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1. Introduction and Definitions

In this note we consider inequalities between various notions of relative entropy and
related metrics for probability measures on the circle. The introduction contains
definitions and brief statements of results which are made precise in subsequent
sections.

Definition 1.1. For µ andν probability measures onT with ν absolutely continu-
ous with respect toµ, let dν/dµ be the Radon–Nikodym derivative. The (classical)
relative entropyof ν with respect toµ is

(1.1) Ent(ν | µ) =

∫
T

log
dν

dµ
dν;

note that0 ≤ Ent(ν | µ) ≤ ∞ by Jensen’s inequality; we take Ent(ν | µ) = ∞
whenν is not absolutely continuous with respect toµ.

Definition1.2. Let ρ be a probability measure onR that has no atoms. If the integral

(1.2) Σ(ρ) =

∫∫
R2

log |x− y| ρ(dx)ρ(dy)

converges absolutely, thenρ hasfree entropyΣ(ρ), that is, the logarithmic energy.

Voiculescu [14] introduced this along with other concepts of free probability; see
also [3], [5], [6], [8], where various notations and constants are employed.

In Theorem2.1 we compare free with relative entropy with respect to arclength
measuredθ/2π onT and show thatρ(dθ) = p(eiθ)dθ/2π satisfies

(1.3) −Σ(ρ) ≤ Ent(ρ | dθ/2π).

The proof involves the sharp Hardy–Littlewood–Sobolev inequality.
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Definition1.3. Suppose thatf andg are probability density functions with respect
to dθ/2π, and let

(1.4) Σ(f, g) =

∫∫
T2

log
1

|eiθ − eiφ|
(
f(eiθ)− g(eiθ)

)(
f(eiφ)− g(eiφ)

) dθ

2π

dφ

2π

be themodified relative free entropyas in [5], [6], [7], [8].

For notational convenience, we identify an absolutely continuous probability mea-
sure with its probability density function and writeI for the constant function1. In
Theorem2.2 we show thatΣ(f, I) ≤ Ent(f | I). The proof uses the first Lebedev–
Milin inequality for functions in the Dirichlet space over unit discD. Letu : D → R
be a harmonic function such that‖∇u(z)‖2 is integrable with respect to area mea-
sure, letv be its harmonic conjugate withv(0) = 0 andg = (u + iv)/2. Then by
[10], u satisfies

(1.5) log

∫
T

exp
(
u(eiθ)

)dθ

2π
≤ 1

4π

∫∫
D
‖∇u(reiθ)‖2rdrdθ +

∫
T
u(eiθ)

dθ

2π
;

thus exp g belongs to the Hardy space H2(D). One can interpret this inequality
as showing that H2(D) is the symmetric Fock space of Dirichlet space, which is
reflected by the reproducing kernels, as in [12].

Definition1.4. Let µ andν be probability measures onT. Then theWassersteinp
metricfor 1 ≤ p < ∞ and the cost function|eiθ − eiφ|p/p is

(1.6) Wp(µ, ν) = inf
ω

{(
1

p

∫∫
T2

|eiθ − eiφ|pω(dθdφ)

) 1
p

}
,

whereω is a probability measure onT2 that has marginalsµ andν. See [13].
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Let u : T → R be a1-Lipschitz function in the sense that|u(eiθ) − u(eiφ)| ≤
|eiθ − eiφ| for all eiθ, eiφ ∈ T, and suppose further that

∫
T u(eiθ)dθ/2π = 0. Then by

(1.6), as reformulated in (3.2) below, we have

(1.7)
∫

T
exp
(
tu(eiθ)

)dθ

2π
≤ exp

(
t2

2

)
(t ∈ R).

Bobkov and Götze have shown that the dual form of this concentration inequality
is the transportation inequalityW1(ρ, dθ/2π)2 ≤ 2Ent(ρ | dθ/2π) for all probabil-
ity measuresρ of finite relative entropy with respect todθ/2π, as in [13], 9.3. In
Section3 we provide a free transportation inequalityW1(ρ, ν)2 ≤ 2Σ(ρ, ν) which
generalizes and strengthens this dual inequality.
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2. Free Versus Classical Entropy with Respect to
Arclength

For completeness, we recall the following result of Beckner and Lieb [2].

Theorem 2.1.Suppose thatf is a probability density function onR such thatf log f
is integrable. Thenf has finite free entropy and

(2.1)
∫∫

R2

log
1

|x− y|
f(x)f(y) dxdy ≤ log 2π +

∫
R

f(x) log f(x) dx.

Proof. The sharp form of the Hardy–Littlewood–Sobolev inequality, due to Lieb [2],
gives

(2.2)
∫∫

R2

f(x)f(y)

|x− y|λ
dxdy ≤ π3/2−2/p Γ(1/p− 1/2)

Γ(1/p)

(∫
R
|f(x)|p dx

) 2
p

,

for λ = 2(1 − 1/p) with 1 ≤ p < 2, and with equality whenp = 1. Hence the
derivative atp = 1+ of the left-hand side is less than or equal to the derivative of the
right-hand side. By differentiating Legendre’s duplication formulaΓ(2x)Γ(1/2) =
22x−1Γ(x)Γ(x + 1/2) atx = 1/2, we obtain

(2.3) Γ′(1)/Γ(1) = 2 log 2 + Γ′
(

1

2

)/
Γ

(
1

2

)
,

and hence we obtain the derivative of the numerical factor in (2.2).
This gives (2.1); to deduce (1.3), we takef(θ) = p(eiθ)I[0,2π](θ)/2π where

ρ(dθ) = p(eiθ)dθ/2π.

In [7] the authors assert that the relative and free entropies with respect to ar-
clength are incomparable, contrary to Theorem2.2 below and (1.3). Whereas the
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values of the entropies of their attempted counterexample are correct on [7, p. 220]
and [5, p. 204], the limit on [7, p. 220, line 7] should be1 and not0; so the cal-
culation fails. The calculation on [7, p. 219] does show that (1.3) has no reverse
inequality.

Definition2.1. With realα and Fourier coefficientŝf(n) =
∫

T f(eiθ)e−inθdθ/2π, let
Hα(T) be the subspace ofL2(T) consisting of thosef such that

(2.4) ‖f‖Hα(T) =

(∑
n∈Z

(1 + |n|2α)|f̂(n)|2
) 1

2

is finite, and letḢα(T) be the completion of the subspace{f ∈ Hα(T) : f̂(0) = 0}
for the norm

(2.5) ‖f‖Ḣα(T) =

 ∑
n∈Z\{0}

|n|2α|f̂(n)|2
 1

2

;

we use the notation‖f‖Ḣα(T) to indicate the semi-norm defined by this sum for
typical elements ofHα(T).

There is a natural pairing oḟHα(T) with Ḣ−α(T) wherebyg(eiθ) ∼
∑

n∈Z\{0} bne
inθ

in Ḣ−α(T) defines a bounded linear functional onḢα(T) by

(2.6)
∑

n∈Z\{0}

ane
inθ 7→

∑
n∈Z\{0}

anb̄n.

Whenp andq are probability density functions of finite relative free entropy, their
differencef = p − q belongs toḢ−1/2(T) and is real; so when we take the Taylor
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expansion of the kernel in (1.4) we deduce that

(2.7) ‖p− q‖2
Ḣ−1/2(T)

=
∑

n∈Z\{0}

f̂(n)f̂(−n)

|n|
= 2

∞∑
n=1

|f̂(n)|2

n
= 2Σ(p, q),

as in [8, p. 716].

Theorem 2.2. Let f be a probability density function onT that has finite relative
entropy with respect todθ/2π. Then

(2.8) Σ(f, I) ≤ Ent(f | I).

Proof. We consider harmonic extensions ofL2(T) to the unit disc. Letuφ(e
iθ) =

u(eiθ−iφ) and letu(reiθ) =
∫

T Pr(e
iφ)uφ(e

iθ)dφ/2π be the Poisson extension ofu,
wherePr(e

iθ) =
∑

n∈Z r|n|einθ. The dual space oḟH−1/2(T) under the pairing of
(2.6) is Ḣ1/2(T), which we identify with the Dirichlet spaceG of harmonic functions
u : D → R such that

∫
T u(eiθ)dθ/2π = 0 and

(2.9)
∫∫

D
‖∇u‖2dxdy/π < ∞.

By the joint convexity of relative entropy [4], any pair of probability density func-
tions of finite relative entropy satisfies

(2.10) Ent(f | u) =

∫
T
Pr(e

iφ)Ent(fφ | uφ)
dφ

2π
≥ Ent(Prf | Pru);

so, in particular,

(2.11) Ent(f | I) ≥ Ent(Prf | I) (0 ≤ r < 1).
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Hence it suffices to prove the theorem forPrf instead off , and then take limits as
r → 1−. For notational simplicity, we shall assume thatf has a rapidly convergent
Fourier series so that various integrals converge absolutely.

Suppose thatu is a real function inH1/2(T) that has
∫

T u(eiθ)dθ/2π = −t and
‖u‖Ḣ1/2(T) = s; by adding a constant tou if necessary, we can assume thats2/2 = t.
Then by (1.5) we have

(2.12)
∫

T
exp u(eiθ)

dθ

2π
≤ exp

(
s2

2
− t

)
= 1,

and consequently by the dual formula for relative entropy∫
T
f(eiθ) log f(eiθ)

dθ

2π
(2.13)

= sup

{∫
T
h(eiθ)f(eiθ)

dθ

2π
:

∫
T

exp h(eiθ)
dθ

2π
≤ 1

}
≥
∫

T
f(eiθ)u(eiθ)

dθ

2π
.

Recalling the dual pairing oḟH−1/2(T) with Ḣ1/2(T), we write

(2.14) 〈f, u〉 =

∫
T
f(eiθ)u(eiθ)

dθ

2π
−
∫

T
f(eiθ)

dθ

2π

∫
T
u(eiθ)

dθ

2π
,

so that by (2.13)

(2.15) 〈f, u〉 ≤ t +

∫
T
f(eiθ) log f(eiθ)

dθ

2π
.

We choose thêu(n) for n 6= 0 to optimize the left-hand side, and deduce that

(2.16) ‖f‖Ḣ−1/2(T)‖u‖Ḣ1/2(T) = s‖f‖Ḣ−1/2(T) ≤ s2/2 +

∫
T
f(eiθ) log f(eiθ)

dθ

2π
,
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so by choosings we can obtain the desired result

(2.17) 2Σ(f, I) = ‖f‖2
Ḣ−1/2(T)

≤ 2

∫
T
f(eiθ) log f(eiθ)

dθ

2π
.

The quantity Ent(I | w) also appears in free probability, and the appearance of
the formula (1.5) likewise becomes unsurprising when we recall the strong Szegö
limit theorem. Letw : T → R+ be a probability density with respect todθ/2π such
thatu(eiθ) = log w(eiθ) belongs toH1/2(T), letDn = det[ŵ(j−k)]0≤j,k≤n−1 be the
determinants of then× n Toeplitz matrices associated with the symbolw, and let

αn = exp

(
(n + 1)

∫
T
u(eiθ)

dθ

2π
+

1

4π

∫∫
D
‖∇u(z)‖2 dxdy

)
(2.18)

(n = 0, 1, . . . ).

Then by (1.5), we haveα0 ≥ 1 since
∫

w(eiθ)dθ/2π = 1; further

(2.19) D1/n
n → exp

(∫
T
u(eiθ)

dθ

2π

)
= exp

(
−Ent(I | w)

)
(n →∞)

by [11, p. 169] and by Ibragimov’s Theorem [11, p. 342],

(2.20) Dn/αn → 1 (n →∞).

One can refine the proof given in [1] and prove the following result on the asymptotic
distribution of linear statistics. Letf be a real function inH1/2(T) and letXn :
(U(n), µU(n)) → R be the random variable

(2.21) Xn(γ) = trace(f(γ))− n

∫
T
f(eiθ)

dθ

2π
(γ ∈ U(n)),
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whereµU(n) is the Haar measure on the groupU(n) of n× n unitary matrices. Then
(Xn) converges in distribution asn →∞ to a Gaussian random variable with mean
zero and variance‖f‖2

Ḣ1/2(T)
.
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3. A Simple Free Transportation Inequality

Theorem 3.1.Suppose thatp andq are probability density functions with respect to
dθ/2π such that their relative free entropy is finite. Then

(3.1) W1(p, q)
2 ≤ 2Σ(p, q).

Proof. By the Kantorovich–Rubinstein theorem, as in [13, p. 34],

(3.2) W1(p, q)

= sup
u

{∫
T
u(eiθ)

(
p(eiθ)− q(eiθ)

) dθ

2π
: |u(eiθ)− u(eiφ)| ≤ |eiθ − eiφ|

}
.

Any such1–Lipschitz functionu belongs toH1/2(T), since we have

(3.3)
∑
n∈Z

|n||û(n)|2 =

∫∫
T2

∣∣∣∣u(eiθ)− u(eiφ)

eiθ − eiφ

∣∣∣∣2 dθ

2π

dφ

2π
≤ 1,

by [11, 6.1.58]. Hence by the duality betweenḢ1/2(T) andḢ−1/2(T), we have

W1(p, q) ≤ sup
u

{∫
T
u(eiθ)

(
p(eiθ)− q(eiθ)

) dθ

2π
: ‖u‖Ḣ1/2(T) ≤ 1

}
(3.4)

= ‖p− q‖Ḣ−1/2(T).

In [6] and [7], Hiai, Petz and Ueda prove a transportation inequality forW2 by
means of a difficult matrix approximation argument. Whereas transportation in-
equalities involvingW2 generally imply transportation inequalities forW1 by the
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Cauchy–Schwarz inequality, Theorem3.1has the merit that it applies to a wide class
of p andq and involves the uniform constant2. Villani [ 13, p. 234] compares the
W2 metric with theH−1 norm, and Ledoux [9] obtains a free logarithmic Sobolev
inequality using a proof based upon the Prékopa–Leindler inequality.
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