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Fix a triangleABC and, on each of the sidesBC, CA, AB fix arbitrary interior
pointsD, E, F . Label the areas of the resulting trianglesDEF , AEF , BDF , CED
asF0, F1, F2, F3. F0 is thus the area of the central triangle, while the other three
are the areas of the “corner” triangles. The Erdös-Debrunner inequality states that at
least one of the corner triangles has no greater area than the central triangle:

(1) min{F1, F2, F3} ≤ F0.

Walther Janous [1] generalized (1), proving that

(2) M−1(F1, F2, F3) ≤ F0,

whereM−1(F1, F2, F3) denotes the harmonic mean of the areasF1, F2, F3 (for nota-
tion and properties of general power means, see the standard reference [2]). More-
over, Janous [1] also proves that if an inequality of the form

(3) Mp(F1, F2, F3) ≤ F0

should generally hold (withp ≥ −1) then we must necessarily have

−1 ≤ p ≤ − ln(3/2)

ln(2)
.

Prompted by these results, Janous formulates the following conjecture

Conjecture 1 (Janous [1]). The best possible value ofp for which (3) generally
holds isp = − ln(3/2)

ln(2)
.

In this note we will confirm this conjecture, and thereby state the best possible
form of the Erdös-Debrunner inequality as a theorem:
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Theorem 2. It is always true that

Mp(F1, F2, F3) ≤ F0

with p = − ln(3/2)
ln(2)

, and this value ofp is best possible, in the sense that with any
greaterp there are examples that contradict the inequality.

In [1] Janous develops a useful notation to simplify the Erdös-Debrunner prob-
lem, and we will adopt it as our starting point. First, he selectst, u, v > 0 so that the
sidesBC, CA, AB are divided by the pointsD, E, F in the ratiost : 1−t, u : 1−u,
v : 1− v. Then, defining

x =
t

1− u
, y =

u

1− v
,

v

1− t
,

and settingq := −p, Janous shows that the inequality (3) for p < 0 is equivalent to

(4) f(x, y, z) ≥ 3,

wheref is defined by

(5) f(x, y, z) :=

(
1

z
+ x− 1

)q

+

(
1

x
+ y − 1

)q

+

(
1

y
+ z − 1

)q

.

Here we require that

(6) x, y, z > 0,
1

z
+ x− 1 ≥ 0

1

x
+ y − 1 ≥ 0

1

y
+ z − 1 ≥ 0.

This newx, y, z notation and the related conditions, and the fact that we are only
interested in exponentsq with ln(3/2)/ ln(2) ≤ q < 1, is all we need to know. In
reference to the functionf , Janous formulates a second “minor” conjecture:
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Conjecture 3 (Janous [1]). Under conditions(6) and for anyq > 0, the minimum
of f(x, y, z) is attained at points satisfyingxyz = 1.

To prove Theorem2 we would only need to consider the smallest possibleq.
However, we will start with a proof of this conjecture for the relevant interval of
exponentsln(3/2)/ ln(2) ≤ q < 1.

Lemma 4. Under the conditions(6) and if ln(3/2)/ ln(2) ≤ q < 1, the function
f(x, y, z) can only attain a minimum at(x, y, z) whenxyz = 1.

Proof. The inequalities in (6) define a region inR3, and we first want to consider
points on its boundary. That is, we first assume that one of the last three inequalities
is actually an identity; without loss of generality, we assume that

1

y
+ z − 1 = 0.

Thus, sincez = (y − 1)/y and sincez > 0, we conclude thaty > 1. The functionf
defined in (5) simplifies to

g(x, y) :=

(
1

y − 1
+ x

)q

+

(
1

x
+ y − 1

)q

.

After the change of variabless = xq, t = 1
(y−1)q , p = 1/q this takes the more

symmetric form

(7) g(s, t) := (sp + tp)1/p +

(
1

sp
+

1

tp

)1/p

.

Using the definition of general power means, we can rewriteg as

g(s, t) = 21/p

(
Mp(s, t) +

1

M−p(s, t)

)
.

http://jipam.vu.edu.au
mailto:vdm@cs.bsu.edu
http://jipam.vu.edu.au


Erdös-Debrunner Inequality

Vania Mascioni

vol. 8, iss. 2, art. 32, 2007

Title Page

Contents

JJ II

J I

Page 5 of 11

Go Back

Full Screen

Close

Thus, estimating both summands within parentheses via the geometric meanM0(s, t),
we get

g(s, t) ≥ 21/p

(
M0(s, t) +

1

M0(s, t)

)
≥ 21+1/p = 21+q,

because of the well-known inequalitya + 1/a ≥ 2. We can now see, working
backwards through the previous steps, that the minimum21+q can only be attained
if s = t, which in turn means thatx = 1/(y − 1). Therefore,

xyz =
1

y − 1
y
y − 1

y
= 1

as claimed. Further, we notice that21+q is greater than or equal to 3, where equality
holds whenq = ln(3/2)/ ln(2).

Next, we will look for the extrema off under the set of strict conditions

(8) x, y, z > 0,
1

z
+ x− 1 > 0

1

x
+ y − 1 > 0

1

y
+ z − 1 > 0,

which together define anopenregion inR3. The extrema in this region must occur
where the gradient off vanishes. We compute the partial derivative with respect to
x, and obtain

∂f

∂x
= q

(
1

z
+ x− 1

)q−1

− q

(
1

x
+ y − 1

)q−1
1

x2
.

The condition∂f
∂x

= 0 can be rewritten as (remembering thatln(3/2)/ ln(2) ≤ q < 1)

(9)

(
1

x
+ y − 1

)q

=

(
1

z
+ x− 1

)q
1

x2q/(1−q)
.
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By permuting the variablesx, y, z cyclically, we obtain from (9) the corresponding
equations equivalent to∂f

∂y
= 0 and ∂f

∂z
= 0, that is,

(10)

(
1

y
+ z − 1

)q

=

(
1

x
+ y − 1

)q
1

y2q/(1−q)

and

(11)

(
1

z
+ x− 1

)q

=

(
1

y
+ z − 1

)q
1

z2q/(1−q)
.

It should be now clear that the product of the three equations (9), (10), (11) implies
xyz = 1 in this case, too. The lemma is thus proved.

Proof of Theorem2. Using Lemma4, finding the minimum off becomes a two-
variable problem after settingz = 1/xy. Accordingly, we consider a new function

h(x, y) := (xy + x− 1)q +

(
1

x
+ y − 1

)q

+

(
1

y
+

1

xy
− 1

)q

,

and henceforth we will also fixq to beln(3/2)/ ln(2), recalling Janous’ proof that
the inequality is invalid forq < ln(3/2)/ ln(2). Our ultimate target is to show that
with q = ln(3/2)/ ln(2) and under conditions (6) the minimum ofh is 3 (see (4) and
replacez with 1/xy in (6)).

Now, if any of the last three inequalities in (6) is an identity, the proof of Lemma
4 already shows that the minimum ofh is 2q+1, and this number is identical to3
given the choiceq = ln(3/2)/ ln(2). We thus want to examine possible extrema of
h under the more restrictive conditions

(12) x, y > 0, xy + x− 1 > 0
1

x
+ y − 1 > 0

1

y
+

1

xy
− 1 > 0
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which result from (8) after replacingz with 1/xy. Rewriting (12) as

(13) x, y > 0, y + 1 >
1

x

1

x
+ y > 1 1 +

1

x
> y

it follows that1/x, y and1 must be the lengths of the three sides of a triangle. After
the change of variabless = 1/x, t = y, h can be written as

(14) h(s, t) =

(
1 + t− s

s

)q

+ (s + t− 1)q +

(
1 + s− t

t

)q

,

where the quantitiess, t, 1 are the sides of a (non-degenerate) triangle.
If we now look at

(15) H(a, b, c) :=

(
b + c− a

a

)q

+

(
c + a− b

b

)q

+

(
a + b− c

c

)q

,

wherea, b, c are the sides of a triangle, and realize that the functionH is invariant
under a common scaling ofa, b, c, we see that the problem of minimizingh(s, t)
in (14) is equivalent to minimizingH(a, b, c) in (15). Let us now use elementary
trigonometric relations to rewriteH as a function of the anglesα, β, γ (defined as
the angles opposite the sides of lengtha, b, c). The result is

H(α, β, γ) = 2q

[(
sin(β/2) sin(γ/2)

sin(α/2)

)q

+

(
sin(γ/2) sin(α/2)

sin(β/2)

)q

+

(
sin(α/2) sin(β/2)

sin(γ/2)

)q]
.

Since we are dealing with (positive) angles satisfyingα + β + γ = π, we have
sin(γ/2) = cos ((α + β)/2), and so a further dose of trigonometry transformsH
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into a function of the two variablesα, β which we nevertheless callH(α, β), since
the value is the same:

H(α, β) = 2q
(
sin(α/2)2q + sin(β/2)2q

)
(cot(α/2) cot(β/2)− 1)q

+
1

(cot(α/2) cot(β/2)− 1)q .

Next, using the identitysin2(ξ) = 1/(1+cot2(ξ)) we can expressH as a function of
cot(α/2) andcot(β/2). After one more change of variables, namelyu = cot(α/2))
andv = cot(β/2), we obtain our final expression forH:

(16) H(u, v) = 2q

[(
1

(1 + u2)q
+

1

(1 + v2)q

)
(uv − 1)q +

1

(uv − 1)q

]
whereu andv are only required to be positive and such thatuv > 1. We are now
able to minimize (16) with traditional methods. Any critical point in the open domain
specified must satisfy the conditions∂H

∂u
= ∂H

∂v
= 0. To spare the reader the rather

unpleasant complete calculation of these partial derivatives, let us just state that, for
some functionM(u, v) (whose details are not needed here), we have

1

q2q(uv − 1)q

∂H

∂u
= −2u

1

(1 + u2)ln(3)/ ln(2)
+ vM(u, v)

and
1

q2q(uv − 1)q

∂H

∂v
= −2v

1

(1 + v2)ln(3)/ ln(2)
+ uM(u, v).

If both partial derivatives are zero, we can solve the resulting equations forM(u, v),
eliminateM(u, v), and obtain

(17)
u

v

1

(1 + u2)ln(3)/ ln(2)
=

v

u

1

(1 + v2)ln(3)/ ln(2)
.
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Introducing the function

φ(z) :=
z

(1 + z)ln(3)/ ln(2)
,

condition (17) simplifies to
φ(u2) = φ(v2).

We first consider the case whereu 6= v. The functionφ is easily seen to be strictly
increasing forz ∈ [0, ln(2)/ ln(3/2)] and strictly decreasing forz > ln(2)/ ln(3/2).
u 6= v implies thatu2 < 1/q < v2. Since we assume thatuv > 1, we also have
1/v2 < u2 (and thusφ(1/v2) < φ(u2)). Now, elementary algebra shows that

φ(1/v2) = φ(v2)v2(ln(3)/ ln(2)−1).

Sincev2 > 1/q > 1, this implies that

φ(1/v2) > φ(v2) = φ(u2),

which is a contradiction. Therefore, the caseu 6= v is impossible, and we are left
with the analysis of the “isosceles” caseu = v. Indeed, backtracking through our
last change of variables,u = v means thatα = β, and thusa = b in the original
expression (15) for H(a, b, c). Thus, we should consider the functionh(s, t) from
(14), for the case whens = t (and2s > 1, to preserve the triangle condition). Our
last task is thus to minimize

(18) h(s, s) = 2
1

sq
+ (2s− 1)q

for s ∈ (1/2,∞). An analysis of the derivative ofh(s, s) shows that it has ex-
actly two zeros fors > 1/2, and since the function initially increases (with infinite
derivative ats = 1/2), the second critical point, ats = 1, must be a minimum,
which corresponds to the equilateral case. Whens = 1, h(1, 1) = 3. This and
h(1/2, 1/2) = 3 complete the proof.
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Remark1. Based on our proof, the following corollary can be stated, which is a
consequence ofH(a, b, c) ≥ 3 and the general power means inequality:

Corollary 5. Let p ≥ ln(3/2)/ ln(2) be an arbitrary real number. Then for all
triangles with sidesa, b andc and semi-perimeters the inequality(

s− a

a

)p

+

(
s− b

b

)p

+

(
s− c

c

)p

≥ 3

2p

is valid.
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