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ABSTRACT. Two iterative schemes for the solution of an H-system with Dirichlet boundary data
for a revolution surface are studied: a Newton imbedding type procedure, which yields the local
quadratic convergence of the iteration and a more simple scheme based on the method of upper
and lower solutions.
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1. INTRODUCTION

__The prescribed mean curvature equation with Dirichlet condition for a vector funition
) — R3 is given by the following nonlinear system of partial differential equations:

AX =2H(X)X,ANX, in Q
X=X, on 0N

whereQ) c R? is a bounded domain, denotes the exterior product®?, # : R® — Ris a
given continuous function andl, is the boundary data.

The parametric Plateau and Dirichlet problems have been studied by different authors (see
[3, 4], [7] — [9]). Nonparametric and more general quasilinear equations are considered in
[1,12,[6].

(1.1)
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2 PABLO AMSTER AND MARIA CRISTINA MARIANI

We shall consider the particular case of a revolution surface

X(u,v) = (f(u)cosv, f(u)sinv, g(u))

with f,g € C2(I) such thatf > 0 andg’ > 0 over the intervall c R. Without loss of
generality we may assume that= (0, L), and problem[(1]1) becomes

( f"—f=-2H(f9)fg inI
1! — H !/ H
1.2) 9" =2H(f,9)ff in I
f(0) = ag f(L) =ar
L 9(0) = fo g(L) = b

whereH : R?> — R is a given continuous function, ang, a; > 0, 3, < 3;, are fixed real
numbers.
It is easy to see that any solution pf (1.2) verifies the equality

() +(g) = f+e
Hence, thasothermal condition
| Xy — | X = Xu X, =0

holds if and only ifc = 0. In this case/ is the mean curvature of the surface parameterized by
X (seel8]).
We shall study probleni (1].2) for a surface with connected boundary, namely

"= f=-2H(f9)fg Inl
9" =2H(f,9)ff" in
f(L) = ay, 9(L) = Br
[ f(0)=g'(0) =0.
In particular, if H depends only on the radiys from the equality
g"=2H()ff',  40)=0, g(L)=pL

problem ) easily reduces to a single equation; indee’a(ﬂ = f(f sH (s)ds, the following
integral formula holds foy:

(1.3)

g(t) = B — 2/t H(f(s))ds.

Thus, problem[(1]3) is equivalent to the equation

(1.4) { "= f=—4H(f)[H(f) = -2 (H2> (f) inI
f=a ondl

with a(t) := %£t. We remark that iy, = 0 theng'(L) = 2H (0) = 0, which corresponds to a
surface without boundary.

The paper is organized as follows. In Sectign 2, a Newton imbedding type procedure for
problem [(1.4) is considered, which yields the local quadratic convergence of the iteration. In
Sectior] B we construct a more simple convergent scheme based on the existence of an ordered

pair of a lower and an upper solution.
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2. ANEWTON IMBEDDING TYPE PROCEDURE

Throughout this section we shall assume the following condition:
N\ 1 (T _

5 for —k<zx<k+ay,
whered, < 7 andk satisfies:

]{750 > L1/2

2 (1{]2)/(@) -« .

Remark 2.1. A straightforward application of Leray-Schauder degree theory proves that if
condition [2.1) holds then there exists at least one solution df (1.4), which is unique in the set

K={ue H*(I): -k <u<k+ar}.

~ 2 ~ !/
Remark 2.2. As <H2) 0)=0 andHZ <H2> () —a|| — 0fora;, — 0, we deduce that

for any H there exists a positive numbet such that[(2/1) holds whemn, < a*.

In order to solve equatior (1.4) in an iterative manner, we shall embed it in a family of
problems

£+ A [2 () () - f] —0
F0)=0, (L) =ay.

A simple computation shows thatf, is the semilinear operator given by
Syf) = £+ {2 () () - f] ,

then the following estimate holds for arfyg € K such thatf = g ondI:

(2.2 1= glzz < 5 1S5(0) = (9}l

Hence, if f* is the (unique) solution o in 1C, we have that

I = )l < g Is@le < 5 2 (77) (@) -

(1.45)

L2

1/2 ~ / .
Thus, setting:, = L&j 12 (H2> (o) — a| > we obtain:
—ko < f* < ko +ay.

We first present a sketch of the method: giver: 1, and assuming that* € K is known,
we shall prove the existence of a positivend a recursive sequené¢,} which converges
quadratically to the unique solution @E) in K. As e can be chosen independently of
and), starting atf® = «, we deduce the existence of a sequence

O=X <\ << Ay=1,

wheref*» € K is obtained iteratively fronf*+—1.
Let\ < 1, andf* € K be a solution of[{.4,). Define the constants:

/{1_‘
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ky = sup (f?) (5)‘
—k<&<k+arp
and define a sequeng¢, } in the following way:

o fo:= f

e f.11 the unique element afi?(7) that solves the linear problem

{ L= 0ot 9)| (12 (B2) () (s = £+ -2 (2) (1)
Ja1(0) =0, frga(L) = ar.

We shall prove that if is small enough, thefif,,} is well defined. More precisely:

Theorem 2.3. Assume tha(2.1)) holds, and that# is twice continuously differentiable on
[—k,k + ar). Then{f,} is well defined and converges quadratically for tHé-norm to the
unique solution ofi{(4,],.) in K for anye < 1 — X satisfying:

RL32k, SoR
1 ik
¢ ( + 7T(50 ) < kl

Proof. As f, € K, f is well defined, and by an estimate analogous td (2.2) we obtain:

I~ ol < 5 H fe =) (1= 2 (B2) () (- o

L2
g
50 f0—2< ) (fo) L
= —k <
5 lﬁ R.
We shall assume as inductive hypothesis thats well defined fork = 1,...,n, and that

I fr = follze < R. Thus, f,, € K andf,.., is well defined. Moreover, fok = 1,...,n we have
that

(s = "= 42) (12 (72) () (s = )
=00 (72) " (@)U — fir)?

for some mean valug(x), and hence

k ko L3/?
| (ferr — i) llze < 5—2 1(fi = frm1)?|| e < = (fr = fr—1)'lI72-

By induction,
ko L2 2 oy
| = fu) s < ( I — fo)’l!m) 1 = Fo) e < A% (= fo) s
where )
. 6]431]{?2[/3 2
A —_— 6(2)—7-‘_ < 1.
Hence
(i — oV lee < S M0t = A lle < —c (= fo) e < 21
n+1 0 L2 e k+1 k L2 =~ 1 A 1 0 L2 > 50(1 —A)
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By hypothesis, we conclude th@tf,.1 — fo)'||zz < R. Thus,f, is well defined for every.,
and the inequality

(o1 = fa) llz < AU (F = fo) Il
holds, proving tha{ f,,} is a Cauchy sequence fii! (7). Furthermore, iff = lim,, ... fn, itis
immediate thaif,, — fin H*(I),andf € K solves|[(.4)],.). O

Remark 2.4. A uniform choice ofs can be obtained if we set

x—2 <ﬁ2)/(l‘)

ky = LY? sup

—ko<z<ko+tar

3. UPPER AND L OWER SOLUTIONS FOR PROBLEM (1.4)

In this section we define a convergent sequence based on the existence of an upper solution
of the problem: namely, a nonnegative functi@such that

(3.1) 5" -8 <—-2(H) (8), B(L) > ay.
We remark that it suffices to consider this assumption, dirisea lower solution of[(1]4).

Theorem 3.1. Assume that > 0 satisfies(3.]) and thatH is continuously differentiable for
0 <z <|f]w- Set
~ "
C=1-2 min (H2> (x)
0<z<||Blloo

and define the sequencgs:} given by:
*fy=0  fi =08

e {f:,} the unique solution of the linear problem

{ (Fia) = Cfi = (1= O)f —2 (B2) ()

L .,=a on Ol

Then{f, } (respectively{ /7 }) is nondecreasing (nonincreasing), and converges pointwise
to a solution of[(1.R). Moreover, the respective limjitssatisfy:0 < f~ < f* < 3.

Proof. Let us first note thaC’ > 0 (in fact, C' > 1), which implies that both sequences are
well defined. Furthermore, from the choice ©f it is immediate that the functiogh(z) =

(1-C)x—2 <f]2>, (x) is nonincreasing fod < = < || 3||-. By definition,

() = Cff =(1=C)p—2(H) (B) 2 8"~ Cp

and using the maximum principle it follows thit < 3. On the other hand,
()" = CfH =9(8) <¢(0) =0
and asf;" > 0 ondI we deduce thaf,” > 0 overI. Assume as inductive hypothesis that
0<fi<fiy

Then

(fad)" = Chin =v(f) 2 v(fi) = (£ = CfF
and

( :+1)” B Cf:—i—l - @Zj(f:) < ¢(O) =0
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which implies that) < f,° | < f.F. Thus,{f,'} is nonincreasing and converges pointwise to a
function f* > 0. By standard apriori estimates, we have that

1fo1 = allme < cll(fin — @) = C(fin — )llze = el (f7) — all: < M

for some constant/. By compactnesd,f;F} admits a convergent subsequencé€'irl), prov-
ing thatf* e C''(I). Furthermore,

(il (@) = (100) = [ Chi+0(8),
and by dominated convergence we conclude that
Y@ -0 = [Certrurn = -2 () 1)
Thus, the result follows. The proof is analogous fgf }. O
As a simple consequence we have:
Corollary 3.2. Assume there exists a numler «;, such that
ﬁwﬁmogi

Theng = k is an upper solution, and the schemes defined in the previous theorem converge.

Example 3.1. For H(z) = ra", we have thatf (z) = 52"+, and the conditions of the
previous corollary hold for
1
n+ 2\ 772
<k< :
a=r= < 4r2 >

However, it is possible to find a sharper bounddgy, if we consider the parabola

mwzaLb—<szf].

Indeed, in this case we have thats an upper solution if and only if

20éL 4r 2 2
L? = Cn+ 26
or equivalently
QOéL
o(B) < T2

for o(z) = x (%x%“ — 1). Note that for) < z < a;, we have:

o(z) < max{0, ¢(ar)}.

Thus, it suffices to assume that

0 < 2n+2§n—|—2<1+ 2)

4r2 L2
Remark 3.3. In the previous example, equatign (1.4}igperlinear, namely:
Ay 2
[' =0, f0) =0, f(I)=ar.

It can be proved (see e.@. [5]) that this problem admits infinitely many solutions. More precisely,
there existg;, € N such that for any > k, the problem has at least two solutions crossing the
line a(t) = <+t exactly; times in(0, L).
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