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ABSTRACT. Let P(z) be a polynomial of degree at mostWe consider an operatd@, which
carries a polynomiaP(z) into

pirel = et (5) e () F

where)g, A1 and), are such that all the zeros of
U(Z) = )‘0 + C(na 1))\12 + C(TL, Q)AQZQ

lie in the half plane
z—2.
2
In this paper, we estimate the minimum and maximum moduliBoP(z)] on |z| = 1 with
restrictions on the zeros &f(z) and thereby obtain compact generalizations of some well known

polynomial inequalities.

2| <
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1. INTRODUCTION
Let P, be the class of polynomialB(z) = 37 a;z’ of degree at most then

(1.1) ?ﬂ'@f\P’(Z)I < nmax | P(2)]

and

(1.2) max |P(z)| < R"max|P(z)].
|z|=R>1 |z|=1
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Inequality [1.1) is an immediate consequence of a famous result due to Bernstein on the deriv-

ative of a trigonometric polynomial (for reference seel [6, 9, 14]). Inequélity (1.2) is a simple

deduction from the maximum modulus principle (se€ [15, p.346], [11, p. 158, Problem 269]).
Aziz and Dawood([B] proved that iP(z) has all its zeros ifz| < 1, then

(1.3) min |P'(z)] = n i |P(2)|
and

1.4 in |P(z)| > R"min |P(2)].
(1.4) Join [P(z)] 2 B min | P(2)]

Inequalities[(T.]1) [ (1]2)[ (1].3) and (1.4) are sharp and equality holds for a polynomial having all
its zeros at the origin.

For the class of polynomials having no zerogih < 1, inequalities[(1.]l) and (1.2) can be
sharpened. In fact, iP(z) # 0in |z| < 1, then

(15) max |P/(2)] < 5 max| P(2)
and
R"+1
. < .
a6 e (PG < (5 ) maxp)

Inequality [1.5) was conjectured by Erdds and later verified by Lax [7], whereas Ankeny and
Rivlin [1] used [1.5) to prove (1]6). Inequalitigs ([L.5) ahd {1.6) were further improved in [3],
where under the same hypothesis, it was shown that

a7 max|P(2) < § {max (9] - i 1)
and
R R"—1
@8 e PO < (U5 maipe) - () min P

Equality in (1.5), [(1.5),[(1]7) and (1.8) holds for polynomials of the faffx) = az" + 3,
where|a| = |3].

Aziz [2], Aziz and Shah[5] and Shah [17] extended such well-known inequalities to the polar
derivativesD,, P(z) of a polynomialP(z) with respect to a point and obtained several sharp
inequalities. Like polar derivatives there are many other operators which are just as interesting
(for reference see [13, 14]). It is an interesting problem, as pointed out by Professor Q. I.
Rahman to characterize all such operators. As an attempt to this characterization, we consider
an operato3 which carriesP € P, into

o nz\ P'(z) nz\2 P"(z)
(1.9) BIP(2)] := MoP(2) + M (7> TR (7> s
where)y, A; and\, are such that all the zeros of
(1.10) u(z) = Ao + c(n, A1z + c(n, 2) Aoz
lie in the half plane
(1.12) < -5,

and prove some results concerning the maximum and minimum modiii/fz)] and thereby
obtain compact generalizations of some well-known theorems.
We first prove the following theorem and obtain a compact generalization of inequalities (1.3)

and [1.4).
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Theorem 1.1.I1f P € P, andP(z) # 0in |z| > 1, then

(112) [BIP(:)]| = [BL="] [min | P()], - for [2] > 1.

The result is sharp and equality holds for a polynomial having all its zeros at the origin.
Substituting forB[P(z)], we have foriz| > 1,

()+A1<2)PI() A2<2>2P/;<!>

nz\2n(n —1
> | Np2" —I—)\1<2>nz" 1+)\2<2) %z" 2

where )y, A\; and )\, are such that all the zeros ¢f (1}10) lie in the half plane represented by
€.1D).

Remark 1.2. If we choose\, = 0 = X, in (1.13), and note that in this case all the zeros(af)
defined by[(1.10) lie in (1.11), we get

P 2l min ()] for |2| > 1,

which in particular gives inequality (1.3).Next, choosing = 0 = X, in (1.13), which is
possible in a similar way, we obtain

|P(2)] = !Z\”lﬂ‘lij%!P(Z)!, for [2| > 1.

min | P(z)],

|2=1

Taking in particular: = Re?, R > 1, we get
| P( (Re') )| = R" min |P(z)|,

|2|=1

which is equivalent tq (1]4).

As an extension of Bernstein’s inequality, it was observed by Rahman [12], tRatifP,,
then
|P(2)| < M, |z|=1
implies
(1.14) [BIP(2)]| < M[B[z"]|, |2] = 1.
As an improvement to this result of Rahman, we prove the following theorem for the class
of polynomials not vanishing in the unit disk and obtain a compact generalizatipn pf (1.5) and

(.8).
Theorem 1.3.1f P € P,,andP(z) #0in |z| < 1, then
1
(1.15) BIPG < 5B+ Pol} max|P(2)], - for |2 2 1.
The result is sharp and equality holds for a polynomial whose zeros all lie on the unit disk.
Substituting forB[P(z)] in inequality [1.15), we have fde| > 1,

()+A1<2)PI() A2<2>2P”2<>

1 n—1 nz zn(n_l)nQ
2{)\02 +/\1(2)nz —I—)\2(2> —5 % + Aol mlaX]P( 2),

where Ao, \; and )\, are such that all the zeros ¢f (1}10) lie in the half plane represented by

€.1D).
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Remark 1.4. Choosing\, = 0 = ), in (1.18) which is possible, we get
[P'(2)] < Glel™ max|P(2)] - for [2] > 1
which in particular gives inequality (1.5).Next if we take = 0 = X, in (1.16) which is also
possible, we obtain
IP(:)] < 5 el + 1 max| PCa)

for everyz with |z| > 1. Takingz = Re, so that|z| = R > 1, we get

|P(Re”)| < <(R" + 1) max | P(z)],

<1
2 |z|=1
which in particular gives inequality (1.6).

As a refinement of Theore 1.3, we next prove the following theorem, which provides a
compact generalization of inequaliti¢s (1.7) gnd](1.8).

Theorem 1.5.1f P € P,,and P(z) # 0in |z| < 1 then for|z| > 1,

(1.17)  |BIP(2)]| < % {{!B[ "1 oly max | P(2)] = {IB"]] = Pol} min | P(2)]

Equality holds for the polynomial having all zeros on the unit disk.
Substituting forB[P(z)] in inequality [1.1}),we get fo:| > 1,

()+A1<2)Pl() )\2<2)2P”2()

< % H Moz + A1 < ;) nz"" 4 Ay (”Z> nn—1) .
- Pl b P2

- iy

nz)2 n(n —1)
wherey, A\; and)\, are such that all the zeros ofz) defined by[(1.10) lie in (1.11).

ol | PC2)

n—2

Ao2" +)\1(2>nz"1+)\(2 5

Remark 1.6. Inequality [1.7) is a special case of inequalty (1.18), if we chogse 0 = X,
and inequality[(1.8) immediately follows from it wheq = 0 = \,.

If P € P, is a self-inversive polynomial, that is, F(z) = Q(z), whereQ(z) = 2"P(1/2),
then [10/ 16],

(1.19) max |P'(2)| < = max|P( ).

|z]=1 2 |z=1
Lastly, we prove the following result which includes inequaljty (1.19) as a special case.

Theorem 1.7.1f P € P, is a self-inversive polynomial, then for] > 1,
1
(1.20) IBIPG)]| < S AUBL"] + Mo!h@fg!ﬂ@!-

The result is best possible and equality holdsfge) = 2" + 1.

J. Inequal. Pure and Appl. Matt9(1) (2008), Art. 25, 8 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

OPERATORPRESERVINGINEQUALITIES 5

Substituting forB[P(z)], we have forjz| > 1,

(>+A1(2)Pl(> A2(2) PNQ()

<o () et () e

2 2
where),, A; and); are such that all the zeros of~) defined by[(1.10) lie in(1.71).

Remark 1.8. If we choose\, = 0 = )\, in inequality [1.2]L), we get

P'(2)] < Gl max| P(2)], for |2 > 1,

from which inequality[(1.19) follows immediately.

+|Ao|}max|P< 1

Also if we takeA; = 0 = ), in inequality [1.2]L), we obtain the following:

Corollary 1.9. If P € P, is a self-inversive polynomial, then
2" +1

(1.22) |P(2)] < InaX|fK )|, for|z| > 1.

The result is best possible and equality holds for the polynofijal) = =" + 1. Inequality
(1.22) in particular gives

R"+1
max |P(2)] < 2L max |P()].
|z|=R>1 2 |z|=1
2. LEMMAS

For the proofs of these theorems we need the following lemmas. The first lemma follows
from Corollary 18.3 of[[8, p. 65].

Lemma 2.1. If all the zeros of a polynomiaP(z) of degreen lie in a circle |z| < 1, then all
the zeros of the polynomid@[P(z)] also lie in the circle|z| < 1.

The following two lemmas which we need are in fact implicitlinl[12, p. 305]; however, for
the sake of completeness we give a brief outline of their proofs.

Lemma2.2.If P € P,,andP(z) # 0in |z| < 1, then

(2.1) |BIP(2)]] < [B[Q(2)]] for |2] > 1,

whereQ(z) = 2"P(1/%).

Proof of Lemma 2]2SinceQ)(z) = 2" P(1/z), therefordQ(z)| = | P(z)| for |z| = 1 and hence
Q(z)/P(z) is analytic in|z| < 1. By the maximum modulus principléQ(z)| < |P(z)| for

|z] <1, o0r equwalently,]P( )| < |Q(2)| for |z| > 1. Therefore, for every; with |3| > 1,

the polynomlaIP( ) — BQ(z) has all its zeros irz| < 1. By Lemma[2.]l, the polynomial
B[P(z) — pQ(z)] = B[P(z)] — B[Q(z)] has all its zeros ifz| < 1, which in particular gives
|

BIP(2)]] < [BIQ()]l, for |z > 1.
This proves Lemmpa 2.2. O
Lemma 2.3.If P € P,, then for|z| > 1,

(2.2) BIPG+ BRI < {IB[="] + [dol} max | P(2)],

whereQ(z) = z"P(1/2).
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Proof of Lemma 2]3Let M = I‘n|aX|P(z)|, then|P(z)| < M for |z| < 1. If X is any real
z|=1

or complex number withA| > 1, then by Rouche’s theorenk(z) — AM does not vanish in
2] < 1. By Lemmd 2., it follows that

(2.3) |B[P(2) — M)]| < |B[Q(z) — MAz"]|, for |z]| > 1.
Using the fact thaf3 is linear andB[1] = \,, we have from[(2]3)
(2.4) IBIP(2) = MM < |BIQ(:)] — MABL2"|, for [2] > 1.

Choosing the argument of which is possible by (1.14) such that
|BIQ(2)] = MAB[2"]| = M|A[|B[="]| = [BIQ(2)];
we get from|[(2.4)
(2.5) [BIP(2)]] = M|X[|Ao| < MIN|B[="]] — [B[Q(2)]]  for [2] > 1.
Making [A| — 1 in (2.5) we get
[BIP()]| + [BIQ(2)]] < {IB["]| + Aol } M
which is (2.2) and Lemmja 2.3 is completely proved. O

3. PROOFS OF THE THEOREMS

Proof of Theorer 1]1lf P(z) has a zero onz| = 1, thenm = |II‘11I1|P(Z)| = 0 and there
z|=1

is nothing to prove. Suppose that all the zerosPof) lie in |z| < 1, thenm > 0, and we
havem < |P(z)| for |z| = 1. Therefore, for every real or complex numbewith |\| < 1,
we havelmAz"| < |P(z)|, for |z| = 1. By Rouche’s theorem, it follows that all the zeros of
P(z) —mAz" liein |z| < 1. Therefore, by Lemmja 2.1, all the zerosBfP(z) — mAz"] lie in
|z] < 1. SinceB is linear, it follows that all the zeros dB[P(z)] — mAB[z"] liein |z| < 1,
which gives

(3.1) m|B[2")| < |BIP(2)]|, for |z > 1.
Because, if this is not true, then there is a pairt z, with |zy| > 1, such that
(m|B[z"]]).—., > (IB[P(2)]])

We takeA = (B[P(2)])._,, / (mB[2"]),_., , so thatA| < 1 and for this value of, B[P(z)] —
mAB|[z"| = 0 for |z] > 1, which contradicts the fact that all the zerosjfP(z)] — mAB[z"]
lie in |z| < 1. Hence from|(3.l) we conclude that

|BIP(2)]| = [B["]| min |P(z)[, for |z > 1,

|2[=1

z=z0 z=z0 "

which completes the proof of Theorém|L.1. O

Proof of Theorer 1]3Combining Lemm& 2]2 and Lemrpa P.3 we have

2(BIP(2)]| < [BIP(:)]| + |BIQ(:)]
< {1BL")] + ol max [ P(2)],

which gives inequality{ (1.15) and Theor¢m|1.3 is completely proved. O
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Proof of Theorer 1]5If P(z) has a zero ofie| = 1 thenm = |n|11n |P(z)| = 0 and the result
z|=1

follows from Theoren 1]3. We supppose that all the zeraB(af) lie in |z| > 1, so thatn > 0
and
(3.2) m < |P(z)], for|z| =1.
Therefore, for every complex numbgrwith |5| < 1, it follows by Rouche’s theorem that all
the zeros ofF'(z) = P(z) — mg lie in |z| > 1. We note thatf'(z) has no zeros ofre| = 1,
because if for some = z, with |z| = 1,

F(z0) = P(20) —mp =0,
then

[P (z0)| = m|B] <m
which is a contradiction tq (3.2). Now, if
G(z) = 2"F(1)z) = 2"P(1/2) — pmz" = Q(z) — Bmz",

then all the zeros aff(2) liein |z| < 1 and|G(z)| = |F(z)| for |z| = 1. Therefore, for every

with |y| > 1, the polynomialF'(z) — vG(z) has all its zeros if:| < 1. By Lemmd 2.1 all zeros
of

B[F(z) —=1G(2)] = BIF(2)] = 7B|G(2)]
lie in |z| < 1, which implies
(3.3) B[F(2)] < B|G(z)], for|z| > 1.

Substituting forF’(z) andG(z), making use of the facts tha is linear andB[1] = Ay, we
obtain from [(3.8)

(3.4) IB[P(2)] — BmXo| < |B[Q(2)] — BmB[z"]|, for |2| > 1.

Choosing the argument gfon the right hand side of (3.4) suitably, which is possible[by|(3.1),
and making | — 1, we get

|BIP(2)]] —m|Ao| < |BIQ(2)]| = m|B[z"]], for|z| = 1.
This gives
(3.5) |BIP(2)]| < [BIQ(2)]] = {IB["]| = Ao} m, for[z] > 1.
Inequality [3.5) with the help of Lemma 2.3, yields
2|BIP(2)]] < |B[P(2)]| + [BIQ(2)]| = {IB[="]| = Ao} m
< {IBE"]1+ Ao} max | P(2)] = {|Bl2"]] = Ao} min [P(2)],  for [2] = 1,

|z]=1
which is equivalent tq (1.17) and this proves Theofem 1.5 completely. O

Proof of Theorerm 1]7SinceP(z) is a self-inversive polynomial, we have

P(z)=Q(z) = 2"P(1/2).

Equivalently
(3.6) B[P(2)] = BIQ(2)].
Lemmd 2.8 in conjunction with (3.6) gives

21BIP(2)]] < {IB[2"]] + Ao} max | P(2)],

which is (1.20) and this completes the proof of Theofer 1.7. O
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