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ABSTRACT. An algebraic transformation of tHeeTemple—Wanbalf-integer approximation to

the harmonic series produces the general formula and error estimate fRarttenujarexpan-

sion for thenth harmonic number into negative powers of tité triangular number. We also
discuss the history of thRamanujarexpansion for thexth harmonic number as well as sharp
estimates of its accuracy, with complete proofs, and we compare it with other approximative
formulas.
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1. INTRODUCTION

1.1. The Harmonic Series. In 1350, Nicholas Oresme proved that the celebratzatmonic
Series

1 1 1
(1.1) I+-+-+- =4,
2 3 n
is divergent (Note: we use boxes around some of the displayed formulas to emphasize their
importance.) He actually proved a more precise result. If:thepartial sum of the harmonic
series, today called thé" harmonic numberis denoted by the symbadl,,:

1 1 1
12 Hn = 1 —_ — “ e -,
(1.2) totg ot
then the inequality
k+1
(1.3) Hy > %
holds fork = 2,3, .... This inequality gives a lower bound for tepeedof divergence.
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2 MARK B. VILLARINO

Almost four hundred years passed until Leonhard Euler, in 1755 [3] applied the Euler—
Maclaurin sum formula to find the famous standard Eagmptotiexpansion forH,,,

1 1 1 1
o =5 ~1 — .
n Zk nntyt o - oat e ]
(1.4)

where B,, denotes thé:'™ Bernoulli number andy := 0.57721--- is Euler's constant. This
gives a complete answer to the speed of divergendé,ah powers of%.

Since then many mathematicians have contributed other approximative formulds &ord
have studied the rate of divergence. We will present a detailed study of such a formula stated
by Ramanujan, with complete proofs, as well as of some related formulas.

1.2. Ramanujan’s Formula. Entry 9 of Chapter 38 of B. Berndt’s edition of Ramanujan’s
Notebooks([2, p. 521] reads,

“Letm := ”("2“), wheren is a positive integer. Then, asapproaches infinity,
11 1 1 1 1 1
15 — ~ =1In(2 — _
. ;; M o 10me T G30ms  Tosomt | 2310m7
191 29 2833 140051

]

We note thatn := ”(”“ is thenth triangular numbey so that Ramanujan’s expansion of
H,, is into powers of the reC|procaI of the'" triangular number.

Berndt's proof simply verifies (as he himself explicitly notes) that Ramanujan’s expansion
coincides with the standard Euler expansjon|(1.4).

However, Berndt does not give tigeneral formuldor the coefficient of# in Ramanujan’s
expansion, nor does he prove that it isssymptotiseries in the sense that the error in the value
obtained by stopping at any particular stage in Ramanujan’s series is less than the next term in
the series. Indeed we have been unable todmgerror analysis of Ramanujan’s series.

We will prove the following theorem.

T 360360m0 | 30030m7  1166880m° | 17450442m?

Theorem 1.1. For any integerp > 1 define

19 Ry = <2p & { +Z( ) sz(%)}

where By () is the Bernoulli polynomial of orde2k. Put

n(n+1)

a.7) m:= 5

wheren is a positive integer. Then, for every integep 1, there exists ®,, 0 < 6, < 1, for
which the following equation is true:

1 1

1 1 R,
(1.8) T+ F = 21n(2m +7+Z_+@ Sl
p_

2 3 n mr+l’
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We observe that the formula fét, can be written symbolically as follows:

1 /4B? —1\?
(L.9) &:—%( . ),

where we writeBs,,(3) in place of B*™ after carrying out the above expansion.

We will also trace the history of Ramanujan’s expansion as well and discuss the relative
accuracy of his approximation when compared to other approximative formulas proposed by
mathematicians.

1.3. History of Ramanujan’s Formula. In 1885, two years before Ramanujan was born,
Cesarol[4] proved the following.

Theorem 1.2. For every positive integet > 1 there exists a numbet,, 0 < ¢, < 1, such that
the following approximation is valid:

cn
12m

This gives the first two terms of Ramanujan’s expansion, with an error term. The method of
proof, different from ours, does not lend itself to generalization. We believe Cesaro’s paper to
be the first appearance in the literature of Ramanujan’s expansion.

Then, in 1904, Lodge, in a very interesting papeér [8], which later mathematicians inexplicably
(in our opinion) ignored, proved a version of the following two results.

O

1

Theorem 1.3. For every positive integet, define the quantity,, by the following equation:

1 1 1 1
1.10 14 -4 -4+ =:=-1In(2 .
(1.10) tgtgt o+ 2n(m)+7+12m+g+
Then 19
0< Ay < — .
<A 95200m8
In fact,
19 43
Ap = ——— — pn, Where y < ————.
25200m% 0 < Pu < Sa000m

The constants:2= and o> are the best possible.

Theorem 1.4. For every positive integet, define the quantity,, by the following equation:

1 1 I 1
1.11 DRI IR L By v
(1.11) gty =g m@m) byt oo
Then 6 19 13 6

A, =2 n

5 175m T 20m2  me

where0 < 4, < ;2285 The constants in the expansion/of all are the best possible.

These two theorems appeared, in much less precise fornwahdo error estimatesin
Lodge [8]. Lodge gives some numerical examples of the error in the approximative equation

1
H,~ -In(2m)+v+ —
3 ) F Y
in Theorenj 1.3; he also presents the first two term4,pfrom Theoremy 1}J4. An asymptotic
error estimate for Theore“rl_Bil.S (with the incorrect consﬁé@tinstead ofl%;&) appears as
19
n

Exercise 19 on page 460 in Bromwich [3].
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Theorenj 1.3 and Theorgm [L.4 are immediate corollaries of Thgorem 1.1

The next appearance of the expansiotigf into powers of the reciprocal of the" triangu-
lar numbern = 1+, is Ramanujan’s own expansidn (1.5).
2

1.4. Sharp Error Estimates. Mathematicians have continued to offer alternate approxima-
tive formulas to Euler's. We cite the following formulas, which appear in order of increasing
accuracy.

No. | Approximative Formula foi,, Type Asymptotic Error Estimate
1 . 1
1 |1 — overestimates
nnEY o, 12n2
2 |Inn+~vy+ underestimates !
nn
7 2n+% 72n3
1
3 |Iny/ +1)+ +— overestimates
nynln ) e s 165}-3@( e
4 |ln(n+3)+~+ = overestimates !
nin 5
DT i+ b2+ 8 3895 (n,+ 1)

Formula 1 is the original Euler approximation, anadverestimatethe true value of{,, by
terms of orders.

Formula 2 is the Toth—Mare approximation, see [9], andhiderestimatethe true value of
H, by terms of ordet;—

Formula 3 is the Ramanujan—Lodge approximation, andetestimatethe true value off,,
by terms of ordelﬁ see([10].

Formula 4 is the DeTemple—Wang approximation, aralérestimatethe true value of{,,

2071 R
by terms of ordem, seel[6].

In 2003, Chao-Ping Chen and Feng Qi [5] gave a proof of the following sharp form of the
Toth—Mare approximation.
Theorem 1.5. For any natural numbern > 1, the following inequality is valid:
1 1

1.12 ——— < H,-lnn—7< )
( ) 2n+——2 =T 2n—i—%

The constant% — 2 =.3652721--- and% are the best possible, and equality holds only for
n = 1.

The firststatemenbf this theorem had been announced ten years earlier by the editors of
the “Problems” section of thAmerican Mathematical Month|®9 (1992), p. 685, as part of a
commentary on the solution of Problem E 3432, but they did not publish the proof. So, the first
published proof is apparently that of Chen and Qi.

In this paper we will provenew and sharp formsef the Ramanujan—Lodge approximation
and the DeTemple—Wang approximation.

Theorem 1.6(Ramanujan—Lodge)For any natural number. > 1, the following inequality is
valid:

1 1
1.13 - n(n+1) .
(1.13) 6n(n~|—1)+— _6n(n+1)—|—1_7+1n\/§—12
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Thle (;onstant% — 12 =1.12150934 - - - and{ are the best possible, and equality holds
only forn = 1.

Theorem 1.7(DeTemple—Wang)For any natural numbern > 1, the following inequality is
valid:

1 1

<H,-Inn+3H—-~< .

24(n+ 32+ %~ (n+3)=7 24(n+ )2+ 1_1n13_,y — 54
2

(1.14)

Thle (f:onstant§fg_7 — 54 = 3.73929752 - - - and 2" are the best possible, and equality holds
only forn = 1.

DeTemple and Wang never stated this approximatiof/{oexplicitly. They gave the as-
ymptotic expansion off,,, cited below in Proposition 3.1, and we developed the corresponding
approximative formulas given above.

All three theorems are corollaries of the following stronger theorem.

Theorem 1.8. For any natural numbern > 1, definef,,, A\,,, andd,, by

H,=:'Inn+~y+

2n + fn
1.15 =:1 1
(1.15) n+/n(n+ )+7+6n(n+1)+/\n
1
(1.16) =:In(n+1)+~+

24(n+1)2+d,’

respectively. Then for any natural numbe> 1 the sequencéf,, } is monotonically decreas-
ing while the sequencds\,,} and{d,, } are monotonically increasing

Chen and QIi([b] proved that the sequergg} decreasesnonotonically. In this paper we
will use their techniques to prove the monotonicity of the sequefitgsand{d,, }.
2. PROOF OF THE SHARP ERROR ESTIMATES

2.1. A Few Lemmas. Our proof is based on inequalities satisfied by tigammafunction
U(x),

& )= %lnf(m) - I'(x) - % +xz n(x1+ n)’

which is the generalization df, to the real variable sinceV(z) and H,, satisfy the equation
[1), (6.3.2), p. 258]:

(2.2) U(n+1)=H, — .

Lemma 2.1. For everyz > 0 there exist numbers, andO,, with0 < 6, < 1and0 < 0, < 1,
for which the following equations are true:

1 1 1 1 1
2.3 v 1)=1 — — — 0.,
23) () =le+ 50 = 5m * o0t ~ 25200 T 20008
1 1 1 1 1 1
2.4 v’ )=———+—— - O,.
24) @D =~ T 6 30 T e 300
Proof. Both formulas are well known. See, for example, [7, pp. 124-125]. O
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Lemma 2.2. The following inequalities are true far > 0:
1 1 4 1 10

1

o L oP(rt 1) ] 1

322 325 158 5ab | 6326 Tat (w+1) = In{w(z+ 1}
11 4 1 10

25 < — = — —
(2:5) 32 323 + 1524 525 6326’

2 1 n 16 1 . 20 1 - 1 L
323 4zt 1525 26 212" 28 Tz x+1
2 1 16 1 20
2.6 < — — — )
(2.6) 33 A4zt + 152 a8 2127

Proof. The inequalities(2]5) are an immediate consequende df (2.3) and the Taylor expansion

of
—Inz(z+1) :—2lnx—ln(1+l) :2111(1) _1+L_L+[...]
x

T x  2x?2 323

which is an alternating series with the property that its sum is bracketed by two consecutive
partial sums.
For (2.6) we start with (2]4). We conclude that

1 L1 L1 V(e 1) < 1 . 1
— = = — - —Vi(r — = = .
2x2  6x3  302° 3627 oz 2x2  6a3  30a5
Now we multiply all three components of the inequality bgnd ad% — i to them. O

Lemma 2.3. The following inequalities are true far > 0:

1 1 L 1 1 n 1 1
(x + %) r 22?2 623 30a% 4247
1
< T U'(z+1)
2
1 1 1 1 1

< 5
(z+3) = * 202 623 * 30a°

1 L 1 11 1
24x2  24x3 96024 16025 806426 89627
<U(z+1)—In(z+3)

< L1 n 2 1 111 n 143
2422 2423 960z*  160z> 806425  896x7 = 3072028
Proof. Similar to the proof of Lemmfp 2,.2. O

2.2. Proof for the Ramanujan—Lodge approximation.

Proof of Theorerp 1|8 fof\,}. We solve [I.1b) for,,, and use[(Z]2) to obtain
1

U(n+1)—Iny/n(n+1)

Ay = !
T 2U(z 4 1) — Inx(z + 1)

for all z > 0. Observe thatA,, = \,.

An = —6n(n+1).

Define

—3x(x + 1),
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We will show that that the derivativ€, > 0 for > 28. Computing the derivative we obtain

1 1 l
4 = —V(z+1
A= & ol ( ) — (6z + 3),
{2U(x +1) —lnz(z+1)}?
and therefore
{2U(z +1) — Inz(x + 1)}*A,
1 1 , 9
= +:1:+1 — Uz +1)— (6z+3){2¥(z+ 1) —Inz(x + 1)}~

By Lemmd 2.2, this is greater than

2 1 16 1 20 1
1525

33 4zt

26 21x7 8
1 1 4 1 10 )°
— (6 PN — - — -
(62 + ){3x2 323 ' ot 5as 63x6}
798z° — 21693x* — 36542° + 23122 + 13002 — 2500
B 33075712
(x — 28)(798x* + 6512 + 1457422 + 408303z + 11433784) + 320143452
33075212
(by the remainder theorem), which is obviouplysitivefor > 28. Thus, the sequendg\,, },
n > 29, is strictlyincreasing Therefore, so is the sequengg, }.
Forn=1,2,3,...,28, we compute\, directly:

A = 1.1215093
A5 = 1.1929804
Ao = 1.1976125
A1z = 1.1988131
A7 = 1.1992926
Ao1 = 1.1995310
Aos = 1.1996664

Ao = 1.1683646
\e = 1.1949431
Ao = 1.1980429
Ais = 1.1989707
Ais = 1.1993668
Aoo = 1.1995717
Aog = 1.1996911

As = 1.1831718
A7 = 1.1961868
A1 = 1.1983668
A1s = 1.1990988
Ao = 1.1994300
Aoz = 1.1996073
Aoy = 1.1997131

A, = 1.1896217
\g = 1.1970233
A2 = 1.1986165
Mg = 1.1992045
Aoo = 1.1994842
Aoy = 1.1996387
Ao = 1.1997329.

Therefore, the sequende,, }, n > 1, is astrictly increasing sequence
Moreover, in Theorer 1].3, we proved that

38 Therefore

where) < A,, < (D)

lim A\, = —.
im z

n—oo

2.3. Proof for the DeTemple—Wang Approximation.

Proof of Theorerp 1|8 fofd,,}. Following the idea in the proof of the Lodge—Ramanujan ap-
proximation, we solvd (1.16) fat,, and define the corresponding real-variable version. Let

1

d, =
U(z+1)—In(z+ 1)

— 24(z + 3)*
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We compute the derivative, ask when ipdsitive clear the denominator and observe that we
have to solve the inequality:

1
{ 1—\11’(x+1)}—48x+ WU(z+1) —In(z+ 1)} > 0.
T+ 3

By Lemmd 2.8, the left hand side of this inequality is

111 L1 1
x+ % x 22?2 623 30x5 4227
18z + 1) 1 123 1 11 Lo, 14 ?
JE—— ‘T — — R JE— —
27\ 2422 242% T 960z* 16025  80642° 89627 = 30720x°

for all x > 0. This last quantity is equal to

(—9018009 — 317477162 — 1400787627 4 593137922 + 11454272z* — 1292392962°

+ 1195665922° + 65630208z" — 701008896x° — 534417408z + 1781391362™°)
1734082560026 (1 4 2)

The denominator is evidently positive for> 0 and the numerator can be written in the form

p(z)(z —4)+r,

where

p(x) = 548963242092 + 1372487474522 + 34315688832>
+ 85640937602 + 2138159872z + 5668497922° + 111820800°
+ 11547648z" + 1781391362° + 1781391362°,
with remainder = 2195843950359.

Therefore, the numerator is clearly positive for- 4, and therefore, the derivativé is also
positive forz > 4. Finally,

di = 3.73929752 - - - |
dy = 4.08025414 - - - |
dy = 4.13081174 - - - |
dy = 4.15288035 - - - .

Therefore{d,,} is anincreasingsequence fon > 1.
Now, if we expand the formula faf,, into an asymptotic series in powersﬁ_f—l, we obtain
2

d 21 1400 n
"5 207l(n+1)
(this is an immediate consequence of Proposijtioh 3.1 below) and we conclude that

21
lim d,, =

n—00 5
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3. PROOF OF THE GENERAL RAMANUJAN —LODGE EXPANSION

Proof of Theorer 1]60ur proof is founded on the half-integer approximation/g due to
DeTemple and Wang [6]:

Proposition 3.1. For any positive integer there exists &,., with 0 < 6, < 1, for which the
following equation is true:

. D D,.1
3.1 H,=In(n+3%) +~+ —p+0r-;+,
(3.1) (n+3)+~ p; (n+ 1) (n+ 2)2r+?
where
Bsp(3)
2 D, =2

and whereB,,(z) is the Bernoulli polynomial of ordezp.

Since(n + 1)* = 2m + 1, we obtain

p=1 p=1 8m p=1
T Dp (o] _p 1
=S oS (V) s
p=1 k=0
~ D, — w(k+p—1\1 1
= v (U g
p=1 k=0
r p—1
D, 1\ 1 1
= { 5 1>p—8(p )8} o T B
p=1 ~s5=0 p=s5 m

Substituting the right hand side of the last equation into the right hand sigde of (3.1) we obtain

— S
p=1 s=0 p

Dr+1

+ FE, + 6)7« —
(TL+ %)2r+2

Moreover,
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Substituting the right-hand side of this last equation ipto] (3.3), we obtain

T

H, = %ln(Zm) . > (=t !

2 18iml
=1
r 1
S —1)pr p—1y 1 { 1
+7+Z{S 28 (p—S 8p—s mpP
D,
+ET+ET+QT' 1

(n + %)2r+2

1 ’ D p—1\ 1 1
= Z1n(2 —1)P _S_ R
5 In m)+7+2{( 2p8p+225 (p—s)8p_5} —

p:l s=0

DT—H

B ey

Therefore, we have obtained Ramanujan’s expansion in pow%s and the coefficient of
Lis
mP

) =R - Vel (i F

But,

p—S

_ (e Bl (1
2525 \p—s)8—s’

and therefore

1 = Bos(3) (p—1\ 1
= (=1)! _1)ps—1IE5 2/
(=1) 2p8p+§< ) 2528 (p—s)SP—s
1 £ Bys(3) (p—1\ 1
— (—1)»! —1)s =222/ i
(=1) {2p8p+;( ) 2525 <p—s)8p—5}
1 u Boo(2) 1/p\ 1
— (1)1 —1)ys==2r2/ o
-y {2p8p+;( "oy p(s)Sp—s}

e (R ()

=1

Therefore, the formula foff,, takes the form

=1
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where

Dr—l—l
(36) gr =€+ Er + er (n + %)2r+2'

We seghat (3.5)is the Ramanujan expansion with the general fornadaiven in the state-
ment of the theorem, whil¢ (3.6) is a form of tagor term

We will now estimate the errof], (3.6).

To do so, we will use the fact that the sum of a convergent alternating series, whose terms
(taken with positive sign) decrease monotonically to zero, is equal to any partigblsisna
positive fraction of the first neglected term (with sign)

Thus,

1 1
pi= Y (D) T o = (1)
‘ 4 (=1) 28ml (=1) 2(r + 1)8 +1mr+1’

wherel < «, < 1.

Moreover,
Dy & (KN 1 1 Dy c(E+1\ 1 1
Bo= g X (g g 2 () g et
k=r k=r—1
DQT > k<k+r—1) 1 1 D2r+2
+ —1 — o —— 0,
9r ;( ) k 8k mr+k (2m)7“+1(1+$)r+1

_ D2 r (T 1 D4 r—1 r 1
_{51 o (1) <r>8"+6222( Y (r—1>8"1+
Do, (T 1 Doy yo 1
+ 57“7<_1) (1) 81 + 0ra or+1 }mrJrl
r\ 1 D4 T 1
= A -4 == ) 1
{ (r) RGN

8"
D 2r 1 D2r+2 1
E T f
2

where) < 6y, < 1fork=1,2,...,r+ 1and0 < A, < 1. Thus,the error is equal to

1 b r 1 1
£ =0, - 4(-1)— 2 ﬁ —1)r—att R QU
{( ) 2(r +1)8+1) T g 24 (=1) r—q+1/)8—atl | mr+i

= @r : Rr+1;
by (1.6), where) < ©,. < 1, which is of the required form. This completes the proof. [

The origin of Ramanujan’s formula is mysterious. Berndt notes that in his remarks. Our
analysis of it isa posterioriand, although it is full and complete, it does not shed light on how
Ramanujan came to think of his expansion. It would also be interesting to develop an expansion
for n! into powers ofm, a new Stirling expansion, as it were.
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