=m

8ipφp
( x

2i+1

)
for all x ∈ X and all non-negative integersn andm with n ≥ m. Therefor we conclude from
(3.37) and (3.38) that the sequence{8nh(x/2n)} is a Cauchy sequence inY for all x ∈ X. Since
Y is complete, the sequence{8nh(x/2n)} converges inY for all x ∈ X. So we can define the
functionC : X → Y by

C(x) := lim
n→∞

8nh
( x

2n

)
for all x ∈ X. Lettingm = 0 and passing the limit whenn→∞ in (3.38) and applying Lemma
3.1, we get (3.35).

The rest of the proof is similar to the proof of Theorem 3.7 and we omit the details. �

Corollary 3.10. Let θ, r, s be non-negative real numbers such thatr, s > 3 or 0 < r, s < 3.
Suppose that a functionf : X → Y satisfies the inequalities (3.21). Then there exists a unique
cubic functionC : X → Y satisfying

‖f(2x)− 2f(x)− C(x)‖Y

≤ Kθ

2

{
(2r+1K2)p +K2p + (2r+1K2)p + 10p

|8p − 2rp| ‖x‖rp
X +

(2K2)p +K2p

|8p − 2sp|
‖x‖sp

X

} 1
p

for all x ∈ X.
Proof. It follows from (3.21) thatf(0) = 0. Hence the result follows from Theorems 3.7 and
3.9. �

Corollary 3.11. Let θ and r, s > 0 be non-negative real numbers such thatλ := r + s 6= 3.
Suppose that an odd functionf : X → Y satisfies the inequality (3.22). Then there exists a
unique cubic functionC : X → Y satisfying

‖f(2x)− 2f(x)− C(x)‖Y ≤ K3θ

2

{
1 + 2(r+1)p

|8p − 2λp|

} 1
p

‖x‖λ
X
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for all x ∈ X.

Proof. f(0) = 0, sincef is odd. Hence the result follows from Theorems 3.7 and 3.9. �

Theorem 3.12.Letϕ : X ×X → [0,∞) be a function such that

lim
n→∞

1

2n
ϕ(2nx, 2ny) = 0

for all x, y ∈ X, and

Ma(x, y) :=
∞∑
i=0

1

2ip
ϕp(2ix, 2iy) <∞

for all x ∈ X and all y ∈ { 0, x,−x/2 }. Suppose that a functionf : X → Y satisfies the
inequalities

‖Df(x, y)‖Y ≤ ϕ(x, y) ‖f(x) + f(−x)‖Y ≤ ϕ(x, 0)

for all x, y ∈ X. Then there exist a unique additive functionA : X → Y and a unique cubic
functionC : X → Y such that

(3.39)

∥∥∥∥f(x)− A(x)− C(x)− 1

7
f(0)

∥∥∥∥
Y

≤ K2

48

{
4[ϕ̃a(x)]

1
p + [ϕ̃c(x)]

1
p

}
for all x ∈ X, where

Mc(x, y) :=
∞∑
i=0

1

8ip
ϕp(2ix, 2iy),

ϕ̃c(x) := K2pMc(2x,−x) +
K2p

2p
Mc(x, x) +KpMc(2x, 0) + 5pMc(x, 0),

ϕ̃a(x) := K2pMa(2x,−x) +
K2p

2p
Ma(x, x) +KpMa(2x, 0) + 5pMa(x, 0).

Proof. By Theorems 3.2 and 3.7, there exists an additive functionA0 : X → Y and a cubic
functionC0 : X → Y such that

‖A0(x)− f(2x) + 8f(x)− f(0)‖Y ≤ K

2
[ϕ̃a(x)]

1
p ,

‖C0(x)− f(2x) + 2f(x)− 1

7
f(0)‖Y ≤ K

8
[ϕ̃c(x)]

1
p

for all x ∈ X. Therefore it follows from the last inequalities that∥∥∥∥f(x) +
1

6
A0(x)−

1

6
C0(x)−

1

7
f(0)

∥∥∥∥
Y

≤ K2

48

{
4[ϕ̃a(x)]

1
p + [ϕ̃c(x)]

1
p

}
for all x ∈ X. So we obtain (3.39) by lettingA(x) = −1

6
A0(x) andC(x) = 1

6
C0(x) for all

x ∈ X.
To prove the uniqueness ofA andC, let A1, C1 : X → Y be further additive and cubic

functions satisfying (3.39). LetA′ = A− A1 andC ′ = C − C1. Then

‖A′(x) + C ′(x)‖Y(3.40)

≤ K

[∥∥∥∥f(x)− A(x)− C(x)− 1

7
f(0)

∥∥∥∥
Y

+

∥∥∥∥f(x)− A1(x)− C1(x)−
1

7
f(0)

∥∥∥∥
Y

]
≤ K3

24

{
4[ϕ̃a(x)]

1
p + [ϕ̃c(x)]

1
p

}
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for all x ∈ X. Since

lim
n→∞

1

8np
ϕ̃c(2

nx) = lim
n→∞

1

2np
ϕ̃a(2

nx) = 0

for all x ∈ X, then (3.40) implies that

lim
n→∞

1

8n
‖A′(2nx) + C ′(2nx)‖Y = 0

for all x ∈ X. SinceA′ is additive andC ′ is cubic, we getC ′ = 0. So it follows from (3.40) that

‖A′(x)‖Y ≤ 5K3

24
[ϕ̃a(x)]

1
p

for all x ∈ X. ThereforeA′ = 0. �

Corollary 3.13. Let θ be a non-negative real number. Suppose that a functionf : X → Y
satisfies the inequalities (3.15). Then there exist a unique additive functionA : X → Y and a
unique cubic functionC : X → Y satisfying

‖f(x)− A(x)− C(x)‖Y ≤ K

6
(δa + δc)

for all x ∈ X, where

δa =
K2θ

2

{
(2K2)p + (2K)p + k2p + 10p

2p − 1

} 1
p

+
Kθ

4
,

δc =
K2θ

2

{
(2K2)p + (2K)p +K2p + 10p

8p − 1

} 1
p

+
Kθ

28
.

Theorem 3.14.Letψ : X ×X → [0,∞) be a function such that

lim
n→∞

8nψ
( x

2n
,
y

2n

)
= 0

for all x, y ∈ X, and

Mc(x, y) :=
∞∑
i=1

8ipψp
( x

2i
,
y

2i

)
<∞

for all x ∈ X and all y ∈ { 0, x,−x/2 }. Suppose that a functionf : X → Y satisfies the
inequalities

‖Df(x, y)‖Y ≤ ψ(x, y) ‖f(x) + f(−x)‖Y ≤ ψ(x, 0)

for all x, y ∈ X. Then there exist a unique additive functionA : X → Y and a unique cubic
functionC : X → Y such that

(3.41) ‖f(x)− A(x)− C(x)‖Y ≤ K2

48

{
4[ψ̃a(x)]

1
p + [ψ̃c(x)]

1
p

}
for all x ∈ X, where

Ma(x, y) :=
∞∑
i=1

2ipψp
( x

2i
,
y

2i

)
,

ψ̃c(x) := K2pMc(2x,−x) +
K2p

2p
Mc(x, x) +KpMc(2x, 0) + 5pMc(x, 0),

ψ̃a(x) := K2pMa(2x,−x) +
K2p

2p
Ma(x, x) +KpMa(2x, 0) + 5pMa(x, 0).

Proof. Applying Theorems 3.4 and 3.9, we get (3.41). �
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Corollary 3.15. Let θ, r, s be non-negative real numbers such thatr, s > 3 or 0 < r, s < 1.
Suppose that a functionf : X → Y satisfies the inequalities (3.21). Then there exist a unique
additive functionA : X → Y and a unique cubic functionC : X → Y such that

(3.42) ‖f(x)− A(x)− C(x)‖Y ≤ K2θ

12
[δa(x) + δc(x)]

for all x ∈ X, where

δa(x) =

{
(2r+1K2)p +K2p + (2r+1K2)p + 10p

|2p − 2rp|
‖x‖rp

X +
(2K2)p +K2p

|2p − 2sp|
‖x‖sp

X

} 1
p

,

δc(x) =

{
(2r+1K2)p +K2p + (2r+1K2)p + 10p

|8p − 2rp|
‖x‖rp

X +
(2K2)p +K2p

|8p − 2sp|
‖x‖sp

X

} 1
p

.

Corollary 3.16. Letθ ≥ 0 andr, s > 0 be real numbers such thatλ := r+s ∈ (0, 1)∪(3,+∞).
Suppose that an odd functionf : X → Y satisfies the inequality (3.22). Then there exist a
unique additive functionA : X → Y and a unique cubic functionC : X → Y such that

(3.43) ‖f(x)− A(x)− C(x)‖Y ≤ K4θ

12

[{
1 + 2p(r+1)

|2p − 2λp|

} 1
p

+

{
1 + 2p(r+1)

|8p − 2λp|

} 1
p

]
‖x‖λ

X

for all x ∈ X.

Theorem 3.17.Letϕ : X ×X → [0,∞) be a function such that

lim
n→∞

1

8n
ϕ(2nx, 2ny) = 0, lim

n→∞
2nϕ

( x
2n
,
y

2n

)
= 0

for all x, y ∈ X, and

Ma(x, y) :=
∞∑
i=1

2ipϕp
( x

2i
,
y

2i

)
<∞, Mc(x, y) :=

∞∑
i=0

1

8ip
ϕp(2ix, 2iy) <∞

for all x ∈ X and all y ∈ { 0, x,−x/2 }. Suppose that a functionf : X → Y satisfies the
inequalities

‖Df(x, y)‖Y ≤ ϕ(x, y) ‖f(x) + f(−x)‖Y ≤ ϕ(x, 0)

for all x, y ∈ X. Then there exist a unique additive functionA : X → Y and a unique cubic
functionC : X → Y such that

‖f(x)− A(x)− C(x)‖Y ≤ K2

48

{
4[ϕ̃a(x)]

1
p + [ϕ̃c(x)]

1
p

}
for all x ∈ X, where

ϕ̃c(x) := K2pMc(2x,−x) +
K2p

2p
Mc(x, x) +KpMc(2x, 0) + 5pMc(x, 0),

ϕ̃a(x) := K2pMa(2x,−x) +
K2p

2p
Ma(x, x) +KpMa(2x, 0) + 5pMa(x, 0).

Proof. By the assumption, we getf(0) = 0. So the result follows from Theorem 3.4 and Theo-
rem 3.7. �

Corollary 3.18. Letθ, r, s be non-negative real numbers such that1 < r, s < 3. Suppose that a
functionf : X → Y satisfies the inequalities (3.21) for allx, y ∈ X. Then there exists a unique
additive mappingA : X → Y and a unique cubic mappingC : X → Y satisfying (3.42).

Proof. It follows from (3.21) thatf(0) = 0. Hence the result follows from Corollaries 3.5 and
3.10. �
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Corollary 3.19. Letθ, r, s be non-negative real numbers such that1 < λ := r+s < 3. Suppose
that an odd functionf : X → Y satisfies the inequality (3.22) for allx, y ∈ X. Then there exists
a unique additive mappingA : X → Y and a unique cubic mappingC : X → Y satisfying
(3.43).

Proof. f(0) = 0, sincef is odd. Hence the result follows from Corollaries 3.6 and 3.11.�
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