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ABSTRACT. Relative entropy with respect to normalized arclength on the circle is greater than
or equal to the negative logarithmic energy (Voiculescu’s negative free entropy) and is greater
than or equal to the modified relative free entropy. This note contains proofs of these inequalities
and related consequences of the first Lebedev—Milin inequality.

Key words and phrasesTransportation inequality; Free probability; Random matrices.

2000Mathematics Subject Classificat 060E15; 46L.54.

1. INTRODUCTION AND DEFINITIONS

In this note we consider inequalities between various notions of relative entropy and related
metrics for probability measures on the circle. The introduction contains definitions and brief
statements of results which are made precise in subsequent sections.

Definition 1.1. For . andv probability measures diiwith  absolutely continuous with respect
to u, let dv/du be the Radon—Nikodym derivative. The (classicalative entropyof v with
respect tqu is

dv
(1.1) Entv = /log—dy;
| log O

note that) < Ent(v | 1) < oo by Jensen’s inequality; we take Ent| 1) = co whenv is not
absolutely continuous with respect;io

Definition 1.2. Let p be a probability measure ddthat has no atoms. If the integral

(1.2) (o) = [ 1ogle ~ sl pldoip(ay)
R
converges absolutely, therhasfree entropy>(p), that is, the logarithmic energy.
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2 GORDON BLOWER

Voiculescu [14] introduced this along with other concepts of free probability; seelalso [3],
[5], [6], [8], where various notations and constants are employed.

In Theoren] 2.l we compare free with relative entropy with respect to arclength measure
df /27 onT and show thap(df) = p(e?)dd/2r satisfies

(1.3) —X(p) < Ent(p | df/2m).
The proof involves the sharp Hardy—Littlewood—Sobolev inequality.

Definition 1.3. Suppose thaf andg are probability density functions with respectcdt/ 2,
and let

a8 srg= [ g (1) = a(e) (7€) = o) .

be themodified relative free entroms in [5], [6], [7], [8].

For notational convenience, we identify an absolutely continuous probability measure with
its probability density function and writefor the constant functiot. In Theorenj 22 we show
thatX(f,I) < Ent(f | I). The proof uses the first Lebedev—Milin inequality for functions in the
Dirichlet space over unit disB. Letu : D — R be a harmonic function such tha¥u(z)||?
is integrable with respect to area measureylbe its harmonic conjugate with(0) = 0 and
g = (u+1iv)/2. Then by [1()],u satisfies

thusexp g belongs to the Hardy space Q-HD). One can interpret this inequality as showing that
H?(D) is the symmetric Fock space of Dirichlet space, which is reflected by the reproducing
kernels, as in [12].

Definition 1.4. Let x andv be probability measures dit. Then theWassersteip metric for
1 < p < oo and the cost functiofe® — ¢|P/p is

v) =in l e — Py );
(16) W, (s.0) wf{(p J [ 1" = cpatanas) }

wherew is a probability measure Jf that has marginalg andv. See[[13].

Letu : T — R be al-Lipschitz function in the sense that(e?) — u(e)| < |e — €| for
all ¢, ¢ € T, and suppose further th#it u(e¢*”)df /2w = 0. Then by .6), as reformulated in
3.2) below we have

(1.7) /Texp(tu(eie))g < exp (%) (t € R).

Bobkov and Gétze have shown that the dual form of this concentration inequality is the trans-
portation inequality¥V; (p, df/2m)? < ) for all probability measureg of finite
relative entropy with respect /27, as in [13], 9.3. In Sectidn 3 we provide a free transporta-
tion inequalityl; (p, v)? < 2%(p, v) which generalizes and strengthens this dual inequality.

2. FREE VERSUSCLASSICAL ENTROPY WITH RESPECT TO ARCLENGTH

For completeness, we recall the following result of Beckner and Lieb [2].
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Theorem 2.1. Suppose thaf is a probability density function oR such thatf log f is inte-
grable. Thenf has finite free entropy and

(2.1) /[ e = (@) (4) dady < log 2 + | f@os f@) o

Proof. The sharp form of the Hardy—Littlewood—Sobolev inequality, due to Lieb [2], gives

3/2—2/p 1/p 1/2( )P )
(2.2) /R2 \x—yP d:cd <7 T(1/p) /|f )WPdx |

for A = 2(1 — 1/p) with 1 < p < 2, and with equality whemp = 1. Hence the derivative
atp = 1+ of the left-hand side is less than or equal to the derivative of the right-hand side.
By differentiating Legendre’s duplication formula2z)'(1/2) = 22~ 1'(x)T'(z + 1/2) at

x = 1/2, we obtain

(2.3) I'(1)/T(1) = 2log 2 + I’ (%) /r (%) :

and hence we obtain the derivative of the numerical factdr in (2.2).

This gives [2.]1); to deduce (1.3), we tak¢d) = p(e")ljp2x(6)/2m where p(df) =
p(e)df/2m. O

In [7] the authors assert that the relative and free entropies with respect to arclength are
incomparable, contrary to Theorg¢m 2.2 below gnd](1.3). Whereas the values of the entropies
of their attempted counterexample are correct on [7, p. 220]land [5, p. 204], the limit on [7, p.
220, line 7] should bé and not0; so the calculation fails. The calculation on [7, p. 219] does
show that[(1.B) has no reverse inequality.

Definition 2.1. With reala and Fourier coefficientg(n = [; f(e®)e™™df/2m, let H*(T) be
the subspace af?(T) consisting of thosg such that

(2.4) 1l zzer(ry = (Z(l + IHIQ“)If(n)F)

neL

2

is finite, and let/7%(T) be the completion of the subspagg € H*(T) : f(0) = 0} for the
norm

(2.9) Ifgaar)( > nQ“f(nV) ;

neZ\{0}

we use the notatiofff |
of H*(T).

#a(7) t0 indicate the semi-norm defined by this sum for typical elements

There is a natural pairing of/*(T) with H~*(T) wherebyg(e”) ~ 3 . ) bae™ in
H~(T) defines a bounded linear functional &t (T) by
(2.6) Y ™ > anb,
neZ\{0} neZ\{0}

Whenp andq are probability density functions of finite relative free entropy, their difference
f = p— qbelongs taH ~/2(T) and is real; so when we take the Taylor expansion of the kernel
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in (1.4) we deduce that

R T I A o G G

neZ\{0} |

Z f S(p,q),

asin[8, p. 716].

Theorem 2.2. Let f be a probability density function dfi that has finite relative entropy with
respect talf /27. Then

(2.8) E(f, 1) <Ent(f [ D).

Proof. We consider harmonic extensions bf(T) to the unit disc. Letuy(e?) = u(e?~?)
and letu(re®) = [ P.(e")uy(e”)dg/2m be the Poisson extension af where P, (¢) =
> ez e The dual space off~'/2(T) under the pairing of| (2]6) i#/'/*(T ) which we

|dent|fy with the Dirichlet spacé’ of harmonic functions, : D — R such thatf u( e)df /27 =
0 and

(2.9) / | VulPdzdy /7 < oo.
D

By the joint convexity of relative entropy[4], any pair of probability density functions of finite
relative entropy satisfies

(2.10) Entf [ u) = [ Pe“)ENfy | u0)32 = ENtP, | P
S0, in particular,
(2.11) Entf |I) >Ent(P.f|I) (0<r<1).

Hence it suffices to prove the theorem f8rf instead off, and then take limits as — 1—.
For notational simplicity, we shall assume tlfabas a rapidly convergent Fourier series so that
various integrals converge absolutely.

Suppose that is a real function inf/'/*(T) that has/, u(e’)df/2r = —t and||ul| 71/2(p) =

s; by adding a constant toif necessary, we can assume tegt2 = ¢. Then by [(1.5) we have

o df 52
2.12 0 < — —t]=1
(2.12) /TGXPU(G )27r _exp(2 > :

and consequently by the dual formula for relative entropy

@13) [ £ og (e 5 = sup { [ s [epnens? < 1}

> [ feuleng.

Recalling the dual pairing off ~/2(T) with H'/2(T), we write

, _do . d 4. d

_ 160 0\ 0\ 7 0\

(2.14) o = [ enuens? = [ reng [ueng
so that by|(Z2.13)

(2.15) (f,u) <t+/f (e”)log f(e 19)

We choose thé&(n) for n # 0 to optimize the left-hand side, and deduce that

(2.16) 1 172 ltll gz gy = sl F 12y < 5°/2 +/Tf(€i9) log f (")

d9

d_9
o’

J. Inequal. Pure and Appl. Mat}8(1) (2007), Art. 1, 6 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

FREE AND CLASSICAL ENTROPY 5

so by choosing we can obtain the desired result

(2.17) 25 (S,1) = 1oy < 2 / F(e)log 7)o

OJ

The quantity Entl | w) also appears in free probability, and the appearance of the formula
(1.5) likewise becomes unsurprising when we recall the strong Szegé limit theorem: :Let
T — R, be a probability density with respect &d /27 such thatu(e??) = logw(e?) belongs
to H/2(T), let D,, = det[w(j — k)]o<;r<n_1 be the determinants of thex n Toeplitz matrices
associated with the symbal, and let

(2.18) a, =exp ((n—l—l)/ e de —// | Vu(z)]? dxdy) (n=0,1,...).

Then by[(1.5), we have, > 1 smcef e?)df /2w = 1; further

(2.19) DY™ s exp (/ u(eie)d—e) = exp(—Ent(]I | w)) (n — 00)
T 2m

by [11, p. 169] and by Ibragimov’s Theorem [11, p. 342],

(2.20) D,/a, — 1 (n — o0).

One can refine the proof given in [1] and prove the following result on the asymptotic distribu-
tion of linear statistics. Lef be a real function ifFf'/*(T) and letX,, : (U(n), iy(n)) — R be
the random variable

2.21) X, () = wacd ()~ [ fley (e U,

where /i, is the Haar measure on the grolgn) of n x n unitary matrices. Ther.X,,)
converges in distribution as — oo to a Gaussian random variable with mean zero and variance

LA 2y
3. A SIMPLE FREE TRANSPORTATION INEQUALITY

Theorem 3.1.Suppose that andq are probability density functions with respectd/ 2 such
that their relative free entropy is finite. Then

(3.1) Wi(p,q)* < 25(p,q).
Proof. By the Kantorovich—Rubinstein theorem, aslinl[13, p. 34],
df : |u(6i9) . u<€i¢)| < |€i6 o 6@'(;5’} )

62 Wilra) =sup{ [ ule”) (o) - a(c*) 57
u T s
Any suchl-Lipschitz functionu belongs toHl/Q(’]I‘) since we have

R ') % do dqb
(3.3) ZZ nllin ) Db,
by [11, 6.1.58]. Hence by the duality betweHrW( yandH~'/%(T), we have
. . do
(3.4) Wi(p,q) < sup {/u(ew) (p<€19) —q(e’ )) or el ey < 1}
u T

= |lp - QHH*1/2(’IF)‘
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In [6] and [7], Hiai, Petz and Ueda prove a transportation inequalityifferby means of
a difficult matrix approximation argument. Whereas transportation inequalities invali/gng
generally imply transportation inequalities fidf; by the Cauchy—Schwarz inequality, Theorem
[3.7 has the merit that it applies to a wide clasg @ihdg and involves the uniform constant
Villani [L3] p. 234] compares th8/, metric with theH ~! norm, and Ledoux [9] obtains a free
logarithmic Sobolev inequality using a proof based upon the Prékopa—Leindler inequality.
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