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ABSTRACT. In this paper, we show a Gronwall type inequality for Itd integrals (Theofems 1.1
and 1.2) and give some applications. Our inequality gives a simple proof of the existence theorem
for stochastic differential equation (Example]2.1) and also, the error estimate of Euler-Maruyama
scheme follows immediately from our result (Exaniplg 2.2).
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1. A STOCHASTIC GRONWALL TYPE INEQUALITY

Let w(t), t > 0 be a standard Brownian motion on a probability spé&eeF, P) and F;,
t > 0 be the natural filtration ofF. For a positive numbeF, M?[0, T] denotes the set of all
separable nonanticipative functiofi&) with respect taF; defined o0, 7] satisfying

o[ roa]

Theorem 1.1. Assume tha¢(¢) andn(¢) belong toM2 [0, T]. If there exist functiona(t) and

b(t) belonging toM?2[0, T'] such that
t t
/ a(s)ds +/ b(s) dw(s)
0 0

and if there are nonnegative constantg a1, 5, and3; such that

(1.2) ()] < aoln(t)] + cal€@)], [b(B)] < Boln(t)] + B1l€(?)]

(1.1) €] <
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for 0 <t <T,then we have

(1.3) EE(t) < 4(a0\/1_f + 60)2 exp <4t (vt + 51)2> /t En*(s)ds
0
foro<t<T.

Proof. Since
2

E </Otb(s) dw(s)> _ E/Ot b(s) ds,

(1.7) implies, by Minkowsky and Schwarz inequalities,

(BE(1))* < (t/ot Ea?(s) ds)é + (/Ot Eb?(s) ds)é.

Direct computation gives, by (1.2),

(t /O ' Ba(s) ds)é < V2ta ( /0 ' Bs) d8>; i (/O st dg)é |
(] o) <o [ avton) v ([ seon)

Combining the above estimates, we obtain

(1.4) B (t) < 4(040\/1_5 + 60)2/0 En*(s)ds + 4(a1\/5 + ﬁl)Q/O E&%(s) ds

for0<t<T.
Let us fix a nonnegative numbegy < T arbitrarily. Then, for any > 0, the last inequality

(1.4) shows

%10?; (4(040\/% + 50)2/0

t

0 En?(s)ds + 4(anv/to + B1)? / EE*(s)ds + 5)
0
< d(arv/to + B1)?

almost everywhere if0), ¢y]. Integrating this estimate fromto ¢, with respect ta, we get

Uaoy/Eo + Bo)? [,° En?(s) ds + d(arv/To + B1)? [° E€X(s) ds + 0
° Aaov/To+ Bo)? Ji Enp(s) ds+ 6

< dto(anvto + Br)?.
Therefore, by[(1}4), we have
to
EE&%(ty) < exp(4t0(a1\/% + ﬁl)Q) (4((10\/% + 50)2/ En*(s)ds + 6) .
0
Now, lettingd — 0, we obtain[(1.3). O

In caset(¢) is a step function, a weak assumptipn [1.6) will be enough to show the inequality
(1.3), which would play an important role in the error analysis of the numerical solutions of
stochastic differential equations.
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Theorem 1.2. Assume thaf(¢) andn(t) belong toM2[0,7] and£(t) is a step function such
that

(1.5) () =£&(t,)  when ¢, <t <t,4

forn = 0,1,2,...,N — 1, where N is a positive integer and{t,,}"_, is a partition of the
interval [0, 7] satisfying 0 = to < t; < ty < -+ < ty_1 < ty = T. If there exist functions
a(t) andb(t) belonging to)M?2 [0, T'| such that

[ atyds+ [ b6y duts

is valid for eachn = 0,1,2,..., N and if there are nonnegative constantg o1, 5, and 3;
satisfying[(1.R) for0 <t < T, then we have (1]3) fod <t <T'.

(1.6) §(ta)] <

Proof. As in the proof of Theorern 1.1, we have

t t

EE(t,) < 4(aov/En + fo)? /0 "B (s) ds + Moy + Bi)? /0 " BE(s) ds

forn=0,1,2,..., N; this implies, by[([T.p),

EEX(t) < 4(agVi + B)? /0 En?(s)ds + 4(c1 Vi + B1)? / EEX(s) ds

0
foro <t <T.
The remaining part of the proof is exactly same as that of Theprgm 1.1. O

2. APPLICATIONS

Throughout this section, we assume that) € M?2[0,7T] is a solution of the stochastic
differential equation

dé(t) = a(t, (1)) dt + b(t,&(t)) dw(t), 0<t<T
)a

satisfying the initial condition(0) = &, wherea(t, z) andb(t, x
defined in0, T'] such that

re real-valued functions

la(t, z)|, [b(t, z)] < K(1+ |z]),
‘a(t’x) - a(s,y)|, |b(t7x) o b(s7y)| < L(’t - S| + |3j o y|)
Here K and L are nonnegative constants.

Example 2.1. Theorenj 1.]1 gives a simple proof of the existence theorem for stochastic differ-
ential equations.

We use Picard’s method. Let us consider a sequéfige) } defined by, (t) = &, and

&H®=®+Aa@@$ﬂﬁ+zb@&@ww@

forn=0,1,2,.... Then, we easily have
Eu1(®) = 6u(6) = [ (a(s.60(5)) = als.&a ()
+A(M&&@D—M&&4@Dﬁm®)
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and the Lipschitz continuity af(¢, =) andb(t,
|a(s,&u(s)) — a(s, &u-1(5))| < LIga(s) = Ear(s)];
|0(5,€n(s)) = b(s,&n-1(5))| < LIEn(s) = Eni(s)]-
Hence, Theorem 1.1 withy = 5, = L anda; = 3, = 0 shows
t
Bléunn(t) — 0 S4L(VE+17 [ Blga(s) — 6ua(9)Pds
0
forn=1,2,3,...;the recursive use of this estimate gives

UEER DT Blea(s) — &o(o)l”

n: 0<s<t

x) implies

E |§n+1(t) - €n<t)|2 S

Consequently, as is well-known, the convergencépftt)} follows.
By virtue of Theorem 1]1 witly, = 5y = 0 anda; = 3; = L, the uniqueness of the solution
is clear.

Example 2.2. The error estimate of the Euler-Maruyama scheme
Ent1 = &n +alty, &) AL+ b(t,, &) Aw,, n=0,1,2,... N—1

follows immediately from Theorein 1.2, wheré is a sufficiently large positive integef\t =
T/N, t, = nAt and Aw,, = w(t,41) — w(t,) forn =0,1,2,...,N — 1.

Since
A /t " at 6)ds + /t b ) duw(s),
(i) = () + / " s, €(s)ds + / " b(s, £())dw(s),
we have

ot — Etst) = & — £(ta) + / " (altn, &) — als.£(5)) ds

tni1
[ 0t 6) - U €9) ).
tn
Now, forn =0,1,2,..., N — 1, if we put

e(s) = & — &(tn),
f(s) = altn, &) — als, £(s)),
9(s) = b(tn, &) — b(s, £(s))

whent, < s <t,,;; and

e(tn) = Env — &(tn),
fltn) = alty,En) — alty, £(tn)),
g(tn) = b(tn, En) — b(tw, E(tn)),

then we obtain

i = [ a)ds+ [ gts)duts

J. Inequal. Pure and Appl. Math6(1) Art. 17, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

STOCHASTIC GRONWALL INEQUALITY 5

forn =0,1,2,...,N. The Lipschitz continuity ofi(¢, z) andb(¢, ) shows
[f(s)] < L(At+€(s) = &) + [e(s)]),
lg(s)] < L(At+[E(s) — &(s)] + [e(s)]),
where £(s) = &(t,) whent, < s < t,. forn = 0,1,2,...,N —1and £(ty) = £(ty).

Hence, Theorem 1.2 withy = a; = 5y = 1 = L shows
t

E*(t) < AL*(VE+1)? exp(4L3(VE + 1)%) / E(At +[€(s) — £(s)])* ds.
0
It follows from the fundamental property of Itd integrals that
E&(s) = E(s)] < OAL,

where C' is a nonnegative constant depending onlyZTanK and L. Combining the above
estimates, we obtain

E(t) = O(At)
forany0 <t < T whenAt — 0; the error estimate of the Euler-Maruyama scheme is proved.

Our Gronwall type inequality works for other numerical solutions of stochastic differential
equations.
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