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ABSTRACT. An algebraic transformation of theDeTemple–Wanghalf-integer approximation to
the harmonic series produces the general formula and error estimate for theRamanujanexpan-
sion for thenth harmonic number into negative powers of thenth triangular number. We also
discuss the history of theRamanujanexpansion for thenth harmonic number as well as sharp
estimates of its accuracy, with complete proofs, and we compare it with other approximative
formulas.
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1. I NTRODUCTION

1.1. The Harmonic Series. In 1350, Nicholas Oresme proved that the celebratedHarmonic
Series,

(1.1) 1 +
1

2
+

1

3
+ · · ·+ 1

n
+ · · · ,

is divergent. (Note: we use boxes around some of the displayed formulas to emphasize their
importance.) He actually proved a more precise result. If thenth partial sum of the harmonic
series, today called thenth harmonic number, is denoted by the symbolHn:

(1.2) Hn := 1 +
1

2
+

1

3
+ · · ·+ 1

n
,

then the inequality

(1.3) H2k >
k + 1

2

holds fork = 2, 3, . . . . This inequality gives a lower bound for thespeedof divergence.
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2 MARK B. V ILLARINO

Almost four hundred years passed until Leonhard Euler, in 1755 [3] applied the Euler–
Maclaurin sum formula to find the famous standard Eulerasymptoticexpansion forHn,

Hn :=
n∑

k=1

1

k
∼ ln n + γ +

1

2n
− 1

12n2
+

1

120n4
− [· · · ]

= ln n + γ −
∞∑

k=1

Bk

nk
,

(1.4)

whereBk denotes thekth Bernoulli number andγ := 0.57721 · · · is Euler’s constant. This
gives a complete answer to the speed of divergence ofHn in powers of1

n
.

Since then many mathematicians have contributed other approximative formulas forHn and
have studied the rate of divergence. We will present a detailed study of such a formula stated
by Ramanujan, with complete proofs, as well as of some related formulas.

1.2. Ramanujan’s Formula. Entry 9 of Chapter 38 of B. Berndt’s edition of Ramanujan’s
Notebooks [2, p. 521] reads,

“Letm := n(n+1)
2

, wheren is a positive integer. Then, asn approaches infinity,

(1.5)
n∑

k=1

1

k
∼ 1

2
ln(2m) + γ +

1

12m
− 1

120m2
+

1

630m3
− 1

1680m4
+

1

2310m5

− 191

360360m6
+

29

30030m7
− 2833

1166880m8
+

140051

17459442m9
− [· · · ].”

We note thatm := n(n+1)
2

is thenth triangular number, so that Ramanujan’s expansion of
Hn is intopowers of the reciprocal of thenth triangular number.

Berndt’s proof simply verifies (as he himself explicitly notes) that Ramanujan’s expansion
coincides with the standard Euler expansion (1.4).

However, Berndt does not give thegeneral formulafor the coefficient of 1
mk in Ramanujan’s

expansion, nor does he prove that it is anasymptoticseries in the sense that the error in the value
obtained by stopping at any particular stage in Ramanujan’s series is less than the next term in
the series. Indeed we have been unable to findanyerror analysis of Ramanujan’s series.

We will prove the following theorem.

Theorem 1.1.For any integerp ≥ 1 define

(1.6) Rp :=
(−1)p−1

2p · 8p

{
1 +

p∑
k=1

(
p

k

)
(−4)kB2k(

1
2
)

}

whereB2k(x) is the Bernoulli polynomial of order2k. Put

(1.7) m :=
n(n + 1)

2

wheren is a positive integer. Then, for every integerr ≥ 1, there exists aΘr, 0 < Θr < 1, for
which the following equation is true:

(1.8) 1 +
1

2
+

1

3
+ · · ·+ 1

n
=

1

2
ln(2m) + γ +

r∑
p=1

Rp

mp
+ Θr ·

Rr+1

mr+1
.
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RAMANUJAN ’ S HARMONIC NUMBER EXPANSION 3

We observe that the formula forRp can be written symbolically as follows:

(1.9) Rp = − 1

2p

(
4B2 − 1

8

)p

,

where we writeB2m(1
2
) in place ofB2m after carrying out the above expansion.

We will also trace the history of Ramanujan’s expansion as well and discuss the relative
accuracy of his approximation when compared to other approximative formulas proposed by
mathematicians.

1.3. History of Ramanujan’s Formula. In 1885, two years before Ramanujan was born,
Cesàro [4] proved the following.

Theorem 1.2.For every positive integern ≥ 1 there exists a numbercn, 0 < cn < 1, such that
the following approximation is valid:

Hn =
1

2
ln(2m) + γ +

cn

12m
. �

This gives the first two terms of Ramanujan’s expansion, with an error term. The method of
proof, different from ours, does not lend itself to generalization. We believe Cesàro’s paper to
be the first appearance in the literature of Ramanujan’s expansion.

Then, in 1904, Lodge, in a very interesting paper [8], which later mathematicians inexplicably
(in our opinion) ignored, proved a version of the following two results.

Theorem 1.3.For every positive integern, define the quantityλn by the following equation:

(1.10) 1 +
1

2
+

1

3
+ · · ·+ 1

n
:=

1

2
ln(2m) + γ +

1

12m + 6
5

+ λn .

Then

0 < λn <
19

25200m3
.

In fact,

λn =
19

25200m3
− ρn, where 0 < ρn <

43

84000m4
.

The constants 19
25200

and 43
84000

are the best possible.

Theorem 1.4.For every positive integern, define the quantityΛn by the following equation:

(1.11) 1 +
1

2
+

1

3
+ · · ·+ 1

n
=:

1

2
ln(2m) + γ +

1

12m + Λn

.

Then

Λn =
6

5
− 19

175m
+

13

250m2
− δn

m3
,

where0 < δn < 187969
4042500

. The constants in the expansion ofΛn all are the best possible.

These two theorems appeared, in much less precise form andwith no error estimates, in
Lodge [8]. Lodge gives some numerical examples of the error in the approximative equation

Hn ≈
1

2
ln(2m) + γ +

1

12m + 6
5

in Theorem 1.3; he also presents the first two terms ofΛn from Theorem 1.4. An asymptotic
error estimate for Theorem 1.3 (with the incorrect constant1

150
instead of 1

165 15
19

) appears as

Exercise 19 on page 460 in Bromwich [3].
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4 MARK B. V ILLARINO

Theorem 1.3 and Theorem 1.4 are immediate corollaries of Theorem 1.1.

The next appearance of the expansion ofHn, into powers of the reciprocal of thenth triangu-
lar number,m = 1

n(n+1)
2

, is Ramanujan’s own expansion (1.5).

1.4. Sharp Error Estimates. Mathematicians have continued to offer alternate approxima-
tive formulas to Euler’s. We cite the following formulas, which appear in order of increasing
accuracy.

No. Approximative Formula forHn Type Asymptotic Error Estimate

1 ln n + γ +
1

2n
overestimates

1

12n2

2 ln n + γ +
1

2n + 1
3

underestimates
1

72n3

3 ln
√

n(n + 1) + γ +
1

6n(n + 1) + 6
5

overestimates
1

16515
19

[n(n + 1)]3

4 ln(n + 1
2
) + γ +

1

24(n + 1
2
)2 + 21

5

overestimates
1

389 781
2071

(n + 1
2
)6

Formula 1 is the original Euler approximation, and itoverestimatesthe true value ofHn by
terms of order 1

12n2 .
Formula 2 is the Tóth–Mare approximation, see [9], and itunderestimatesthe true value of

Hn by terms of order 1
72n3 .

Formula 3 is the Ramanujan–Lodge approximation, and itoverestimatesthe true value ofHn

by terms of order 19
3150[n(n+1)]3

, see [10].
Formula 4 is the DeTemple–Wang approximation, and itoverestimatesthe true value ofHn

by terms of order 2071
806400(n+ 1

2
)6

, see [6].

In 2003, Chao-Ping Chen and Feng Qi [5] gave a proof of the following sharp form of the
Tóth–Mare approximation.

Theorem 1.5.For any natural numbern ≥ 1, the following inequality is valid:

(1.12)
1

2n + 1
1−γ

− 2
≤ Hn − ln n− γ <

1

2n + 1
3

.

The constants 1
1−γ

− 2 = .3652721 · · · and 1
3

are the best possible, and equality holds only for
n = 1.

The firststatementof this theorem had been announced ten years earlier by the editors of
the “Problems” section of theAmerican Mathematical Monthly, 99 (1992), p. 685, as part of a
commentary on the solution of Problem E 3432, but they did not publish the proof. So, the first
published proof is apparently that of Chen and Qi.

In this paper we will provenew and sharp formsof the Ramanujan–Lodge approximation
and the DeTemple–Wang approximation.

Theorem 1.6(Ramanujan–Lodge). For any natural numbern ≥ 1, the following inequality is
valid:

(1.13)
1

6n(n + 1) + 6
5

< Hn − ln
√

n(n + 1)− γ ≤ 1

6n(n + 1) + 1
1−γ−ln

√
2
− 12

.
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RAMANUJAN ’ S HARMONIC NUMBER EXPANSION 5

The constants 1 ln 2
1−γ−ln

√
2
− 12 = 1.12150934 · · · and 6

5
are the best possible, and equality holds

only forn = 1.

Theorem 1.7(DeTemple–Wang). For any natural numbern ≥ 1, the following inequality is
valid:

(1.14)
1

24(n + 1
2
)2 + 21

5

≤ Hn − ln(n + 1
2
)− γ <

1

24(n + 1
2
)2 + 1

1−ln 3
2
−γ
− 54

.

The constants 1
1−ln 3

2
−γ
− 54 = 3.73929752 · · · and 21

5
are the best possible, and equality holds

only forn = 1.

DeTemple and Wang never stated this approximation toHn explicitly. They gave the as-
ymptotic expansion ofHn, cited below in Proposition 3.1, and we developed the corresponding
approximative formulas given above.

All three theorems are corollaries of the following stronger theorem.

Theorem 1.8.For any natural numbern ≥ 1, definefn, λn, anddn by

Hn =: ln n + γ +
1

2n + fn

=: ln
√

n(n + 1) + γ +
1

6n(n + 1) + λn

(1.15)

=: ln(n + 1
2
) + γ +

1

24(n + 1
2
)2 + dn

,(1.16)

respectively. Then for any natural numbern ≥ 1 the sequence{fn} is monotonically decreas-
ing while the sequences{λn} and{dn} aremonotonically increasing.

Chen and Qi [5] proved that the sequence{fn} decreasesmonotonically. In this paper we
will use their techniques to prove the monotonicity of the sequences{λn} and{dn}.

2. PROOF OF THE SHARP ERROR ESTIMATES

2.1. A Few Lemmas. Our proof is based on inequalities satisfied by thedigammafunction
Ψ(x),

(2.1) Ψ(x) :=
d

dx
ln Γ(x) ≡ Γ′(x)

Γ(x)
≡ −γ − 1

x
+ x

∞∑
n=1

1

n(x + n)
,

which is the generalization ofHn to the real variablex sinceΨ(x) andHn satisfy the equation
[1, (6.3.2), p. 258]:

(2.2) Ψ(n + 1) = Hn − γ.

Lemma 2.1. For everyx > 0 there exist numbersθx andΘx, with0 < θx < 1 and0 < Θx < 1,
for which the following equations are true:

Ψ(x + 1) = ln x +
1

2x
− 1

12x2
+

1

120x4
− 1

252x6
+

1

240x8
θx,(2.3)

Ψ′(x + 1) =
1

x
− 1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9
Θx.(2.4)

Proof. Both formulas are well known. See, for example, [7, pp. 124–125]. �
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6 MARK B. V ILLARINO

Lemma 2.2. The following inequalities are true forx > 0:

1

3x2
− 1

3x3
+

4

15x4
− 1

5x5
+

10

63x6
− 1

7x7
< 2Ψ(x + 1)− ln{x(x + 1)}

<
1

3x2
− 1

3x3
+

4

15x4
− 1

5x5
+

10

63x6
,(2.5)

2

3x3
− 1

4x4
+

16

15x5
− 1

x6
+

20

21x7
− 1

x8
<

1

x
+

1

x + 1
− 2Ψ′(x + 1)

<
2

3x3
− 1

4x4
+

16

15x5
− 1

x6
+

20

21x7
.(2.6)

Proof. The inequalities (2.5) are an immediate consequence of (2.3) and the Taylor expansion
of

− ln x(x + 1) = −2 ln x− ln

(
1 +

1

x

)
= 2 ln

(
1

x

)
− 1

x
+

1

2x2
− 1

3x3
+ [· · · ]

which is an alternating series with the property that its sum is bracketed by two consecutive
partial sums.

For (2.6) we start with (2.4). We conclude that

1

2x2
− 1

6x3
+

1

30x5
− 1

36x7
<

1

x
−Ψ′(x + 1) <

1

2x2
− 1

6x3
+

1

30x5
.

Now we multiply all three components of the inequality by2 and add 1
x+1

− 1
x

to them. �

Lemma 2.3. The following inequalities are true forx > 0:

1

(x + 1
2
)
− 1

x
+

1

2x2
− 1

6x3
+

1

30x5
− 1

42x7

<
1

x + 1
2

−Ψ′(x + 1)

<
1

(x + 1
2
)
− 1

x
+

1

2x2
− 1

6x3
+

1

30x5
,

1

24x2
− 1

24x3
+

23

960x4
− 1

160x5
− 11

8064x6
− 1

896x7

< Ψ(x + 1)− ln(x + 1
2
)

<
1

24x2
− 1

24x3
+

23

960x4
− 1

160x5
− 11

8064x6
− 1

896x7
+

143

30720x8
.

Proof. Similar to the proof of Lemma 2.2. �

2.2. Proof for the Ramanujan–Lodge approximation.

Proof of Theorem 1.8 for{λn}. We solve (1.15) forλn and use (2.2) to obtain

λn =
1

Ψ(n + 1)− ln
√

n(n + 1)
− 6n(n + 1).

Define

Λx :=
1

2Ψ(x + 1)− ln x(x + 1)
− 3x(x + 1),

for all x > 0. Observe that2Λn = λn.
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RAMANUJAN ’ S HARMONIC NUMBER EXPANSION 7

We will show that that the derivativeΛ′x > 0 for x > 28. Computing the derivative we obtain

Λ′x =
1
x

+ 1
x+1

−Ψ′(x + 1)

{2Ψ(x + 1)− ln x(x + 1)}2
− (6x + 3),

and therefore

{2Ψ(x + 1)− ln x(x + 1)}2Λ′x

=
1

x
+

1

x + 1
−Ψ′(x + 1)− (6x + 3){2Ψ(x + 1)− ln x(x + 1)}2.

By Lemma 2.2, this is greater than

2

3x3
− 1

4x4
+

16

15x5
− 1

x6
+

20

21x7
− 1

x8

− (6x + 3)

{
1

3x2
− 1

3x3
+

4

15x4
− 1

5x5
+

10

63x6

}2

=
798x5 − 21693x4 − 3654x3 + 231x2 + 1300x− 2500

33075x12

=
(x− 28)(798x4 + 651x3 + 14574x2 + 408303x + 11433784) + 320143452

33075x12

(by the remainder theorem), which is obviouslypositivefor x > 28. Thus, the sequence{Λn},
n ≥ 29, is strictly increasing. Therefore, so is the sequence{λn}.

Forn = 1, 2, 3, . . . , 28, we computeλn directly:

λ1 = 1.1215093 λ2 = 1.1683646 λ3 = 1.1831718 λ4 = 1.1896217

λ5 = 1.1929804 λ6 = 1.1949431 λ7 = 1.1961868 λ8 = 1.1970233

λ9 = 1.1976125 λ10 = 1.1980429 λ11 = 1.1983668 λ12 = 1.1986165

λ13 = 1.1988131 λ14 = 1.1989707 λ15 = 1.1990988 λ16 = 1.1992045

λ17 = 1.1992926 λ18 = 1.1993668 λ19 = 1.1994300 λ20 = 1.1994842

λ21 = 1.1995310 λ22 = 1.1995717 λ23 = 1.1996073 λ24 = 1.1996387

λ25 = 1.1996664 λ26 = 1.1996911 λ27 = 1.1997131 λ28 = 1.1997329.

Therefore, the sequence{λn}, n ≥ 1, is astrictly increasing sequence.
Moreover, in Theorem 1.3, we proved that

λn =
6

5
−∆n,

where0 < ∆n < 38
175n(n+1)

. Therefore

lim
n→∞

λn =
6

5
.

2.3. Proof for the DeTemple–Wang Approximation.

Proof of Theorem 1.8 for{dn}. Following the idea in the proof of the Lodge–Ramanujan ap-
proximation, we solve (1.16) fordn and define the corresponding real-variable version. Let

dx :=
1

Ψ(x + 1)− ln(x + 1
2
)
− 24(x + 1

2
)2.
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8 MARK B. V ILLARINO

We compute the derivative, ask when is itpositive, clear the denominator and observe that we
have to solve the inequality:{

1

x + 1
2

−Ψ′(x + 1)

}
− 48(x + 1

2
)
{
Ψ(x + 1)− ln(x + 1

2
)
}2

> 0.

By Lemma 2.3, the left hand side of this inequality is

>
1

x + 1
2

− 1

x
+

1

2x2
− 1

6x3
+

1

30x5
− 1

42x7

− 48(x + 1
2
)

(
1

24x2
− 1

24x3
+

23

960x4
− 1

160x5
− 11

8064x6
− 1

896x7
+

143

30720x8

)2

for all x > 0. This last quantity is equal to

(−9018009− 31747716x− 14007876x2 + 59313792x3 + 11454272x4 − 129239296x5

+ 119566592x6 + 65630208x7 − 701008896x8 − 534417408x9 + 178139136x10)

17340825600x16(1 + 2x)
.

The denominator is evidently positive forx > 0 and the numerator can be written in the form

p(x)(x− 4) + r,

where

p(x) = 548963242092 + 137248747452x + 34315688832x2

+ 8564093760x3 + 2138159872x4 + 566849792x5 + 111820800x6

+ 11547648x7 + 178139136x8 + 178139136x9,

with remainderr = 2195843950359.
Therefore, the numerator is clearly positive forx > 4, and therefore, the derivatived ′x is also

positive forx > 4. Finally,

d1 = 3.73929752 · · · ,

d2 = 4.08925414 · · · ,

d3 = 4.13081174 · · · ,

d4 = 4.15288035 · · · .

Therefore{dn} is anincreasingsequence forn ≥ 1.
Now, if we expand the formula fordn into an asymptotic series in powers of1

n+ 1
2

, we obtain

dn ∼
21

5
− 1400

2071(n + 1
2
)

+ · · ·

(this is an immediate consequence of Proposition 3.1 below) and we conclude that

lim
n→∞

dn =
21

5
.
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RAMANUJAN ’ S HARMONIC NUMBER EXPANSION 9

3. PROOF OF THE GENERAL RAMANUJAN –LODGE EXPANSION

Proof of Theorem 1.6.Our proof is founded on the half-integer approximation toHn due to
DeTemple and Wang [6]:

Proposition 3.1. For any positive integerr there exists aθr, with 0 < θr < 1, for which the
following equation is true:

(3.1) Hn = ln(n + 1
2
) + γ +

r∑
p=1

Dp

(n + 1
2
)2p

+ θr ·
Dr+1

(n + 1
2
)2r+2

,

where

(3.2) Dp := −
B2p(

1
2
)

2p
,

and whereB2p(x) is the Bernoulli polynomial of order2p.

Since(n + 1
2
)2 = 2m + 1

4
, we obtain

r∑
p=1

Dp

(n + 1
2
)2p

=
r∑

p=1

Dp

(2m)p
(
1 + 1

8m

)p =
r∑

p=1

Dp

(2m)p

(
1 +

1

8m

)−p

=
r∑

p=1

Dp

(2m)p

∞∑
k=0

(
−p

k

)
1

8kmk

=
r∑

p=1

Dp

2p

∞∑
k=0

(−1)k

(
k + p− 1

k

)
1

8k
· 1

mp+k

=
r∑

p=1

{p−1∑
s=0

Ds

2s
(−1)p−s

(
p− 1

p− s

)
1

8p−s

}
· 1

mp
+ Er.

Substituting the right hand side of the last equation into the right hand side of (3.1) we obtain

(3.3) Hn = ln(n + 1
2
) + γ +

r∑
p=1

{
p−1∑
s=0

Ds

2s
(−1)p−s

(
p− 1

p− s

)
1

8p−s

}
· 1

mp

+ Er + θr ·
Dr+1

(n + 1
2
)2r+2

.

Moreover,

ln(n + 1
2
) =

ln(n + 1
2
)2

2
=

1

2
ln(2m + 1

4
)

=
1

2
ln(2m) +

1

2
ln

(
1 +

1

8m

)
=

1

2
ln(2m) +

1

2

∞∑
l=1

(−1)l−1 1

l 8lml
.
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http://jipam.vu.edu.au/
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Substituting the right-hand side of this last equation into (3.3), we obtain

Hn =
1

2
ln(2m) +

1

2

r∑
l=1

(−1)l−1 1

l 8lml

+ γ +
r∑

p=1

{
p−1∑
s=0

Ds

2s
(−1)p−s

(
p− 1

p− s

)
1

8p−s

}
· 1

mp

+ εr + Er + θr ·
Dr+1

(n + 1
2
)2r+2

=
1

2
ln(2m) + γ +

r∑
p=1

{
(−1)p−1 1

2p 8p
+

p−1∑
s=0

Ds

2s
(−1)p−s

(
p− 1

p− s

)
1

8p−s

}
· 1

mp

+ εr + Er + θr ·
Dr+1

(n + 1
2
)2r+2

.

Therefore, we have obtained Ramanujan’s expansion in powers of1
m

, and the coefficient of
1

mp is

(3.4) Rp = (−1)p−1 1

2p 8p
+

p−1∑
s=0

Ds

2s
(−1)p−s

(
p− 1

p− s

)
1

8p−s
.

But,

Ds

2s
(−1)p−s

(
p− 1

p− s

)
1

8p−s
= −

B2s(
1
2
)/2s

2s
(−1)p−s

(
p− 1

p− s

)
1

8p−s

= (−1)p−s−1B2s(
1
2
)

2s 2s

(
p− 1

p− s

)
1

8p−s
,

and therefore

Rp = (−1)p−1 1

2p 8p
+

p−1∑
s=0

Ds

2s
(−1)p−s

(
p− 1

p− s

)
1

8p−s

= (−1)p−1 1

2p 8p
+

p−1∑
s=0

(−1)p−s−1B2s(
1
2
)

2s 2s

(
p− 1

p− s

)
1

8p−s

= (−1)p−1

{
1

2p 8p
+

p∑
s=1

(−1)s B2s(
1
2
)

2s 2s

(
p− 1

p− s

)
1

8p−s

}

= (−1)p−1

{
1

2p 8p
+

p∑
s=1

(−1)s B2s(
1
2
)

2 · 2s
· 1

p

(
p

s

)
1

8p−s

}

=
(−1)p−1

2p 8p

{
1 +

p∑
s=1

(
p

s

)
(−4)sB2s(

1
2
)

}
.

Therefore, the formula forHn takes the form

(3.5) Hn =
1

2
ln(2m) + γ +

r∑
p=1

(−1)p−1

2p 8p

{
1 +

p∑
s=1

(
p

s

)
(−4)sB2s(

1
2
)

}
· 1

mp
+ Er,
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where

(3.6) Er := εr + Er + θr ·
Dr+1

(n + 1
2
)2r+2

.

We seethat (3.5) is the Ramanujan expansion with the general formulaas given in the state-
ment of the theorem, while (3.6) is a form of theerror term.

We will now estimate the error, (3.6).
To do so, we will use the fact that the sum of a convergent alternating series, whose terms

(taken with positive sign) decrease monotonically to zero, is equal to any partial sumplus a
positive fraction of the first neglected term (with sign).

Thus,

εr :=
∞∑

l=r+1

(−1)l−1 1

2l 8lml
= αr(−1)r 1

2(r + 1)8r+1mr+1
,

where0 < αr < 1.
Moreover,

Er :=
D2

21

∞∑
k=r

(−1)k

(
k

k

)
1

8k
· 1

m1+k
+

D4

22

∞∑
k=r−1

(−1)k

(
k + 1

k

)
1

8k
· 1

m2+k
+ · · ·

+
D2r

2r

∞∑
k=1

(−1)k

(
k + r − 1

k

)
1

8k
· 1

mr+k
+ θr ·

D2r+2

(2m)r+1
(
1 + 1

8m

)r+1

=

{
δ1

D2

21
(−1)r

(
r

r

)
1

8r
+ δ2

D4

22
(−1)r−1

(
r

r − 1

)
1

8r−1
+ · · ·

+ δr
D2r

2r
(−1)1

(
r

1

)
1

81
+ δr+1

D2r+2

2r+1

}
1

mr+1

= ∆r

{
D2

21
(−1)r

(
r

r

)
1

8r
+

D4

22
(−1)r−1

(
r

r − 1

)
1

8r−1
+ · · ·

+
D2r

2r
(−1)1

(
r

1

)
1

81
+

D2r+2

2r+1

}
1

mr+1
,

where0 < δk < 1 for k = 1, 2, . . . , r + 1 and0 < ∆r < 1. Thus,the error is equal to

Er = Θr ·
{

(−1)r 1

2(r + 1)8(r+1)
+

r+1∑
q=1

D2q

2q
(−1)r−q+1

(
r

r − q + 1

)
1

8r−q+1

}
1

mr+1

= Θr ·Rr+1,

by (1.6), where0 < Θr < 1, which is of the required form. This completes the proof. �

The origin of Ramanujan’s formula is mysterious. Berndt notes that in his remarks. Our
analysis of it isa posterioriand, although it is full and complete, it does not shed light on how
Ramanujan came to think of his expansion. It would also be interesting to develop an expansion
for n! into powers ofm, a new Stirling expansion, as it were.
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