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ABSTRACT. In this paper, we show a Gronwall type inequality for Itô integrals (Theorems 1.1
and 1.2) and give some applications. Our inequality gives a simple proof of the existence theorem
for stochastic differential equation (Example 2.1) and also, the error estimate of Euler-Maruyama
scheme follows immediately from our result (Example 2.2).
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1. A STOCHASTIC GRONWALL TYPE INEQUALITY

Let w(t), t ≥ 0 be a standard Brownian motion on a probability space(Ω,F , P ) andFt,
t ≥ 0 be the natural filtration ofF . For a positive numberT , M2

w[0, T ] denotes the set of all
separable nonanticipative functionsf(t) with respect toFt defined on[0, T ] satisfying

E

[∫ T

0

f 2(t) dt

]
< ∞.

Theorem 1.1. Assume thatξ(t) andη(t) belong toM2
w[0, T ]. If there exist functionsa(t) and

b(t) belonging toM2
w[0, T ] such that

(1.1) |ξ(t)| ≤
∣∣∣∣∫ t

0

a(s) ds +

∫ t

0

b(s) dw(s)

∣∣∣∣
and if there are nonnegative constantsα0, α1, β0 andβ1 such that

(1.2) |a(t)| ≤ α0|η(t)|+ α1|ξ(t)|, |b(t)| ≤ β0|η(t)|+ β1|ξ(t)|
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for 0 ≤ t ≤ T , then we have

(1.3) Eξ2(t) ≤ 4
(
α0

√
t + β0

)2
exp
(
4t (α1

√
t + β1)

2
)∫ t

0

Eη2(s) ds

for 0 ≤ t ≤ T .

Proof. Since

E

(∫ t

0

b(s) dw(s)

)2

= E

∫ t

0

b2(s) ds,

(1.1) implies, by Minkowsky and Schwarz inequalities,

(
Eξ2(t)

) 1
2 ≤

(
t

∫ t

0

Ea2(s) ds

) 1
2

+

(∫ t

0

Eb2(s) ds

) 1
2

.

Direct computation gives, by (1.2),(
t

∫ t

0

Ea2(s) ds

) 1
2

≤
√

2tα0

(∫ t

0

Eη2(s) ds

) 1
2

+
√

2tα1

(∫ t

0

Eξ2(s) ds

) 1
2

,(∫ t

0

Eb2(s) ds

) 1
2

≤
√

2β0

(∫ t

0

Eη2(s) ds

) 1
2

+
√

2β1

(∫ t

0

Eξ2(s) ds

) 1
2

.

Combining the above estimates, we obtain

(1.4) Eξ2(t) ≤ 4(α0

√
t + β0)

2

∫ t

0

Eη2(s) ds + 4(α1

√
t + β1)

2

∫ t

0

Eξ2(s) ds

for 0 ≤ t ≤ T .
Let us fix a nonnegative numbert0 ≤ T arbitrarily. Then, for anyδ > 0, the last inequality

(1.4) shows

d

dt
log

(
4(α0

√
t0 + β0)

2

∫ t0

0

Eη2(s) ds + 4(α1

√
t0 + β1)

2

∫ t

0

Eξ2(s) ds + δ

)
≤ 4(α1

√
t0 + β1)

2

almost everywhere in[0, t0]. Integrating this estimate from0 to t0 with respect tot, we get

log

(
4(α0

√
t0 + β0)

2
∫ t0

0
Eη2(s) ds + 4(α1

√
t0 + β1)

2
∫ t0

0
Eξ2(s) ds + δ

4(α0

√
t0 + β0)2

∫ t0
0

Eη2(s) ds + δ

)
≤ 4t0(α1

√
t0 + β1)

2.

Therefore, by (1.4), we have

Eξ2(t0) ≤ exp
(
4t0(α1

√
t0 + β1)

2
) (

4(α0

√
t0 + β0)

2

∫ t0

0

Eη2(s) ds + δ

)
.

Now, lettingδ → 0, we obtain (1.3). �

In caseξ(t) is a step function, a weak assumption (1.6) will be enough to show the inequality
(1.3), which would play an important role in the error analysis of the numerical solutions of
stochastic differential equations.

J. Inequal. Pure and Appl. Math., 6(1) Art. 17, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


STOCHASTIC GRONWALL INEQUALITY 3

Theorem 1.2. Assume thatξ(t) andη(t) belong toM2
w[0, T ] and ξ(t) is a step function such

that

(1.5) ξ(t) = ξ(tn) when tn ≤ t < tn+1

for n = 0, 1, 2, . . . , N − 1, whereN is a positive integer and{tn}N
n=0 is a partition of the

interval [0, T ] satisfying 0 = t0 < t1 < t2 < · · · < tN−1 < tN = T . If there exist functions
a(t) andb(t) belonging toM2

w[0, T ] such that

(1.6) |ξ(tn)| ≤
∣∣∣∣∫ tn

0

a(s) ds +

∫ tn

0

b(s) dw(s)

∣∣∣∣
is valid for eachn = 0, 1, 2, . . . , N and if there are nonnegative constantsα0, α1, β0 andβ1

satisfying (1.2) for0 ≤ t ≤ T , then we have (1.3) for0 ≤ t ≤ T .

Proof. As in the proof of Theorem 1.1, we have

Eξ2(tn) ≤ 4(α0

√
tn + β0)

2

∫ tn

0

Eη2(s) ds + 4(α1

√
tn + β1)

2

∫ tn

0

Eξ2(s) ds

for n = 0, 1, 2, . . . , N ; this implies, by (1.5),

Eξ2(t) ≤ 4(α0

√
t + β0)

2

∫ t

0

Eη2(s) ds + 4(α1

√
t + β1)

2

∫ t

0

Eξ2(s) ds

for 0 ≤ t ≤ T .
The remaining part of the proof is exactly same as that of Theorem 1.1. �

2. APPLICATIONS

Throughout this section, we assume thatξ(t) ∈ M2
w[0, T ] is a solution of the stochastic

differential equation

dξ(t) = a(t, ξ(t)) dt + b(t, ξ(t)) dw(t), 0 ≤ t ≤ T

satisfying the initial conditionξ(0) = ξ0, wherea(t, x) andb(t, x) are real-valued functions
defined in[0, T ] such that

|a(t, x)|, |b(t, x)| ≤ K(1 + |x|),
|a(t, x)− a(s, y)|, |b(t, x)− b(s, y)| ≤ L(|t− s|+ |x− y|).

HereK andL are nonnegative constants.

Example 2.1. Theorem 1.1 gives a simple proof of the existence theorem for stochastic differ-
ential equations.

We use Picard’s method. Let us consider a sequence{ξn(t)} defined byξ0(t) = ξ0 and

ξn+1(t) = ξ0 +

∫ t

0

a(s, ξn(s)) ds +

∫ t

0

b(s, ξn(s)) dw(s)

for n = 0, 1, 2, . . . . Then, we easily have

ξn+1(t)− ξn(t) =

∫ t

0

(
a(s, ξn(s))− a(s, ξn−1(s))

)
ds

+

∫ t

0

(
b(s, ξn(s))− b(s, ξn−1(s))

)
dw(s)
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and the Lipschitz continuity ofa(t, x) andb(t, x) implies∣∣a(s, ξn(s))− a(s, ξn−1(s))
∣∣ ≤ L|ξn(s)− ξn−1(s)|,∣∣b(s, ξn(s))− b(s, ξn−1(s))
∣∣ ≤ L|ξn(s)− ξn−1(s)|.

Hence, Theorem 1.1 withα0 = β0 = L andα1 = β1 = 0 shows

E|ξn+1(t)− ξn(t)|2 ≤ 4L2(
√

t + 1)2

∫ t

0

E|ξn(s)− ξn−1(s)|2ds

for n = 1, 2, 3, . . . ; the recursive use of this estimate gives

E |ξn+1(t)− ξn(t)|2 ≤
(
4L2(

√
t + 1)2t

)n
n!

sup
0≤s≤t

E|ξ1(s)− ξ0(s)|2.

Consequently, as is well-known, the convergence of{ξn(t)} follows.
By virtue of Theorem 1.1 withα0 = β0 = 0 andα1 = β1 = L, the uniqueness of the solution

is clear.

Example 2.2.The error estimate of the Euler-Maruyama scheme

ξn+1 = ξn + a(tn, ξn)∆t + b(tn, ξn)∆wn, n = 0, 1, 2, . . . , N − 1

follows immediately from Theorem 1.2, whereN is a sufficiently large positive integer,∆t =
T/N , tn = n∆t and ∆wn = w(tn+1)− w(tn) for n = 0, 1, 2, . . . , N − 1.

Since

ξn+1 = ξn +

∫ tn+1

tn

a(tn, ξn)ds +

∫ tn+1

tn

b(tn, ξn)dw(s),

ξ(tn+1) = ξ(tn) +

∫ tn+1

tn

a(s, ξ(s))ds +

∫ tn+1

tn

b(s, ξ(s))dw(s),

we have

ξn+1 − ξ(tn+1) = ξn − ξ(tn) +

∫ tn+1

tn

(
a(tn, ξn)− a(s, ξ(s))

)
ds

+

∫ tn+1

tn

(
b(tn, ξn)− b(s, ξ(s))

)
dw(s).

Now, for n = 0, 1, 2, . . . , N − 1, if we put

ε(s) = ξn − ξ(tn),

f(s) = a(tn, ξn)− a(s, ξ(s)),

g(s) = b(tn, ξn)− b(s, ξ(s))

when tn ≤ s < tn+1 and

ε(tN) = ξN − ξ(tN),

f(tN) = a(tN , ξN)− a(tN , ξ(tN)),

g(tN) = b(tN , ξN)− b(tN , ξ(tN)),

then we obtain

ε(tn) =

∫ tn

0

f(s) ds +

∫ tn

0

g(s) dw(s)
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for n = 0, 1, 2, . . . , N . The Lipschitz continuity ofa(t, x) andb(t, x) shows

|f(s)| ≤ L
(
∆t + |ξ(s)− ξ̃(s)|+ |ε(s)|

)
,

|g(s)| ≤ L
(
∆t + |ξ(s)− ξ̃(s)|+ |ε(s)|

)
,

where ξ̃(s) = ξ(tn) when tn ≤ s < tn+1 for n = 0, 1, 2, . . . , N − 1 and ξ̃(tN) = ξ(tN) .
Hence, Theorem 1.2 withα0 = α1 = β0 = β1 = L shows

Eε2(t) ≤ 4L2(
√

t + 1)2 exp
(
4L2(

√
t + 1)2t

) ∫ t

0

E
(
∆t + |ξ(s)− ξ̃(s)|

)2
ds.

It follows from the fundamental property of Itô integrals that

E |ξ(s)− ξ̃(s)|2 ≤ C∆t,

whereC is a nonnegative constant depending only onT , K and L. Combining the above
estimates, we obtain

Eε2(t) = O(∆t)

for any0 ≤ t ≤ T when∆t → 0; the error estimate of the Euler-Maruyama scheme is proved.
Our Gronwall type inequality works for other numerical solutions of stochastic differential

equations.
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