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ABSTRACT. We confirm two recent conjectures of W. Janous and thereby state the best possible
form of the Erdés-Debrunner inequality for triangles.
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Fix a triangleABC and, on each of the sidé&’', C A, AB fix arbitrary interior points, F,
F. Label the areas of the resulting triangle&' F', AEF, BDF,CED asky, Fy, F,, F3. Fyis
thus the area of the central triangle, while the other three are the areas of the “corner” triangles.
The Erd6s-Debrunner inequality states that at least one of the corner triangles has no greater
area than the central triangle:

(1) min{ Fy, Fy, F3} < Fp.
Walther Janous [1] generaliz€d (1), proving that
(2) M_\(Fy, F, F3) < F,

where M_, (F}, F,, F3) denotes the harmonic mean of the aréasks, F; (for notation and
properties of general power means, see the standard reference [2]). Moreover, Janous [1] also
proves that if an inequality of the form

() M, (F1, Fy, F3) < Fy
should generally hold (witlh > —1) then we must necessarily have
In(3/2)
—1<p<— :
L=ps =79

Prompted by these results, Janous formulates the following conjecture

Conjecture 1 (Janous([1]) The best possible value pffor which (3) generally holds i =
_ In(3/2)

In(2) *

The author would like to thank Claire Hill, Mark Tuckerman and the referee for several helpful comments and improvements.
245-06


mailto:vdm@cs.bsu.edu
http://www.cs.bsu.edu/homepages/vdm/
http://www.ams.org/msc/
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In this note we will confirm this conjecture, and thereby state the best possible form of the
Erdos-Debrunner inequality as a theorem:

Theorem 2. It is always true that
M,(Fy, F5, Fs) < Fy
In(3/2)

withp = — ) and this value op is best possible, in the sense that with any greatirere
are examples that contradict the inequality.

In [1] Janous develops a useful notation to simplify the Erdds-Debrunner problem, and we
will adopt it as our starting point. First, he seletts, v > 0 so that the side®C', CA, AB are
divided by the pointd, F, Fintheratiost : 1 —¢,u: 1 —u, v : 1 —v. Then, defining

t U v

T Zw YTy 1—v
and setting; := —p, Janous shows that the inequallty (3) fox 0 is equivalent to
4) flzy,2) 23,
wheref is defined by

1 e 1 e 1 1
(5) flz,y,2) = (——i—x—l) +<—+y—1) +<—+z—1) :

z T Y
Here we require that

1 1 1
(6) x,y,z >0, ;+:1:—120 ;er—lZO §+z—120.

This newz, y, z notation and the related conditions, and the fact that we are only interested in
exponents; with In(3/2)/1n(2) < ¢ < 1, is all we need to know. In reference to the function
f, Janous formulates a second “minor” conjecture:

Conjecture 3 (Janous([1]) Under conditiong[6) and for anyg > 0, the minimum of (z, y, z)
is attained at points satisfyingyz = 1.

To prove Theorer|2 we would only need to consider the smallest pogsiblewever, we
will start with a proof of this conjecture for the relevant interval of exponént3/2)/In(2) <
qg <1

Lemma 4. Under the conditiong6) and ifIn(3/2)/In(2) < ¢ < 1, the functionf(z, y, z) can
only attain a minimum atz, y, z) whenzyz = 1.

Proof. The inequalities in[(6) define a region®¥, and we first want to consider points on its
boundary. That is, we first assume that one of the last three inequalities is actually an identity;
without loss of generality, we assume that

1
-+z—-1=0.
Y
Thus, since: = (y — 1)/y and since: > 0, we conclude thag > 1. The functionf defined in
(5) simplifies to
1 e 1 e
= —— —ty—1) .
9(z,y) <y_1 +fv> + (x +y )
After the change of variables= x?, ¢t = ﬁ p = 1/q this takes the more symmetric form
1/p 1 1 1/P
— D p — J—
(7) g(s,t) = (sP +tP)'7 + <5P + tp) )

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 32, 5 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ON THE ERDOS-DEBRUNNERINEQUALITY 3

Using the definition of general power means, we can rewréde

o(out) =2 (M (5.0) 3 )

Thus, estimating both summands within parentheses via the geometricifaéart), we get

> > 9l+1/p 21+q’

o) 2 2 (300 5

because of the well-known inequality+ 1/a > 2. We can now see, working backwards
through the previous steps, that the minimdn? can only be attained i = ¢, which in turn
means that = 1/(y — 1). Therefore,
1 y—-1
Yz = ——y—— =1
y—17 vy
as claimed. Further, we notice theat™ is greater than or equal to 3, where equality holds when

q=1n(3/2)/In(2).

Next, we will look for the extrema of under the set of strict conditions
1 1 1
(8) x,y,2>0, —4+xr—1>0 —4y—1>0 —4+2—-1>0,
z T Y

which together define ampenregion inR3. The extrema in this region must occur where the
gradient off vanishes. We compute the partial derivative with respegct tind obtain

0 1 ot 1 i
—f:q —4z-1 —q(-+y—-1 —.
ox z x x?
The condition% = 0 can be rewritten as (remembering tha3/2)/In(2) < ¢ < 1)

1 1 1 e 1

By permuting the variables, y, > cyclically, we obtain from[(P) the corresponding equations
equivalent ol = 0 andg = 0, that s,

1 4 1 E 1
and

1 4 1 e 1
It should be now clear that the product of the three equatjdng (9), [(10), (11) impkes 1 in
this case, too. The lemma is thus proved. O

Proof of Theorern|2Using Lemma #, finding the minimum ¢gfbecomes a two-variable prob-
lem after setting: = 1/xy. Accordingly, we consider a new function

q 1 ¢ 1 1 d

and henceforth we will also fixto beln(3/2)/ In(2), recalling Janous’ proof that the inequality
is invalid for ¢ < In(3/2)/1n(2). Our ultimate target is to show that with= 1n(3/2)/In(2)
and under condition§(6) the minimum bis 3 (see[(#) and replacewith 1/xy in ().
Now, if any of the last three inequalities in (6) is an identity, the proof of Lernna 4 already
shows that the minimum of is 2¢*!, and this number is identical b given the choice; =

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 32, 5 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 VANIA MASCIONI

In(3/2)/1n(2). We thus want to examine possible extremahofinder the more restrictive
conditions

1 1 1

(12) z,y>0, 2y+2x—-1>0 —4+y—1>0 —+——-1>0
Z Yy xy

which result from|[(B) after replacingwith 1/zy. Rewriting [12) as

1 1 1
(13) z,y>0, y+1>—- —4+y>1 14+->y
Xz T Xz

it follows that1/x, y and1 must be the lengths of the three sides of a triangle. After the change
of variabless = 1/z, t = y, h can be written as

(14) hs,t) = (1+—2_'5>q+ (s+t—1)"+ (#)q

where the quantities, ¢, 1 are the sides of a (non-degenerate) triangle.
If we now look at

(15) H(a,b,¢) = (lﬂr%a):(ﬁz_b)Z(Hi_c)q,

wherea, b, ¢ are the sides of a triangle, and realize that the funchibrs invariant under a
common scaling ofi, b, ¢, we see that the problem of minimizirigs, ¢) in (14) is equivalent

to minimizing H (a, b, ¢) in (15). Let us now use elementary trigonometric relations to rewrite
H as a function of the angles [, v (defined as the angles opposite the sides of leagihc).

The result is

e o) =2

sin(3/2) sin(v/2)\* N sin(y/2) sin(a/2)\*
sin(a/2) sin(3/2)
sin(a/2) sin(3/2)\?
+ : :
sin(v/2)

Since we are dealing with (positive) angles satisfying- 5 + v = w, we havesin(y/2) =
cos ((« + 3)/2), and so a further dose of trigonometry transforfhinto a function of the two
variablesw, 5 which we nevertheless call («, 3), since the value is the same:

H(a, B) = 27 (sin(ar/2)* + sin(8/2)*) (cot(a/2) cot(8/2) — 1)*
1
+ (cot(a/2) cot(B/2) — 1)*
Next, using the identityin?(£) = 1/(1 + cot?(£)) we can expres#l as a function ofot(a/2)

andcot((3/2). After one more change of variables, namely- cot(«/2)) andv = cot(3/2),
we obtain our final expression faf:

— 99 1 1 _ q
(16) H(u,v) =2 {((1 Ty + i +v2)q) (uv —1)7 + (w0 — 1)
wherewu and v are only required to be positive and such that> 1. We are now able to
minimize (16) with traditional methods. Any critical point in the open domain specified must
satisfy the condition%—fj = %—f = 0. To spare the reader the rather unpleasant complete
calculation of these partial derivatives, let us just state that, for some funetienv) (whose
details are not needed here), we have

1 OH 1
q29(uv — 1) Ju N u(l + u2)n(3)/In(2)

+ oM (u,v)
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and
1 oOH

S —

q2¢(uv — 1)2 Ov v (1 + v2)n(3)/In(2)
If both partial derivatives are zero, we can solve the resulting equatiord forv), eliminate
M (u,v), and obtain

+ uM (u,v).

U 1 v 1
(17) v (1 + @@2)n®/mE) ~ 3 (14 02)n®/m@)

Introducing the function

z

¢(2) = (11 2)n@®/m@)’

condition [1T) simplifies to

o(u?) = $(0?).
We first consider the case where# v. The functiong is easily seen to be strictly increasing
for z € [0,In(2)/In(3/2)] and strictly decreasing for > In(2)/In(3/2). u # v implies
thatu? < 1/¢ < v*. Since we assume thatr > 1, we also havel /v? < w? (and thus
#(1/v?) < ¢(u?)). Now, elementary algebra shows that

¢(1/U2) — ¢(02)U2(1H(3)/1H(2)_1).
Sincev? > 1/q > 1, this implies that

¢(1/v*) > o(v*) = ¢(u?),
which is a contradiction. Therefore, the casé v is impossible, and we are left with the anal-
ysis of the “isosceles” case = v. Indeed, backtracking through our last change of variables,
u = v means thatv = (3, and thus: = b in the original expressiof (15) fd¥ (a, b, ¢). Thus, we
should consider the functioi(s, t) from (14), for the case when= ¢ (and2s > 1, to preserve
the triangle condition). Our last task is thus to minimize

(18) h(s,s) = 2% + (25 — 1)1

for s € (1/2,00). An analysis of the derivative dif(s, s) shows that it has exactly two zeros
for s > 1/2, and since the function initially increases (with infinite derivative at 1/2), the
second critical point, at = 1, must be a minimum, which corresponds to the equilateral case.
Whens = 1, h(1,1) = 3. This andh(1/2,1/2) = 3 complete the proof. O

Remark 5. Based on our proof, the following corollary can be stated, which is a consequence
of H(a,b,c) > 3 and the general power means inequality:

Corollary 6. Letp > In(3/2)/1n(2) be an arbitrary real number. Then for all triangles with
sidesa, b andc and semi-perimetet the inequality

s—a p+ s—b p+ s—c¢ p>i
a b c - 2p

is valid.
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