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Abstract

We show that the functional equation

T+ Waraewa
!1<’ 2 y) = V9g(x)g(y)

is stable in the classical sense on arbitrary Q-algebraically open convex sets,

but the Hyers method does not work. An Example of a Stable
. . - Functional Equation When the
For the convenience of the reader, we have included an extensive list of ref- Hyers Method Does Not Work

erences where stability theorems for functional equations were obtained using

. Zoltan Kaiser and Zsolt Pal
the direct method of Hyers. olan Raiserand £solt Faies
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The basic problem of the stability of functional equations asks whether an 'ap-
proximate solution’ of the Cauchy functional equatigr + y) = g(z) + g(y)

‘can be approximated’ by a solution of this equation. This problem was formu-
lated (and also solved) in Gy. Polya and G. Sredpook [5(] (Teil I, Aufgabe

99) for functions defined on the set of positive integers, it was reformulated in
a more general form by S. Ulam in 1940 (s€€][[27]). In 1941, D. H. Hyers

[4(] gave the following solution to this problentf: X andY are Banach spaces,

An Example of a Stable

¢ is a nonnegative real number and a functipn X — Y fulfills the inequality Functional Equation When the
1f(x+y)— f(z) = fy)|] < e (z,y € X), then there exists a unique solution Hyers Method Does Not Work
g : X — Y of the Cauchy equation for whidhf(z) — g(z)|| < e (z € X). Zoltan Kaiser and Zsolt Pales

Stability problems of this type were investigated by several authors during the
last decades, most of them used the idea of Hyers, which will be described be-

Title Page
low. For surveys on these developments see, e.g., the papers bylFRrGer J
[30], Székelyhidi B5] and the book43]. Contents
Let X andY be non-empty sets and leto be binary operations oA and < SY
Y, respectively. The Cauchy equation concerning these general structures is the
functional equation < 4
Go Back
(1.1) g@xy)=g(x)ogly)  (z,y€X),
Close
whereg : X — Y is considered as an unknown function. Quit
Assuming, in addition, thalt” is a metric space with metri¢ we can speak
Page 3 of 25

about approximate solutions of.(): A function f : X — Y is called an
g-approximate solution of1.1) if it satisfies the following so-called stability
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inequality

(1.2) d(f(zxy), f(x)o fy) <e  (v,y€X)

for somes > 0.

The Cauchy equationl(l) is said to bestable in the sense of Hyers and
Ulamif, for all positive 4, there exists > 0 such that, for an arbitrary solution
f of (1.2), there exists a solution of (1.1) satisfyingd(f(z), g(x)) < ¢ for all
re X, An Example of a Stable

The most general results concerning this stability problem were obtained in  Functional Equation When the
the context of square-symmetric groupoids, i.e., when the operatiansl o Hyers Method Does Not Work

satisfy the algebraic identities Zoltan Kaiser and Zsolt Pales

(xxy)x(xxy)=(xxx)x(yxy) and (uowv)o(uowv)= (uou)o(vouv) Title Page

forall z,y in X andu, v inY. (Cf. [7€], [15], [59], [59], [2].) Contents
Letus denote:xx by o,(x) (z € X), anducubyo,(u) (u € Y) (i.e.,0. and « R

o, stand for the squaring in the corresponding structures). The square-symmetry
of the operations: and ¢ simply means that, and o, are endomorphisms. < >
Substitutingr = y into (1.1) and (L.2), we get the following single-variable

. . . . . Go Back
functional equation and functional inequality:
Close
(1.3) gooux) =o.0g(x)  (reX), Quit
and Page 4 of 25
(14) d(f O Oy (37), Oy O f(:L‘)) S 19 ((L‘ € X) J. Ineq. Pure and Appl. Math. 6(1) Art. 14, 2005
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Assuming that a functiorf : X — Y satisfies {.2), we see that it also
satisfies {.4). In order to construct the solutignof (1.1) which is close tof,
the idea of the Hyers method is to consider one of the following two iterations:

(15) g1 = fv In+1 :o‘oognog*_l (nE N)v

(1.6) g=1f  gun=o05' 0ogyoo. (neN)

(assuming that, ando, is invertible, respectively) and then to show that for
all solutionsf of (1.4), one of these sequences of functions converges to a limit
function g, which is a solution of1.3) and of (L.1), moreoverd(f(x), g(x)) <

ce for somec € R.

Results concerning stability of various functional equations in several vari-
ables using these kinds of iterations can be found in a huge number of recent
works (see the extensive list of references at the end of the paper).

In this note we present an example of a stable Cauchy-type functional equa-
tion with square-symmetric operations, where for all solutigns (1.4), the
limit function of the corresponding Hyers-sequences either does not exist or is
a solution of the single variable functional equatian3| but it does not solve
(1.1 and it is not close to the original functigh

An Example of a Stable
Functional Equation When the
Hyers Method Does Not Work

Zoltan Kaiser and Zsolt Pales

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 5 of 25

J. Ineq. Pure and Appl. Math. 6(1) Art. 14, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:kaiserz@math.klte.hu
mailto:
mailto:pales@math.klte.hu
http://jipam.vu.edu.au/

Let X denote a vector space over the field of rational numbers throughout this
paper. In what follows, we deal with the stability of the two-variable functional
equation

r+vy
(2.1) o(*57) = Veely)  (wyem),
where H is a midpoint-convex set ok, i.e., 3% € H forall z,y € H. A A Examole of a Stabl
function f : H — [0, 00| is called ans-approximate solution of(1) if it L e sty S
satisfies the functional inequality Hyers Method Does Not Work
T+y Zoltan Kaiser and Zsolt Pales
2.2) () - VI@fW)| e @yen).
Observe that, with the notations Title Page
Contents
r+y
T kY= and zoy:= Yry,
! 2 ’ Y 44 >
the operations andc are square-symmetric (ovéf and[0, ool), furthermore, < >
(2.1) and @.2) are particular cases of (1) and (L.2), respectively.
With the substitution; = 2 one obtains the following single variable func- o [BaEs
tional equation and functional inequality frora.{) and @.2): Close
(2.3) g(x) =g(zr) (v € H), Quit
and Page 6 of 25
(24) ‘f(il?) A /f($)| S € (QZ c H)’ J. Ineq. Pure and Appl. Math. 6(1) Art. 14, 2005
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respectively.
In this setting, for the iterationl(6), we get

gn(@) = (f(2))

which is not convergent for those elements X wheref(z) > 1, otherwise

{o if f(z) < 1,

277.71

(x € X,n € N),

pum 1‘ n pu— R
gle) = lim gn(z) =9, ) = 1.
Clearly, g is a solution of £.3). Assume that#{ has at least two elements and

0 < e <1.Letx, € H be fixed. Definef, : H — [0, oo by

1 if © = g,
fl(x)—{1+€ if x # xo,
andf, : H — [0, 00[ by
)1 if =z,
(2:3) falw) = {1 —e if x # xo.

It is not so difficult to prove, thaf; and f, satisfy inequality 2.2). It is clear,
that the corresponding iteration.) referring to f; is not convergent when
x # xo. The iteration {.6) referring tof, converges to

g(z) = {(1)

if v = x,
if x # xo,
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which is a solution ofZ%.3), but as we see later, does not necessarily sal\vg. (

It is obvious that there does not exist & R, for whichd(f(x), g(z)) < ce

for an arbitrarye. Moreover, ife = 0, thend(f2(z), g(z)) ~ 1, whenx # x,.
Similarly, for the iteration {.5), we get

gu(@) = (f@)TT  (z€X,neN),
sSo we have
L o if f(x) =0,
g(x) = lim gn(z) = {1 it f(x) £0,

which is a solution ofZ.3). Assume that{ has at least two elements< ¢ < 1
and definef; : H — [0, oo[ by

€ if x # xo,

@9 fslz) = {02 o

wherez, € H is fixed. Itis obvious, thatA.2) holds for the functiorys, but the
Hyers iteration now converges to

g(r) = {(1)

which solves 2.3) but does not necessarily solv2 1). Again as before, there
does not exist a € R, for whichd( f5(z), g(x)) < ce for an arbitrary, because
if ¢ is approximately zero, thef( f5(z), g(z)) is approximatelyl whenz # x.

if z = x,

ifl‘?éz(),
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In what follows, we prove the stability of the functional equatioas) and
(2.1). It can be immediately seen that the solutions28) are functions with
values 0 and 1, that is, characteristic functions of a certain subgét afhe
next result shows that if is a solution of 2.4) then it is close to a certain
characteristic function as well. Thus, the functional equatibf) (s stable in
the Hyers-Ulam sense.

Theorem 2.1.Let H be a nonempty set and lIét H — [0, oo be a solution of
the functional inequality2.4) with0 < e < ¢y := 4/25. Then, for allx € H,

25¢2 9e
< 0
- 16 4 —
Proof. Define the subsetd andB of H by

either  f(x)

252 }

A::{xEH: —%Sf(w)—lﬁ?s}, B::{xEH:f(x)§ 16

The proof of the theorem is equivalent to showing thand B form a partition
of H.

Let z € H be arbitrary. Inequality4.4) is equivalent to the quadratic in-
equalities

2.7) < (Vi) ~ Vi@ <=
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Sinces < ¢y = 4/25, we have the estimate

(2.8)

0 < f@) = (V@) < (

i.e.,x € B,or

- VT4 4e
2 21+

< 2e
T 1+ V1-4e

2e

1+\/21—4€§\/m§1+\/21+457

= —F—— < —¢.

1+4/9/25 — 4

From 2.7), using @.8), we obtain that either

1—+v1—-4e
2

consequently, in view of the estimate §) and

(2.9)

vi+4e -1 4e
2 C2(VIt+de+1)

)Z

<eg,

252
16 °
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we have

L% 1-VTE (14 VT E ’
4 = 2 B 2
< f(z)
2
1++v1+4 V1+4e —1
< u :1++—6+€§1+2€’
2 2
which means that € A. An Example of a Stable
Thus we have showed thatu B = H. On the other hand, sinee< ¢; = Z“l‘ii"&ifé‘d“%té"elvﬁﬂf&ﬁi

4/25, it easily follows thatd N B = 0. O g

Zoltan Kaiser and Zsolt Pales

In order to investigate the stability of the two-variable functional equation
(2.1), we need the notion of an ideal of midpoint-convex sets. We say that a set

I C H is anideal in the midpoint-convex séf with respect to the midpoint M3 [PETE
operationif Contents
(2.10) reHandyel — Ty o <« >
’ < >
Trivially, ) andH are always ideals ii/. However, in general, there could exist ’
Go Bac

further ideals inf7. For instance, iff is the closed unitintervall = [0,1] C R
then the set¥), 1], [0, 1[, and]0, 1] are also ideals fof/. As we shall see below, Close
if H enjoys a certain openness property then it can have only trivial ideals.

We say that a sell is Q-algebraically openf, for each pointp € H and SEL
vectorv € X, there exists a positive numbersuch thatp + tv € H for all Page 11 of 25
t € [0,7] N Q. Itis obvious, that every open set (of a topological linear space)
is Q-algebraically open, but the reversed statement is not true in general. =D P A BEIDL BE)AR J0 288
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Lemma 2.2. Let H C X be aQ-algebraically open midpoint-convex set. Then
H has only trivial ideals, i.e., the only ideals it are the set$ and /.

Proof. Assume that C H is a nonempty ideal with respect to the midpoint
operation, and ley € I be fixed. It easily follows by induction th&f1z +
LyeIforallze H.

Now letz € H be arbitrary. Sinced is Q-algebraically open, for large
n € N, we have that

T, =+ 2n_1(x—y) €H.
Then
2" —1 1
T
which, in view of the ideal property adf, yields thatr € I. Therefore, H C I
follows. O

Our next result concerns the stability of the functional equatiof) (

Theorem 2.3.Let H C X be aQ-algebraically open midpoint-convex set and
let f : H — [0, oo[ be a solution of the functional inequalig®.2) with0 < e <
g0 :=4/25. Then, either

2
o) <= wem
or 9
—Z€<f(x)—1<25 (x € H).
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Proof. Define the setsl and B as in the proof of Theorerd.1. Then, by The-
orem?2.1, these sets form a partition &f. In order to complete the proof, we
have to show that one of the setsor B is empty. To do that, we prove that
is an ideal inH with respect to the midpoint operation.

Letx € H andy € B. It suffices to prove thai% ¢ A, because then we
have‘”—‘;" € H\ A = B. From inequality 2.2) it follows that

F(55Y) <<+ VI@VITG)

2
/252
§a+\/\/1+2a 1—2

5
<eot+1/VIF 250%

_4+433<16 950< 9¢
25 5 25 4 = 4
In view of Lemma2.2, we have thatB is a trivial ideal, i.e., eitheBB = H or

B = () which means thatt = H, and the statement of the theorem follows from

The functionsy = 0 andg = 1 are trivially the solutions of the functional
equation £.1). Choosing: = 0 in Theorem2.3, we immediately get that the
reversed statement is also true, i.e., we have the following result:

Corollary 2.4. Let X be a real linear space{ C X be aQ-algebraically
open midpoint-convex set. Then a function — [0, oo is a solution of the
functional equatior{2.1) if and only if eitherg = 0 or g = 1.
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Now Theoren2.3 can be interpreted as the stability theoremaf) since
it states that iff solves the stability inequality2(2), then it is close to one of
the solutions of the functional equatioh ). Thus, @.1) is stable in the Hyers-
Ulam sense.

On the other hand, Corollarg.4 shows that if we consider equatiog.{)
over aQ-algebraically open midpoint-convex set, then the limits of the corre-
sponding Hyers-sequences referring to the functirend f; defined in 2.5
and @.6) are not solutions of4.1), so the stability of this functional equation

cannot be proved via the Hyers-method. An Example of a Stable
Functional Equation When the
Hyers Method Does Not Work
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