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ABSTRACT. Some new Hilbert-Pachpatte discrete inequalities and their integral analogues are
established in this paper. Other inequalities are also given in remarks.
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1. INTRODUCTION

Letp > 1, ¢ > 1 and{a,,} and{b,} be two nonnegative sequences of real numbers defined
form=1,2,...,kandn = 1,2,...,r, wherek andr are natural numbers and defidg, =
Yo asandB, ="  b. Then

unless{a,, } or {b,} is null, whereC'(p, ¢, k,r) = jpq/kr.

An integral analogue of (1].1) is given in the following result.

Letp > 1,q > landf(o ) >0, g(T ) > 0foro e (O x), 7 € (0,y), wherex, y are positive
real numbers and defing(s fO o)do andG(t) = [, g(r)dr, for s € (0,2),t € (0,y).
Then

w2 [ [ FEETE < owary | /Ox<x—s><Fp1<s>f<s>>2ds}%

A [[w-oewara)
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unlessf(o) =0 org(r) =0, whereD(p, q,z,y) = %pq\/@.

Inequalities[(1.]L) andl (1.2) are the well known Hilbert-Pachpatte inequalities [1], which gave
new estimates on Hilbert type inequalities [2]. It is well known that the Hilbert-Pachpatte
inequalities play a dominant role in analysis, so the literature on such inequalities and their
applications is vast [3] +[8].

Young-Ho Kim [9] gave new inequalities similar to the Hilbert-Pachpatte inequalities as fol-
lows.

Letp > 1,¢> 1, a > 0, and{a,,} and{b, } be two nonnegative sequences of real numbers
defined form = 1,2,...,kandn = 1,2,...,r, wherek andr are natural numbers and define
Ap =" asandB, = >  b. Then

n=1

unless{a,,} or {b,} is null, whereC(p, ¢, k, r; o) = (%)épq\/ﬁ.

An integral analogue of (1].3) is given in the following result.

Letp > 1,9 > 1,a > 0andf(o) > 0, g(7 ) > 0foro € (0 x), 7 € (0,y), wherex,y
are positive real numbers and defifigs) = [ f(o)do andG(t fo 7)dr, for s € (0, ),
t € (0,y). Then

o [ [T R < D000 { /:@:—s)(Ff’-l<s>f<s>>2ch}é

>< { NS t)(G“<t>g<t>>2dt}% |

unlessf(c) = 0 or g(r) = 0, whereD(p, ¢, z, y; ) = (%)épq\/x_y.

The purpose of the present paper is to derive some new generalized ineqyalifies (1.1) and
(1.7) that are similar td (113) anfd (1.4). By applying an elementary inequality, we also obtain
some new inequalities similar to some results ir [1, 9].

2. MAIN RESULTS
Now we give our results as follows in this paper.

Theorem 2.1.Letp > 1,¢ > 1, « > 1, v > 1 and {a,,} and {b,} be two nonnegative
sequences of real numbers definedifor= 1,2,... . kandn = 1,2,...,r, wherek andr are
natural numbers and defing,, = > a;andB, = ;" b.. Then

k r
ALB
@1 > > e e < O g kyray)

m=1ln=1Ym 7 4+an o

k é r
X{Z(k m+1)(AP; m)} {Z(r—nJrl)(Bg_lbn)”} :

m=1

2=

unless{a,,} or {b,} is null, whereC(p, ¢, k,r; o, ) = 2Lk r 7 .
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Proof. The idea for the proof Theorem 2.1 comes from Theorem Llof [1] and Theorem 2.1 of
[9]. From the hypotheses of Theorém]2.1 and using the following inequality((see [10, 11]),

n B n m g1
22 {zm} gﬁzzm{zzk} |

m=1 k=1
where > lisaconstantand,, >0, (m =1,2,...,n), itis easy to observe that
(2.3) Ab <py Ala,  m=12,..k
s=1

ngqZBfflbt, n=12,...,r

t=1
From (2.3) and Holder’s inequality, we have

(2.4) ZAé’_las <m e {Z(Aé’_las)a} , m=12 ...k,
s=1 s=1
and
(2.5) > Bi'h < n'v {Z(Bg—lbm} . on=1,2,....m
t=1 t=1

Using the inequality of means [12]

n ﬁ n
(2.6) {H Sfl} < {Qi Zwisg}
i=1 " =1

forr >0, w; >0, ", w; = Q,, we observe that

1
T

(2.7) (s7557)" T < o (s o nsh)
Lets; = me ! 5o =n""1 w = é, Wy = % andr = w; + ws, from ) —) an7),
we have
1 1
m a n ~y
(2.8) AP BY < pqm®sn’s {Z(A’s’_las)a} {Z(Bflbt)”}
s=1 t=1
(a=1)(at7) (y=1)(aty)
ay ay
< pgary | m L
o+ «Q 0%

x {Z(Azzlas)a}a {Z(Bflbmy ,

s=1 t=1
form=1,2,...,k,n=1,2,...,r. From [2.8), we observe that

1 1
AP Bl P4 N ot e U S e !
(29) (a—1)(a+7) (=1 (a+v) < {Z(Ag las) } {Z(Bg 1bt)7} )

ym Y +an o o+ s=1 t=1

form=1,2,...,k,n=1,2,...,r. Taking the sum on both sides ¢f (R.9) first ovefrom 1
to r and then overn from 1 to £ of the resulting inequality and using Holder’s inequality with
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indicesa, a/(a — 1) and~, v/(y — 1) and interchanging the order of summations, we observe
that

P B4
2.0 S
(a=1)(at7) (=1)(at)

m=1n=1"7YmM 7 +an o

0

Remark 1. In Theorem 21, settingg = v = 2, we have [(1.[1l). In Theorein 2.1, setting
5+ =1,we have

k r

> Do <C(p,q. k,r;0,7)

ymae—t + any—t

X {Z(k; —m+ 1)(Ag1am)a} {Z(r —n+ 1)(B,Zlbn)7} :

m=1 n=1

2=

m=1 n=1
y—1

unless{a,,} or {b,} is null, whereC(p, ¢, k,r; o, ) = 2Lk r 7

Remark 2. In Theorenj 2/]1, setting = ¢ = 1, we have

k T
Am By,
(2.10) Z Z (e=1)(aty) (=(aty)

m=1n=1"YMm &7 +an o

< C(1,1,k,r;a,7) {Z(k—m+ 1)a;}a {i(r—n—l— 1)51} ,

m=1 n=1

2=

y—1

unless{a,,} or {b,} is null, whereC'(1, 1, k,r; o, y) = a—i,ykaT_er.

In the following theorem we give a further generalization of the inequélity [2.10) obtained in
Remark 2. Before we give our result, we point out that,} and{g, } should be two positive
sequencesfan =1,2,...,kandn =1,2,...,rin Theorem 2.3 of([9].

Theorem 2.2.Leta > 1,y > 1 and{a,,} and{b, } be two nonnegative sequences of real num-
bers and{p,,} and{q,} be positive sequences definedfor= 1,2,... , kandn =1,2,...,r,
wherek andr are natural numbers and defing,, = >, a5, B, = > 1 by, Py = > oy Ds
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andQ@, = >, | ¢;- Let® and ¥ be two real-valued, nonnegative, convex, and submultiplicative
functions defined oR; = [0, c0). Then

k r
O(A,,)¥(B,)
(2.11) Z Z (a=D(aty) O=N(aty)

m=1n=1"7YM 7 +an

gM(k,r;oz,’Y){i(k—m+1) { m® (Z)_:)r}

Q=

m=1

where

m=1 n=1

e (E12)) ()

Proof. From the hypotheses df andW and by using Jensen'’s inequality and Holder’s inequal-
ity, it is easy to observe that

(2.12) B(A,) =D (Pm Do psas/ps>

ZZ; Ds
D ey psas/ps> (Py) (a>
< ®(P,)d s < ps® | —
( ) ( 25:1 Ps Pm ; Ps

and similarly,

(2.13) U(B,) < ‘I’Sin)n {i {thp (E)F}i .

t=1 at

wp = = andr = wy + wy, from ), (2.12) and (2.13),

Lets; = m® ! sy =n"" wy =
we have

(2.14)  ®(A,)¥(B,)

Q=

(a=1)(a+7) (r=1)(a+7) m o) &
<o [T U [§N ] g (o
T oty o v Pn | Ps
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form=1,2,...,k,n=1,2,...,r. From (2.14), we observe that
P(An)V(By)

(e=1D)(aty) (=1)(et7)
ym +an

D(Pn) | { (%)]“ U(@n) | < { (btﬂ” ?
ps® | — @V | —
Pm {; Ds Qn ; ' qt
form=1,2,...,k,n=1,2,...,r. Taking the sum on both sides ¢f (2] 15) first oueirom 1

to r and then overn from 1 to & of the resulting inequality and using Hdlder’s inequality with

indicesa, a/ (o — 1) and-, v/(v — 1) and interchanging the order of summations, we observe
that

L ®(A,,)¥(B,)
Z Z (a=1)(at+~) (v=1)(a+7)

m=1n=1 YM oy + an oy

(2.15)

Q=

1
S ata

Remark 3. From the inequality{ (2]7), we obtain
1
w1 + wa

for w; > 0, wy > 0. If we apply the elementary inequality (2]16) on the right-hand sides of
(2.7) in Theorem 2]1 and (2.11) in Theorem|2.2, then we get the following inequalities

(2.16) s g2 <

w1 +tw: w1 +tw:
(Wlsll 2+w2321 2)

k r

P q
S Al
(a—1)(at+~) (v=1)(a+7)

m=1n=1"7YM &7 +an

aty

k oy
ayC(p,q, k,rya,7) |1 1
< _ _ D e
< - E (k—m+1)(A2 " a,,)

a—|—7 m=1

n=1

+1 {i(r —n+ 1)(Bg‘lbn)7} - ] ,
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: _ pg ot =L
whereC(p, q, k,r;a,y) = sk e . Also,

A O(A,)U(B,)
Z Z (a—1)(at+~) (v=1)(at+7)

m=ln=17YmM 7  4+an o

aty

k a) ov
0 M(k.ria.) 1{Z<k—m+1>[m<1> (_m)} }
a+y a |~ Pm

r

g )]

- 252} {SER)T)

=1 n=1

aty

where

The following theorems deal with slight variants of the inequality (2.11) given in Theorem
2.2.

Theorem 2.3.Leta > 1,y > 1 and{a,,} and{b, } be two nonnegative sequences of real num-
bers defined forn = 1,2,...,kandn = 1,2,...,r, wherek andr are natural numbers and

define4,, = % Yo asand B, = %Z?Zl b;. Let® and ¥ be two real-valued, nonnegative,
convex functions defined @, = [0, c0). Then

k r
mn®(A,,)V(B,)
Z Z @—1(at) e = C(L Lk ma,7)
m=ln=17ym o +an o

X {Z(k: —m+ 1)<I>“(am)}

whereC'(1,1,k,r;a,y) = ﬁkaglrw;l.

Q=

{Z(r —n+ 1)\117(bn)}v ,

Proof. From the hypotheses and by using Jensen’s inequality and Hdlder’s inequality, it is easy
to observe that

The rest of the proof can be completed by following the same steps as in the proofs of Theo-
remg 2.1l anfl 2]2 with suitable changes and hence we omit the details. O
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Theorem 2.4.Leta > 1, v > 1 and {a,,} and {b,} be two nonnegative sequences of
real numbers and{p,,} and {¢,} be positive sequences defined for = 1,2,...,k and

n=1,2,...,r, wherek andr are natural numbers and defife, = > p,. Q, = > 1, @,
A = 52 pmas and B, = - 371 guby. Let® and ¥ be two real-valued, nonnegative,

convex functions defined @, = [0, c0). Then

S PuQu®(A)Y(By)
Z Z (a=1)(a+7) (=1 (a+v)
m=1n=1"7YM o7 +an o

k

gC(l,l,kJ,r;a,’y){ (k—m+1)] m@(am)]a}a

=1

2=

x {Zv — 1) g0 <bn>w} ,

n=1

y—1

whereC(1, 1, k,r;a,7y) = 1ot

Proof. From the hypotheses and by using Jensen’s inequality and Hdlder’s inequality, it is easy
to observe that

< Qin {Z[qt\ll(bt)]V} o

t=1

The rest of the proof can be completed by following the same steps as in the proofs of Theo-
remg 2.1 anfl 2|2 with suitable changes and hence we omit the details. O

3. INTEGRAL ANALOGUES

Now we give the integral analogues of the inequalities in Theofems[2.] — 2.4.
An integral analogue of Theorgm P.1 is given in the following theorem.

Theorem 3.1.Letp > 0,¢ > 0, > 1,y > 1l and f(o) > 0, g(r) > 0 for o € (0,z),
7 € (0,y), wherez, y are positive real numbers, defide(s) = [’ f(o)do, G(t) = [, g(7)dr
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fors e (0,2),t € (0,y). Then
(s)G(t)
(3.1) / / e Gy dsdt
0 s ay + ot ay

< Do [ o= 9 s )

>< { e t><Gq1<t>g<zt>>wt}i |

=1

_ _ . Y
unlessf(o) =0 or g(t) =0, whereD(p, q, z,y; o, ) = awa T y =

Proof. From the hypotheses @f(s) andG(t), it is easy to observe that

(3.2) FP(s)=p SFp’l(a)f(a)da, s € (0,x2),

Gi(t) = q/o G (t)g(T)dr, t e (0,y).

From [3.2) and Holder’s inequality, we have

a

63 [ resew s { [Eroral e,

and

(3.4) /y Gl (t)g(t)dt < t'5 {/t(aq—l(T)g(f))”fdf}i . te(0,1).

0 0

Lets; = s* oo =" w =1 w = 1 LT = w1 + wo, from .) .) an7) we

observe that

(35)  F7(s)G(t) < pgs“T T {/OS(Fpl(U)f(0)>ad"} {/ot(G“(T)g(T))”dTF

(a=1)(aty) (=1 (a+v)
o m e n e
_ paay { . }

T a+tvy o Y

" {/0<F p1(0>f<a))ada}°1‘ { /0 e <7)9(7))7dr}i

for s € (0,z), ¢ € (0,y). From [3.%), we observe that

6) FP(s)Ga(t)

(e—1)(aty) (y=1)(e+7)
vs o +at o

<2 L [osora) | t(GQ-1<T>g<r>>7dr}i

for s € (0,z), t € (0,y). Taking the integral on both sides ¢f (B.6) first ovérom 0 to y and
then overs from 0 to = of the resulting inequality and using Holder’s inequality with indiags

J. Inequal. Pure and Appl. Mathl0(1) (2009), Art. 26, 14 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

10 WENGUI YANG

a/(a— 1) andy, 7/( — 1) and interchanging the order of integrals, we observe that

/ /0 %fa 1(1§ya+“/ G;i(z D) dsdt
/m {/S(FP Ho)f(o ))"‘da}éds] [/Oy {/t(G‘H( Yo(r ))”dr}idt]
_‘”’Y“{//Fpl adgdé’} y {//qu Vdet}i

= 2wy [ )f(S))“dS} {[w-te <>>rdt}i

0

pq
o+

<

0

Remark 4. In Theorem 3.1, settingg = v = 2, we have [(IR). In Theorefn 3.1, setting
2+ 1 =1, wehave

/ /0 s 1+om 1dsdtéD(p,q,:c,y;oz,v)

A [~ S)(F”‘l(s)f(S))“dS}; {[w-newgoral

=1

unlessf(c) = 0 org(r) =0, whereD(p,q,z,y; 0, 7) = P4 05T y v

~
Remark 5. In Theoren@l, setting = ¢ = 1, we have

)G(t)
(3 7) / / (a— 1)(oz+"/) (v=1)(a+7) dsdt
v§ ey +at o

<o Lagan{ - s)f“(S)dS}i {[w-ng >ozt}i ,

y—1

unlessf(o) = 0org(r) =0, whereD(1,1,z,y; o, ) = aﬂx Sy

In the following theorem we give a further generalization of the inequality (3.7) obtained in
Remark.

Theorem 32.Leta > 1,y > 1land f(o) > 0, g(1) > 0, p(o) > Oandq( ) > 0 for
(0 x), 7 € (0,y), wherex y are positive real numbers Definfé(s fo o)do and
fo T)dr, P(s) = [, p(o)do and Q(t) fo 7)dr for s € (O,x), (O,y). Let
<I> andef be two real- valued nonnegatlve convex and submultiplicative functions defined on
R4 = [0,00). Then

)W(G(t))
(3.8) // (o= 1)(a+v Gontry 4sdt
0 ~s t

ay + « ay
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where

s =5 { [ [5) "o} {0}

Proof. From the hypotheses df and¥ and by using Jensen’s inequality and Hoélder's inequal-
ity, it is easy to see that

s) [2p(o) (£2) do
(3.9) O(F(s))) = (P< ) Jo f( )<p(a)) )

(
)do
< L ror ()
)

<20 [ o
and similarly,

(3.10) V(1) < ‘I’(%;))t”f {/Ot [q(f)\p (%)Tdf}i.

Lets; = 5@ 5o = 1771wy = o W1 = = w1 + Wy, from .) -) an7) we

observe that

(311)  ®(F(s)W(GE) < st q)(lf(is))) {/0 [p@@ (%ﬂada};]
" [qw (&TWFI
S

;;)”{/w mﬂ )|
[t ([ o () )

for s € (0,z), ¢ € (0,y). From (3.11), we observe that
o L broe ()]} |
VU o G ot

J. Inequal. Pure and Appl. Mathl0(1) (2009), Art. 26, 14 pp. http://jipam.vu.edu.au/
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fors € (0,z), t € (0,y). Taking the integral on both sides of (3} 12) first ovdérom 0 to y and
then overs from 0 to = of the resulting inequality and using Hoélder’s inequality with indicges
a/(a - 1) andfy 7/( — 1) and mterchangmg the order of integrals, we observe that

/ §3<§>” {/0 o (43)] oo} ]

[ G L e (59)

[P " o (H0Y] )
1

1

<
o+

X

<

y—1

LG o L [ aoe )] v}

a—1 ~v—1

T a+tq {/0”” ng(g))}&ds}a {/Oy {%}ﬂldt}w
X {/Oz(x—s) [P(S)CD (%)rds}a{ Oy(y—t) {q(i)\lf (%)Tdt}w

Remark 6. From the inequality{ (2]7), we obtain
1
w1 + Wo

for w; > 0, wy > 0. If we apply the elementary inequality (3]13) on the right-hand sides of
(3.7) in Theorem 3]1 an@.S) in Theoreém|3.2, then we get the following inequalities

(s)G(t)
(3 14) / / (a—1)(a+7) (y=1)(a+7v) dsdt
0 S

ay + at ay

(3.13) st se? <

(w 511+w2 + wy Sw1+w2)

aty

a+ 7y o
= { e t><Gq1<t>g<t>wdt}w] ,

. —
whereD(p, q, z,y; a,y) = aﬂx ‘s y’7 . Also,

)W (G(?))
/ / (a— 1)(w+v) ooy dsdt
0 ~vs v +at o

onttenan) [ e (19)] 0}
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where

—1

L(:c,y;oz,v)za;er j{%ralds a {/j{%]ﬂldt}u.

The following theorems deal with slight variants @3 8) given in Theq 3.2. Before we
state our next theorem we point out tha‘f(“) = [ flo)do andG(t) = (1)dr” are

replaced by F(s) = £ [ f(0)do andG(t) = fo dr” in Theorem 3.4 in [9]

Theorem 3.3.Leta > 1, v > 1andf( ) > 0 g(t) > 0 for o e (0,z), 7 € (0,y),
wherez, y are positive real numbers. Define(s) = 1 [ f(0)do, G(t) = 1f0 7)dr for

€ (0,z),t € (0,y). Letd and ¥ be two real- valued nonnegatlve convex functlons defined
onIRJr = [0,00). Then

st®(F(s))V(G(t))
/ / (o= 1)(a+v) Gy 45dt
0 vS

ay + at ay

<o Lagan | - 8)<I>a(f(s))ds}; {[w- W(g(zﬁ))cﬁ}i ,

—1

whereD(1,1,z,y; o, ) = %ﬂx%ly%.

Theorem3.4.Leta > 1,v > landf(c) > 0,g(r) > 0, p(o) > Oandq( ) > Ofora € (O x)

T e (0 Y), Wherex y are positive real numbers Defin‘é(s Jy plo)do, Q(t) fo
fo o)do and G(t fo 7)dr for s € (O,x),t € (0,y). Let@

and\IJ be two real valued nonnegatlve convex functlons definétl,on [0, c0). Then

[ [ B

+at v

<ot eaan | [[e-9boe (f(S))]“dS}; {[w-ntawe <g<t>>]’7dt}i ,

=1

whereD(1,1,k,r;c,y) = a+7$ Ty’

The proofs of Theorenjs 3.3 ahd 3.4 are similar to the proof of Theprgm 3.2 and similar to
the proofs of Theorenijs 2.3 and2.4. Hence, we leave out the details.
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