ON CERTAIN SUBCLASSES OF MEROMORPHICALLY MULTIVALENT FUNCTIONS ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTION

JAGANNATH PATEL

Department of Mathematics Utkal University, Vani Vihar

Bhubaneswar-751004, India

EMail: jpatelmath@yahoo.co.in

ASHIS KU. PALIT

Department of Mathematics

Bhadrak Institute of Engineering and Technology

Bhadrak-756 113, India

EMail: ashis_biet@rediffmail.com

Received: 12 September, 2008

Accepted: 20 February, 2009

Communicated by: N.E. Cho

2000 AMS Sub. Class.: 30C45

Key words: Meromorphic function, p-valent, Subordination, Hypergeometric function,

Hadamard product.

Abstract: In the present paper, we investigate several inclusion relationships and other in-

teresting properties of certain subclasses of meromorphically multivalent functions which are defined here by means of a linear operator involving the generalized hypergeometric function. Some interesting applications on Hadamard product concerning this and other classes of integral operators are also consid-

ered.

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents

44 >>>

4 →

Page 1 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

Traducador attana

L	Introduction	3
2	Preliminaries	8

3 Main Results 11

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

For any integer m > 1 - p, let $\sum_{p,m}$ be the class of functions of the form:

(1.1)
$$f(z) = z^{-p} + \sum_{k=m}^{\infty} a_k z^k \quad (p \in \mathbb{N} = \{1, 2, \dots\}),$$

which are analytic and p-valent in the punctured unit disk $\mathbb{U}^* = \{z \in \mathbb{C} : 0 < |z| < 1\} = \mathbb{U} \setminus \{0\}$. We also denote $\sum_{p,1-p} = \sum_p$. For $0 \le \alpha < p$, we denote by $\sum_S(p;\alpha), \ \sum_K(p;\alpha)$ and $\sum_C(p;\alpha)$, the subclasses of \sum_p consisting of all meromorphic functions which are, respectively, p-valently starlike of order α , p-valently convex of order α and p-valently close-to-convex of order α .

If f and g are analytic in \mathbb{U} , we say that f is subordinate to g, written $f \prec g$ or (more precisely) $f(z) \prec g(z)$ $z \in \mathbb{U}$, if there exists a function ω , analytic in \mathbb{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$ such that $f(z) = g(\omega(z)), \ z \in \mathbb{U}$. In particular, if g is univalent in \mathbb{U} , then we have the following equivalence:

$$f(z) \prec g(z) \ (z \in \mathbb{U}) \Longleftrightarrow f(0) = g(0)$$
 and $f(\mathbb{U}) \subset g(\mathbb{U})$.

For a function $f \in \sum_{p,m}$, given by (1.1) and $g \in \sum_{p,m}$ defined by $g(z) = z^{-p} + \sum_{k=m}^{\infty} b_k z^k$, we define the Hadamard product (or convolution) of f and g by

$$f(z) * g(z) = (f * g)(z) = z^{-p} + \sum_{k=m}^{\infty} a_k b_k z^k \quad (p \in \mathbb{N}).$$

For real or complex numbers

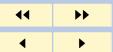
$$\alpha_1, \alpha_2, \dots, \alpha_q$$
 and $\beta_1, \beta_2, \dots, \beta_s$ $(\beta_j \notin \mathbb{Z}_0^- = \{0, -1, -2, \dots\}; j = 1, 2, \dots, s),$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 3 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

we consider the generalized hypergeometric function $_qF_s$ (see, for example, [17]) defined as follows:

$$(1.2) qF_s(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z) = \sum_{k=0}^{\infty} \frac{(\alpha_1)_k \cdots (\alpha_q)_k}{(\beta_1)_k \cdots (\beta_s)_k} \frac{z^k}{k!}$$

$$(q \le s+1; \ q, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}; \ z \in \mathbb{U}),$$

where $(x)_k$ denotes the *Pochhammer* symbol (or the *shifted factorial*) defined, in terms of the Gamma function Γ , by

$$(x)_k = \frac{\Gamma(x+k)}{\Gamma(x)} = \begin{cases} x(x+1)(x+2)\cdots(x+k-1) & (k \in \mathbb{N}); \\ 1 & (k=0). \end{cases}$$

Corresponding to the function $\phi_p(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z)$ given by

$$(1.3) \phi_p(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s;z) = z^{-p} {}_q F_s(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s;z),$$

we introduce a function $\phi_{p,\mu}(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s;z)$ defined by

$$(1.4) \qquad \phi_p(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z) * \phi_{p,\mu}(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z)$$

$$= \frac{1}{z^p (1-z)^{\mu+p}} \quad (\mu > -p; \ z \in \mathbb{U}^*).$$

We now define a linear operator $\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s):\sum_{p,m}\longrightarrow\sum_{p,m}$ by

$$(1.5) \quad \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s)f(z) = \phi_{p,\mu}(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s;z) * f(z)$$

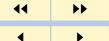
$$\left(\alpha_i,\beta_j \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ i=1,2\ldots,q; \ j=1,2,\ldots,s; \ \mu > -p; \ f \in \sum_{p,m}; \ z \in \mathbb{U}^*\right).$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 4 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

For convenience, we write

$$\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s) = \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) \quad \text{and}$$

$$\mathcal{H}_{p,q,s}^{1-p,\mu}(\alpha_1) = \mathcal{H}_{p,q,s}^{\mu}(\alpha_1) \ (\mu > -p).$$

If f is given by (1.1), then from (1.5), we deduce that

(1.6)
$$\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f(z) = z^{-p} + \sum_{k=m}^{\infty} \frac{(\mu+p)_{p+k}(\beta_1)_{p+k}\cdots(\beta_s)_{p+k}}{(\alpha_1)_{p+k}\cdots(\alpha_q)_{p+k}} a_k z^k$$
$$(\mu > -p; \ z \in \mathbb{U}^*).$$

and it is easily verified from (1.6) that

$$(1.7) \quad z \left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f \right)'(z) = (\mu + p) \, \mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_1) f(z) - (\mu + 2p) \, \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z)$$
 and

$$(1.8) z \left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1 + 1) f \right)'(z) = \alpha_1 \, \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z) - (p + \alpha_1) \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z).$$

We note that the linear operator $H^{m,\mu}_{p,q,s}(\alpha_1)$ is closely related to the Choi-Saigo-Srivastava operator [5] for analytic functions and is essentially motivated by the operators defined and studied in [3]. The linear operator $H^{0,\mu}_{1,q,s}(\alpha_1)$ was investigated recently by Cho and Kim [2], whereas $H^{1-p}_{p,2,1}(c,1;a;z)=\mathcal{L}_p(a,c)$ ($c\in\mathbb{R},\ a\notin\mathbb{Z}_0^-$) is the operator studied in [7]. In particular, we have the following observations:

(i)
$$\mathcal{H}_{p,s+1,s}^{m,0}(p+1,\beta_1,\ldots,\beta_s;\beta_1,\ldots,\beta_s)f(z) = \frac{p}{z^{2p}} \int_0^z t^{2p-1}f(t) dt;$$

(ii)
$$\mathcal{H}_{p,s+1,s}^{m,0}(p,\beta_1,...,\beta_s;\beta_1,...,\beta_s)f(z) = \mathcal{H}_{p,s+1,s}^{m,1}(p+1,\beta_1,...,\beta_s;\beta_1,...,\beta_s)f(z) = f(z);$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents

Page 5 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

(iii)
$$\mathcal{H}_{p,s+1,s}^{m,1}(p,\beta_1,\ldots,\beta_s;\beta_1,\ldots,\beta_s)f(z) = \frac{zf'(z) + 2pf(z)}{p};$$

(iv)
$$\mathcal{H}_{p,s+1,s}^{m,2}(p+1,\beta_1,\ldots,\beta_s;\beta_1,\ldots,\beta_s)f(z) = \frac{zf'(z) + (2p+1)f(z)}{p+1};$$

(v)
$$H_{p,s+1,s}^{1-p,n}(\beta_1, \beta_2, \dots, \beta_s, 1; \beta_1, \dots, \beta_s) f(z) = \frac{1}{z^p (1-z)^{n+p}} = \mathcal{D}^{n+p-1} f(z)$$

(*n* is an integer $> -p$), the operator studied in [6], and

(vi)
$$H_{p,s+1,s}^{m,1-p}(\delta+1,\beta_2,\ldots,\beta_s,1;\delta,\beta_2,\ldots,\beta_s)f(z) = \frac{\delta}{z^{\delta+p}} \int_0^z t^{\delta+p-1}f(t) dt$$
 $(\delta>0;z\in\mathbb{U}^*)$, the integral operator defined by (3.6).

Let Ω be the class of all functions ϕ which are analytic, univalent in $\mathbb U$ and for which $\phi(\mathbb U)$ is convex with $\phi(0)=1$ and $\Re \{\phi(z)\}>0$ in $\mathbb U$.

Next, by making use of the linear operator $H_{p,q,s}^{m,\mu}(\alpha_1)$, we introduce the following subclasses of $\sum_{n,m}$.

Definition 1.1. A function $f \in \sum_{p,m}$ is said to be in the class $\mathcal{MS}_{p,\alpha_1}^{\mu,m}(q,s;\eta;\phi)$, if it satisfies the following subordination condition:

(1.9)
$$-\frac{1}{p-\eta} \left\{ \frac{z \left(H_{p,q,s}^{m,\mu}(\alpha_1) f \right)'(z)}{H_{p,q,s}^{m,\mu}(\alpha_1) f(z)} + \eta \right\} \prec \phi(z)$$

$$(\phi \in \Omega, \ 0 \le \eta < p, \ \mu > -p; \ z \in \mathbb{U}).$$

In particular, for fixed parameters A and B $(-1 \le B < A \le 1)$, we set

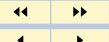
$$\mathcal{MS}_{p,\alpha_1}^{\mu,m}\left(q,s;\eta;\frac{1+Az}{1+Bz}\right) = \mathcal{MS}_{p,\alpha_1}^{\mu,m}\left(q,s;\eta;A,B\right).$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 6 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

It is easy to see that

$$\mathcal{MS}_{1,\alpha_1}^{\mu,0}\left(q,s;\eta;\phi\right)=\mathcal{MS}_{\mu+1,\alpha_1}(q,s;\eta;\phi) \text{ and } \\ \mathcal{MS}_{1,\alpha_1}^{\mu,0}\left(q,s;\eta;A,B\right)=\mathcal{MS}_{\mu+1,\alpha_1}(q,s;\eta;A,B)$$

are the function classes studied by Cho and Kim [2].

Definition 1.2. For fixed parameters A and B, a function $f \in \sum_{p,m}$ is said to be in the class $\mathcal{MC}_{p,\alpha_1}^{\mu,m}(q,s;\lambda;A,B)$, if it satisfies the following subordination condition:

$$(1.10) \quad -\frac{z^{p+1}\left\{(1-\lambda)(H_{p,q,s}^{m,\mu}(\alpha_1)f)'(z) + \lambda(H_{p,q,s}^{m,\mu+1}(\alpha_1)f)'(z)\right\}}{p} \prec \frac{1+Az}{1+Bz}$$
$$(-1 \leq B < A \leq 1, \ \lambda \geq 0, \ \mu > -p; \ z \in \mathbb{U}).$$

To make the notation simple, we write $\mathcal{MC}_{p,\alpha_1}^{\mu,m}\left(q,s;0;1-\frac{2\eta}{p},-1\right)=\mathcal{MC}_{p,\alpha_1}^{\mu,m}\left(q,s;\eta\right)$, the class of functions $f\in\sum_{p,m}$ satisfying the condition:

$$-\Re\left\{z^{p+1}\left(H_{p,q,s}^{m,\mu}(\alpha_1)f\right)'(z)\right\} > \eta \quad (0 \le \eta < p; z \in \mathbb{U}).$$

Meromorphically multivalent functions have been extensively studied by (for example) Liu and Srivastava [7], Cho et al. [4], Srivastava and Patel [18], Cho and Kim [2], Aouf [1], Srivastava et al. [19] and others.

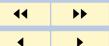
The object of the present paper is to investigate several inclusion relationships and other interesting properties of certain subclasses of meromorphically multivalent functions which are defined here by means of the linear operator $H^{m,\mu}_{p,q,s}(\alpha_1)$ involving the generalized hypergeometric function. Some interesting applications of the Hadamard product concerning this and other classes of integral operators are also considered. Relevant connections of the results presented here with those obtained by earlier workers are also mentioned.

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 7 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Preliminaries

To prove our results, we need the following lemmas.

Lemma 2.1 ([8], see also [10]). Let the function h be analytic and convex(univalent) in \mathbb{U} with h(0) = 1. Suppose also that the function ϕ given by

(2.1)
$$\phi(z) = 1 + c_n z^n + c_{n+1} z^{n+1} + \cdots \quad (n \in \mathbb{N})$$

is analytic in U. If

$$\phi(z) + \frac{z\phi'(z)}{\kappa} \prec h(z) \quad (\Re(\kappa) \ge 0, \ \kappa \ne 0; \ z \in \mathbb{U}),$$

then

$$\phi(z) \prec q(z) = \frac{\kappa}{n} z^{-\frac{\kappa}{n}} \int_0^z t^{\frac{\kappa}{n} - 1} h(t) \ dt \prec h(z) \quad (z \in \mathbb{U})$$

and q is the best dominant.

The following identities are well-known [21, Chapter 14].

Lemma 2.2. For real or complex numbers $a, b, c \ (c \notin \mathbb{Z}_0^-)$, we have

(2.2)
$$\int_0^1 t^{b-1} (1-t)^{c-b-1} (1-tz)^{-a} dt$$
$$= \frac{\Gamma(b)\Gamma(c-b)}{\Gamma(c)} {}_2F_1(a,b;c;z) \ (\Re(c) > \Re(b) > 0)$$

(2.3)
$${}_{2}F_{1}(a,b;c;z) = {}_{2}F_{1}(b,a;c;z)$$

(2.4)
$${}_{2}F_{1}(a,b;c;z) = (1-z)^{-a} {}_{2}F_{1}\left(a,c-b;c;\frac{z}{z-1}\right)$$

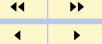
(2.5)
$$(b+1)_2F_1(1,b;b+1;z) = (b+1) + bz_2F_1(1,b+1;b+2;z)$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 8 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

and

(2.6)
$${}_{2}F_{1}\left(1,1;2;\frac{1}{2}\right) = 2 \ln 2.$$

We denote by $\mathcal{P}(\gamma)$, the class of functions ψ of the form

$$\psi(z) = 1 + c_1 z + c_2 z^2 + \cdots,$$

which are analytic in \mathbb{U} and satisfy the inequality:

$$\Re\{\psi(z)\} > \gamma \quad (0 \le \gamma < 1; \ z \in \mathbb{U}).$$

It is known [20] that if $f_i \in \mathcal{P}(\gamma_i)$ $(0 \le \gamma_i < 1; j = 1, 2)$, then

$$(2.8) (f_1 * f_2)(z) \in \mathcal{P}(\gamma_3) (\gamma_3 = 1 - 2(1 - \gamma_1)(1 - \gamma_2)).$$

The result is the best possible.

We now state

Lemma 2.3 ([12]). If the function ψ , given by (2.7) belongs to the class $\mathcal{P}(\gamma)$, then

$$\Re\{\psi(z)\} \ge 2\gamma - 1 + \frac{2(1-\gamma)}{1+|z|} \quad (0 \le \gamma < 1; \ z \in \mathbb{U}).$$

Lemma 2.4 ([8, 10]). Let the function $\Psi: \mathbb{C}^2 \times \mathbb{U} \longrightarrow \mathbb{C}$ satisfy the condition $\Re \{\Psi(ix,y;z)\} \leq \varepsilon$ for $\varepsilon > 0$, all real x and $y \leq -n(1+x^2)/2$, where $n \in \mathbb{N}$. If ϕ defined by (2.1) is analytic in \mathbb{U} and $\Re \{\Psi(\phi(z),z\phi'(z);z)\} > \varepsilon$, then $\Re \{\phi(z)\} > 0$ in \mathbb{U} .

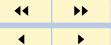
We now recall the following result due to Singh and Singh [16].

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 9 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Lemma 2.5. Let the function Φ be analytic in \mathbb{U} with $\Phi(0) = 1$ and $\Re{\{\Phi(z)\}} > 1/2$ in \mathbb{U} . Then for any function F, analytic in \mathbb{U} , $(\Phi * F)(\mathbb{U})$ is contained in the convex hull of $F(\mathbb{U})$.

Lemma 2.6 ([13]). The function $(1-z)^{\beta} = e^{\beta \log(1-z)}$, $\beta \neq 0$ is univalent in \mathbb{U} , if β satisfies either $|\beta + 1| \leq 1$ or $|\beta - 1| \leq 1$.

Lemma 2.7 ([9]). Let q be univalent in \mathbb{U} , θ and Φ be analytic in a domain \mathcal{D} containing $q(\mathbb{U})$ with $\Phi(w) \neq 0$ when $w \in q(\mathbb{U})$. Set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$ and suppose that

- (i) Q is starlike(univalent) in \mathbb{U} with Q(0) = 0, $Q'(0) \neq 0$ and
- (ii) Q and h satisfy

$$\Re\left\{\frac{zh(z)}{Q(z)}\right\} = \Re\left\{\frac{Q'(q(z))}{\Phi(q(z))} + \frac{zQ'(z)}{Q(z)}\right\} > 0.$$

If ϕ is analytic in \mathbb{U} with $\phi(0) = q(0), \ \phi(\mathbb{U}) \subset \mathcal{D}$ and

(2.9)
$$\theta(\phi(z)) + z\phi'(z)\Phi(\phi(z)) \prec \theta(q(z)) + zq'(z)\Phi(q(z)) = h(z) \quad (z \in \mathbb{U}),$$

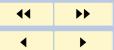
then $\phi \prec q$ and q is the best dominant of (2.9).

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 10 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. Main Results

Unless otherwise mentioned, we assume throughout the sequel that

$$\alpha_1 > 0, \ \alpha_i, \beta_j \in \mathbb{R} \setminus \mathbb{Z}_0^- \ (i = 2, 3, \dots, q; j = 1, 2, \dots, s),$$

 $\lambda > 0, \ \mu > -p \quad \text{and} \quad -1 \le B < A \le 1.$

Following the lines of proof of Cho and Kim [2] (see, also [4]), we can prove the following theorem.

Theorem 3.1. Let $\phi \in \Omega$ with

$$\max_{z \in \mathbb{U}} \Re\left\{\phi(z)\right\} < \min\left\{(\mu + 2p - \eta)/(p - \eta), (\alpha_1 + p - \eta)/(p - \eta)\right\} \quad (0 \leqq \eta < p).$$

Then

$$\mathcal{MS}_{p,\alpha_1}^{\mu+1,m}\left(q,s;\eta;\phi\right)\subset\mathcal{MS}_{p,\alpha_1}^{\mu,m}\left(q,s;\eta;\phi\right)\subset\mathcal{MS}_{p,\alpha_1+1}^{\mu,m}\left(q,s;\eta;\phi\right).$$

By carefully choosing the function ϕ in the above theorem, we obtain the following interesting consequences.

Example 3.1. The function

$$\phi(z) = \left(\frac{1+Az}{1+Bz}\right)^{\alpha} \quad (0 < \alpha \le 1; \ z \in \mathbb{U})$$

is analytic and convex univalent in U. Moreover,

$$0 \le \left(\frac{1-A}{1-B}\right)^{\alpha} < \Re\{\phi(z)\} < \left(\frac{1+A}{1+B}\right)^{\alpha}$$
$$(0 < \alpha \le 1, \ -1 < B < A \le 1; \ z \in \mathbb{U}).$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents

Page 11 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Thus, by Theorem 3.1, we deduce that, if

$$\left(\frac{1+A}{1+B}\right)^{\alpha} < \min\left\{\frac{\mu+2p-\eta}{p-\eta}, \frac{\alpha_1+p-\eta}{p-\eta}\right\}$$

$$(0 < \alpha \le 1, -1 < B < A \le 1),$$

then

$$\mathcal{MS}_{p,\alpha_1}^{\mu+1,m}\left(q,s;\eta;\phi\right)\subset\mathcal{MS}_{p,\alpha_1}^{\mu,m}\left(q,s;\eta;\phi\right)\subset\mathcal{MS}_{p,\alpha_1+1}^{\mu,m}\left(q,s;\eta;\phi\right).$$

Example 3.2. The function

$$\phi(z) = 1 + \frac{2}{\pi^2} \left[\log \left(\frac{1 + \sqrt{\alpha z}}{1 - \sqrt{\alpha z}} \right) \right]^2 \quad (0 < \alpha < 1; \ z \in \mathbb{U})$$

is in the class Ω (cf. [14]) and satisfies

$$\Re\{\phi(z)\} < 1 + \frac{2}{\pi^2} \left[\log\left(\frac{1+\sqrt{\alpha}}{1-\sqrt{\alpha}}\right) \right]^2 \quad (z \in \mathbb{U}).$$

Thus, by using Theorem 3.1, we obtain that, if

$$1 + \frac{2}{\pi^2} \left[\log \left(\frac{1 + \sqrt{\alpha}}{1 - \sqrt{\alpha}} \right) \right]^2 < \min \left\{ \frac{\mu + 2p - \eta}{p - \eta}, \frac{\alpha_1 + p - \eta}{p - \eta} \right\} \quad (0 < \alpha < 1),$$

then

$$\mathcal{MS}_{p,\alpha_1}^{\mu+1,m}(q,s;\eta;\phi) \subset \mathcal{MS}_{p,\alpha_1}^{\mu,m}(q,s;\eta;\phi) \subset \mathcal{MS}_{p,\alpha_1+1}^{\mu,m}(q,s;\eta;\phi)$$
.

Example 3.3. The function

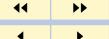
$$\phi(z) = 1 + \sum_{k=1}^{\infty} \left(\frac{\beta+1}{\beta+k} \right) \alpha^k z^k \quad (0 < \alpha < 1, \ \beta \ge 0; z \in \mathbb{U})$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 12 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

belongs to the class Ω (cf. [15]) and satisfies

$$\Re\{\phi(z)\} < 1 + \sum_{k=1}^{\infty} \left(\frac{\beta+1}{\beta+k}\right) \alpha^k \quad (0 < \alpha < 1, \ \beta \ge 0).$$

Thus, by Theorem 3.1, if

$$1 + \sum_{k=1}^{\infty} \left(\frac{\beta+1}{\beta+k} \right) \alpha^k < \min \left\{ \frac{\mu+2p-\eta}{p-\eta}, \frac{\alpha_1+p-\eta}{p-\eta} \right\} \quad (0 < \alpha < 1, \ \beta \ge 0),$$

then

$$\mathcal{MS}_{p,\alpha_1}^{\mu+1,m}\left(q,s;\eta;\phi\right)\subset\mathcal{MS}_{p,\alpha_1}^{\mu,m}\left(q,s;\eta;\phi\right)\subset\mathcal{MS}_{p,\alpha_1+1}^{\mu,m}\left(q,s;\eta;\phi\right).$$

Theorem 3.2. If $f \in \mathcal{MC}_{p,\alpha_1}^{\mu,m}(q,s;\lambda;A,B)$, then

$$(3.1) \qquad -\frac{z^{p+1} \left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f\right)'(z)}{p} \prec \psi(z) \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U}),$$

where the function ψ given by

$$\psi(z) = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) (1 + Bz)^{-1} {}_{2}F_{1}\left(1, 1; \frac{\mu + p}{\lambda(p+m)} + 1; \frac{Bz}{1 + Bz}\right) & (B \neq 0); \\ 1 + \frac{(\mu + p)A}{\mu + p + \lambda(p+m)}z & (B = 0) \end{cases}$$

is the best dominant of (3.1). Further,

$$(3.2) f \in \mathcal{MC}_{p,\alpha_1}^{\mu,m}(q,s;p\rho),$$

where

$$\rho = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) (1 - B)^{-1} {}_{2}F_{1}\left(1, 1; \frac{\mu + p}{\lambda(p + m)} + 1; \frac{B}{B - 1}\right) & (B \neq 0); \\ 1 - \frac{(\mu + p)A}{\mu + p + \lambda(p + m)} & (B = 0). \end{cases}$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Full Screen

Go Back

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

The result is the best possible.

Proof. Setting

(3.3)
$$\varphi(z) = -\frac{z^{p+1} \left(H_{p,q,s}^{m,\mu}(\alpha_1)f\right)'(z)}{p} \quad (z \in \mathbb{U}),$$

we note that φ is of the form (2.1) and is analytic in \mathbb{U} . Making use of the identity (1.7) in (3.3) and differentiating the resulting equation, we get

$$(3.4) \quad \varphi(z) + \frac{z\varphi'(z)}{(\mu + p)/\lambda}$$

$$= -\frac{z^{p+1} \left\{ (1 - \lambda) \left(H_{p,q,s}^{m,\mu}(\alpha_1) f \right)'(z) + \lambda \left(H_{p,q,s}^{m,\mu+1}(\alpha_1) f \right)'(z) \right\}}{p}$$

$$\prec \frac{1 + Az}{1 + Bz} \quad (z \in \mathbb{U}).$$

Now, by applying Lemma 2.1 (with $\kappa = (\mu + p)/\lambda$) in (3.4), we deduce that

$$-\frac{z^{p+1} \left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_{1})f\right)'(z)}{p}$$

$$\prec \psi(z) = \frac{\mu+p}{\lambda(p+m)} z^{-\frac{\mu+p}{\lambda(p+m)}} \int_{0}^{z} t^{\frac{\mu+p}{\lambda(p+m)}-1} \left(\frac{1+Az}{1+Bz}\right) dt$$

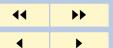
$$= \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) (1+Bz)^{-1} {}_{2}F_{1}\left(1, 1; \frac{\mu+p}{\lambda(p+m)} + 1; \frac{Bz}{1+Bz}\right) & (B \neq 0) \\ 1 + \frac{(\mu+p)A}{\mu+p+\lambda(p+m)}z & (B = 0) \end{cases}$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 14 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

by a change of variables followed by the use of the identities (2.2), (2.3), (2.4) and (2.5), respectively. This proves the assertion (3.3).

To prove (3.2), we follow the lines of proof of Theorem 1 in [18]. The result is the best possible as ψ is the best dominant. This completes the proof of Theorem 3.2.

Setting $A=1-(2\eta/p)$, B=-1, $\mu=0$, m=1-p, $\alpha_1=\lambda=p$ and $\alpha_{i+1}=\beta_i$ $(i=1,2,\ldots,s)$ in Theorem 3.2 followed by the use of the identity (2.6), we get

Corollary 3.3. *If* $f \in \sum_{p}$ *satisfies*

$$-\Re \left\{ z^{p+1} \left((p+2)f'(z) + zf''(z) \right) \right\} > \eta \quad (0 \le \eta < p; z \in \mathbb{U}),$$

then

$$-\Re\{z^{p+1}f'(z)\} > \eta + 2(p-\eta)(\ln 2 - 1) \quad (z \in \mathbb{U}).$$

The result is the best possible.

Putting $A=1-(2\eta/p)$, B=-1, $\mu=0$, m=2-p, $\alpha_1=\lambda=p$ and $\alpha_{i+1}=\beta_i$ $(i=1,2,\ldots,s)$ in Theorem 3.2, we obtain the following result due to Pap [11].

Corollary 3.4. If $f \in \sum_{p,2-p}$ satisfies

$$-\Re\left\{z^{p+1}\left((p+2)f'(z) + zf''(z)\right)\right\} > -\frac{p(\pi-2)}{4-\pi} \quad (z \in \mathbb{U}),$$

then

$$-\Re\{z^{p+1}f'(z)\} > 0 \quad (z \in \mathbb{U}).$$

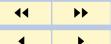
The result is the best possible.

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 15 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

The proof of the following result is much akin to that of Theorem 2 in [18] and we choose to omit the details.

Theorem 3.5. If
$$f \in \mathcal{MC}_{p,\alpha_1}^{\mu,m}(q,s;\eta) \ (0 \leq \eta < p)$$
, then

$$-\Re\left[z^{p+1}\left\{(1-\lambda)\left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f\right)'(z) + \lambda\left(\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_1)f\right)'(z)\right\}\right] > \eta$$

$$(|z| < R(p,\mu,\lambda,m)),$$

where

$$R(p,\mu,\lambda,m) = \left\lceil \frac{\sqrt{(\mu+p)^2 + \lambda^2(p+m)^2} - \lambda(p+m)}{\mu+p} \right\rceil^{\frac{1}{p+m}}.$$

The result is the best possible.

Upon replacing $\varphi(z)$ by $z^p \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z)$ in (3.3) and using the same techniques as in the proof of Theorem 3.2, we get the following result.

Theorem 3.6. If $f \in \sum_{p,m}$ satisfies

$$z^{p}\left\{(1-\lambda)\,\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_{1})f(z) + \lambda\,\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_{1})f(z)\right\} \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U}),$$

then

$$z^p \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z) \prec \psi(z) \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U})$$

and

$$\Re\left\{z^p \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z)\right\} > \rho \quad (z \in \mathbb{U}),$$

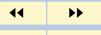
where ψ and ρ are given as in Theorem 3.2. The result is the best possible.

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 16 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Letting

$$A = \left\{ {}_{2}F_{1}\left(1,1;\frac{p}{\lambda(p+m)}+1;\frac{1}{2}\right) - 1 \right\} \left\{ 2 - {}_{2}F_{1}\left(1,1;\frac{p}{\lambda(p+m)}+1;\frac{1}{2}\right) \right\}^{-1},$$

 $B=-1, \ \mu=0, \ \alpha_1=p$ and $\alpha_{i+1}=\beta_i \ (i=1,2,\ldots,s)$ in Theorem 3.6, we obtain

Corollary 3.7. If $f \in \sum_{n,m}$ satisfies

(3.5)
$$\Re\left\{(1+\lambda)f(z) + \frac{\lambda}{p}z^{p+1}f'(z)\right\}$$

 $> \frac{3-2 \,_2F_1\left(1,1;\frac{p}{\lambda(p+m)}+1;\frac{1}{2}\right)}{2\left\{2-_2F_1\left(1,1;\frac{p}{\lambda(p+m)}+1;\frac{1}{2}\right)\right\}} \quad (z \in \mathbb{U}),$

then

$$\Re\{z^p f(z)\} > \frac{1}{2} \quad (z \in \mathbb{U}).$$

The result is the best possible.

For a function $f \in \sum_{p,m}$, we consider the integral operator $\mathcal{F}_{\delta,p}$ defined by

(3.6)
$$\mathcal{F}_{\delta,p}(z) = \mathcal{F}_{\delta,p}(f)(z)$$

$$= \frac{\delta}{z^{\delta+p}} \int_0^z t^{\delta+p-1} f(t) dt$$

$$= \left(z^{-p} + \sum_{k=m}^\infty \frac{\delta}{\delta+p+k} z^k\right) * f(z) \quad (\delta > 0; \ z \in \mathbb{U}^*).$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents

Page 17 of 33

Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

It follows from (3.6) that $\mathcal{F}_{\delta,p}(f) \in \sum_{p,m}$ and

$$(3.7) \ z \left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)\mathcal{F}_{\delta,p}(f)\right)'(z) = \delta \ \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f(z) - (\delta+p) \ \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)\mathcal{F}_{\delta,p}(f)(z).$$

Using (3.7) and the lines of proof of Theorem 1 [2], we obtain the following inclusion relation.

Theorem 3.8. Let $\phi \in \Omega$ with $\max_{z \in \mathbb{U}} \Re \{\phi(z)\} < (\delta + p - \eta)/(p - \eta) \ (0 \le \eta < p; \ \delta > 0)$. If $f \in \mathcal{MS}_{p,\alpha_1}^{\mu,m}(q,s;\eta;\phi)$, then $\mathcal{F}_{\delta,p}(f) \in \mathcal{MS}_{p,\alpha_1}^{\mu,m}(q,s;\eta;\phi)$.

Theorem 3.9. If $f \in \sum_{n,m}$ and the function $\mathcal{F}_{\delta,p}(f)$, defined by (3.6) satisfies

$$-\frac{z^{p+1}\left\{\left(1-\lambda\right)\;\left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_{1})\mathcal{F}_{\delta,p}(f)\right)'(z)+\lambda\;\left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_{1})f\right)'(z)\right\}}{p}\prec\frac{1+Az}{1+Bz}\quad(z\in\mathbb{U}),$$

then

$$-\Re\left\{\frac{z^{p+1}\left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)\mathcal{F}_{\delta,p}(f)\right)'(z)}{p}\right\} > \varrho \quad (z \in \mathbb{U}),$$

where

$$\varrho = \begin{cases}
\frac{A}{B} + \left(1 - \frac{A}{B}\right) (1 - B)^{-1} {}_{2}F_{1}\left(1, 1; \frac{\delta}{\lambda(p+m)} + 1; \frac{B}{B-1}\right) & (B \neq 0) \\
1 - \frac{\delta A}{\mu + p + \lambda(p+m)} & (B = 0).
\end{cases}$$

The result is the best possible.

Proof. If we let

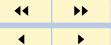
(3.8)
$$\varphi(z) = -\frac{z^{p+1} \left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) \mathcal{F}_{\delta,p}(f) \right)'(z)}{p} \quad (z \in \mathbb{U}),$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 18 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

then φ is of the form (2.1) and is analytic in \mathbb{U} . Using the identity (3.7) in (3.8) followed by differentiation of the resulting equation, we get

$$\varphi(z) + \frac{z\varphi'(z)}{\delta/\lambda} \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U}).$$

The proof of the remaining part follows by employing the techniques that proved Theorem 3.2.

Upon setting $A=1-(2\eta/p)$, B=-1, $\lambda=\mu=1$, $\alpha_1=p+1$ and $\alpha_{i+1}=\beta_i$ $(i=1,2,\ldots,s)$ in Theorem 3.9, we have

Corollary 3.10. If $f \in \sum_{C}(p; \eta)$ $(0 \le \eta < p)$, then the function $\mathcal{F}_{\delta,p}(f)$ defined by (3.6) belongs to the class $\sum_{C}(p; \varkappa)$, where

$$\varkappa = \eta + (p - \eta) \left\{ {}_{2}F_{1}\left(1, 1; \frac{\delta}{p+m} + 1; \frac{1}{2} \right) - 1 \right\}.$$

The result is the best possible.

Remark 1. Under the hypothesis of Theorem 3.9 and using the fact that

$$z^{p+1} \left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) \mathcal{F}_{\delta,p}(f) \right)'(z) = \frac{\delta}{z^{\delta}} \int_0^z t^{\delta+p} \left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f \right)'(t) dt \quad (\delta > 0; z \in \mathbb{U}),$$

we obtain

$$-\Re\left\{\frac{\delta}{z^{\delta}}\int_{0}^{z}t^{\delta+p}\left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_{1})f\right)'(t)\ dt\right\} > \varrho \quad (z \in \mathbb{U}),$$

where ϱ is given as in Theorem 3.9.

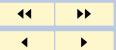
Following the same lines of proof as in Theorem 3.9, we obtain

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 19 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Theorem 3.11. If $f \in \sum_{p,m}$ and the function $\mathcal{F}_{\delta,p}(f)$ defined by (3.6) satisfies

$$z^{p}\left\{(1-\lambda)\ \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_{1})\mathcal{F}_{\delta,p}(f)(z) + \lambda\ \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_{1})f(z)\right\} \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U}),$$

then

$$\Re\left\{z^p \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) \mathcal{F}_{\delta,p}(f)(z)\right\} > \varrho \quad (z \in \mathbb{U}),$$

where ϱ is given as in Theorem 3.9. The result is the best possible.

In the special case when $A=1-2\eta$, B=-1, $\lambda=1$, $\mu=1-p$, $\alpha_1=\delta+1$, $\beta_1=\delta$, $\alpha_i=\beta_i$ $(i=2,3,\ldots,s)$ and $\alpha_{s+1}=1$ in Theorem 3.11, we get

Corollary 3.12. If $f \in \sum_{p,m}$ satisfies

$$\Re\{z^p f(z)\} > \eta \quad (0 \le \eta < 1; \ z \in \mathbb{U}),$$

then

$$\Re\left\{\frac{\delta}{z^{\delta}} \int_{0}^{z} t^{\delta+p-1} f(t) dt\right\} > \eta + (1-\eta) \left\{ {}_{2}F_{1}\left(1,1; \frac{\delta}{p+m}+1; \frac{1}{2}\right) - 1\right\}$$

$$(\delta > 0; z \in \mathbb{U}).$$

The result is the best possible.

Theorem 3.13. Let $-1 \le B_j < A_j \le 1 \ (j = 1, 2)$. If $f_j \in \sum_p$ satisfies the following subordination condition:

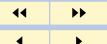
(3.9)
$$z^{p} \left\{ (1 - \lambda) \mathcal{H}^{\mu}_{p,q,s}(\alpha_{1}) f_{j}(z) + \lambda \mathcal{H}^{\mu+1}_{p,q,s}(\alpha_{1}) f_{j}(z) \right\} \prec \frac{1 + A_{j}z}{1 + B_{j}z}$$
$$(j = 1, 2; \ z \in \mathbb{U}),$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 20 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

then

$$(3.10) \qquad \Re\left[z^{p}\left\{(1-\lambda)\mathcal{H}^{\mu}_{p,q,s}(\alpha_{1})\mathfrak{g}(z)+\lambda\mathcal{H}^{\mu+1}_{p,q,s}(\alpha_{1})\mathfrak{g}(z)\right\}\right] > \tau \quad (z \in \mathbb{U}),$$

where

(3.11)
$$\mathfrak{g}(z) = \mathcal{H}^{\mu}_{n,a,s}(\alpha_1)(f_1 * f_2)(z) \quad (z \in \mathbb{U}^*)$$

and

$$\tau = 1 - \frac{4(A_1 - B_1)(A_2 - B_2)}{(1 - B_1)(1 - B_2)} \left\{ 1 - \frac{1}{2} {}_{2}F_1\left(1, 1; \frac{\mu + p}{\lambda} + 1; \frac{1}{2}\right) \right\}.$$

The result is the best possible when $B_1 = B_2 = -1$.

Proof. Setting

(3.12)
$$\varphi_{j}(z) = z^{p} \left\{ (1 - \lambda) \mathcal{H}^{\mu}_{p,q,s}(\alpha_{1}) f_{j}(z) + \lambda \mathcal{H}^{\mu+1}_{p,q,s}(\alpha_{1}) f_{j}(z) \right\}$$
$$(j = 1, 2; \ z \in \mathbb{U}),$$

we note that φ_j is of the form (2.7) for each j=1,2 and using (3.9), we obtain

$$\varphi_j \in \mathcal{P}(\gamma_j) \quad \left(\gamma_j = \frac{1 - A_j}{1 - B_j}; \ j = 1, 2\right)$$

so that by (2.8),

(3.13)
$$\varphi_1 * \varphi_2 \in \mathcal{P}(\gamma_3) \quad (\gamma_3 = 1 - 2(1 - \gamma_1)(1 - \gamma_2)).$$

Using the identity (1.7) in (3.12), we conclude that

$$\mathcal{H}^{\mu}_{p,q,s}(\alpha_1)f_j(z) = \frac{\mu + p}{\lambda} z^{-p - \frac{\mu + p}{\lambda}} \int_0^z t^{\frac{\mu + p}{\lambda} - 1} \varphi_j(t) dt$$

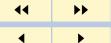
$$(j = 1, 2; \ z \in \mathbb{U}^*)$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 21 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

which, in view of (3.11) yields

$$\mathcal{H}^{\mu}_{p,q,s}(\alpha_1)\mathfrak{g}(z) = \frac{\mu + p}{\lambda} z^{-p - \frac{\mu + p}{\lambda}} \int_0^z t^{\frac{\mu + p}{\lambda} - 1} \varphi_0(t) dt \quad (z \in \mathbb{U}^*),$$

where, for convenience

(3.14)
$$\varphi_0(z) = z^p \left\{ (1 - \lambda) \mathcal{H}^{\mu}_{p,q,s}(\alpha_1) \mathfrak{g}(z) + \lambda \mathcal{H}^{\mu+1}_{p,q,s}(\alpha_1) \mathfrak{g}(z) \right\}$$

$$= \frac{\mu + p}{\lambda} z^{-\frac{\mu+p}{\lambda}} \int_0^z t^{\frac{\mu+p}{\lambda}-1} \left(\varphi_1 * \varphi_2 \right)(t) dt \quad (z \in \mathbb{U}).$$

Now, by using (3.13) in (3.14) and by appealing to Lemma 2.3 and Lemma 2.5, we get

$$\Re\{\varphi_{0}(z)\} = \frac{\mu + p}{\lambda} \int_{0}^{1} s^{\frac{\mu + p}{\lambda} - 1} \Re(\varphi_{1} * \varphi_{2})(sz) ds$$

$$\geq \frac{\mu + p}{\lambda} \int_{0}^{1} s^{\frac{\mu + p}{\lambda} - 1} \left(2\gamma_{3} - 1 + \frac{2(1 - \gamma_{3})}{1 + s|z|} \right) ds$$

$$> \frac{\mu + p}{\lambda} \int_{0}^{1} s^{\frac{\mu + p}{\lambda} - 1} \left(2\gamma_{3} - 1 + \frac{2(1 - \gamma_{3})}{1 + s} \right) ds$$

$$= 1 - \frac{4(A_{1} - B_{1})(A_{2} - B_{2})}{(1 - B_{1})(1 - B_{2})} \left(1 - \frac{\mu + p}{\lambda} \int_{0}^{1} s^{\frac{\mu + p}{\lambda} - 1} (1 + s)^{-1} ds \right)$$

$$= 1 - \frac{4(A_{1} - B_{1})(A_{2} - B_{2})}{(1 - B_{1})(1 - B_{2})} \left\{ 1 - \frac{1}{2} {}_{2}F_{1} \left(1, 1; \frac{\mu + p}{\lambda} + 1; \frac{1}{2} \right) \right\}$$

$$= \tau \quad (z \in \mathbb{U}).$$

This proves the assertion (3.10).

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents

Page 22 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

When $B_1 = B_2 = -1$, we consider the functions $f_j \in \sum_p$ defined by

$$\mathcal{H}^{\mu}_{p,q,s}(\alpha_1)f_j(z) = \frac{\mu + p}{\lambda} z^{-p - \frac{\mu + p}{\lambda}} \int_0^z t^{\frac{\mu + p}{\lambda} - 1} \left(\frac{1 + A_j t}{1 - t}\right) dt$$
$$(j = 1, 2; \ z \in \mathbb{U}^*).$$

Then it follows from (3.14) that and Lemma 2.2 that

$$\varphi_0(z)$$

$$= \frac{\mu + p}{\lambda} \int_{0}^{1} s^{\frac{\mu + p}{\lambda} - 1} \left(1 - (1 + A_{1})(1 + A_{2}) + \frac{(1 + A_{1})(1 + A_{2})}{1 - sz} \right) ds$$

$$= 1 - (1 + A_{1})(1 + A_{2}) + (1 + A_{1})(1 + A_{2})(1 - z)^{-1} {}_{2}F_{1} \left(1, 1; \frac{\mu + p}{\lambda} + 1; \frac{z}{z - 1} \right)$$

$$\longrightarrow 1 - (1 + A_{1})(1 + A_{2}) + \frac{1}{2}(1 + A_{1})(1 + A_{2}) {}_{2}F_{1} \left(1, 1; \frac{\mu + p}{\lambda} + 1; \frac{1}{2} \right) \text{ as } z \to 1^{-},$$

which evidently completes the proof of Theorem 3.13.

By taking $A_j = 1 - 2\eta_j$, $B_j = -1$ (j = 1, 2), $\mu = 0$, $\alpha_1 = p$ and $\alpha_{i+1} = \beta_i$ (i = 1, 2, ..., s) in Theorem 3.13, we get the following result which refines the corresponding work of Yang [22, Theorem 4].

Corollary 3.14. If each of the functions $f_j \in \sum_{n}$ satisfies

$$\Re\left[z^{p}\left\{\left(1+\lambda\right)f_{j}(z)+\frac{\lambda}{p}zf_{j}'(z)\right\}\right]>\eta_{j}$$

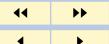
$$(0\leq\eta_{j}<1,\ j=1,2;\ z\in\mathbb{U}),$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 23 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

then

$$\Re\left[z^p\left\{(1+\lambda)\left(f_1*f_2\right)(z)+\frac{\lambda}{p}\,z(f_1*f_2)'(z)\right\}\right]>\sigma\quad(z\in\mathbb{U}),$$

where

$$\sigma = 1 - 4(1 - \eta_1)(1 - \eta_2) \left\{ 1 - \frac{1}{2} {}_{2}F_{1}\left(1, 1; \frac{p}{\lambda} + 1; \frac{1}{2}\right) \right\}.$$

The result is the best possible.

For $A_j = 1 - 2\eta_j$, $B_j = -1$ (j = 1, 2), $\mu = 0$, $\lambda = 1$, $\alpha_1 = p + 1$ and $\alpha_{i+1} = \beta_i$ (i = 1, 2, ..., s) in Theorem 3.13, we obtain

Corollary 3.15. *If each of the functions* $f_i \in \sum_n satisfies$

$$\Re\{z^p f_j(z)\} > \eta_j \quad (0 \le \eta_j < 1, \ j = 1, 2; \ z \in \mathbb{U}),$$

then

$$\Re\left\{z^{p}(f_{1}*f_{2})(z)\right\} > 1 - 4(1 - \eta_{1})(1 - \eta_{2})\left\{1 - \frac{1}{2} {}_{2}F_{1}\left(1, 1; p + 1; \frac{1}{2}\right)\right\} \quad (z \in \mathbb{U}).$$

The result is the best possible.

Theorem 3.16. Let $-1 \le B_j < A_j \le 1 \ (j = 1, 2)$. If each of the functions $f_j \in \sum_{p,m}$ satisfies

(3.15)
$$z^{p}\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_{1})f_{j}(z) \prec \frac{1+A_{j}z}{1+B_{j}z} \quad (j=1,2;\ z\in\mathbb{U}),$$

then the function $\mathfrak{h} = \mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1)(f_1 * f_2)$ satisfies

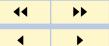
$$\Re\left\{\frac{\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_1)\mathfrak{h}(z)}{\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)\mathfrak{h}(z)}\right\} > 0 \quad (z \in \mathbb{U}),$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 24 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

provided

(3.16)
$$\frac{(A_1 - B_1)(A_2 - B_2)}{(1 - B_1)(1 - B_2)} < \frac{2\mu + 3p + m}{2\left[\left\{(p + m)_2 F_1\left(1, 1; \frac{\mu + p}{p + m}; \frac{1}{2}\right) - 2\right\}^2 + 2(\mu + p)\right]}.$$

Proof. From (3.15), we have

$$z^p \mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_1) f_j(z) \in \mathcal{P}(\gamma_j) \quad \left(\gamma_j = \frac{1 - A_j}{1 - B_j}; \ j = 1, 2\right).$$

Thus, it follows from (2.8) that

(3.17)
$$\Re\left\{z^{p}\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_{1})\mathfrak{h}(z) + \frac{z\left(z^{p}\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_{1})\mathfrak{h}\right)'(z)}{\mu+p}\right\}$$

$$= \Re\left\{z^{p}\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_{1})f_{1}(z) * z^{p}\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_{1})f_{2}(z)\right\}$$

$$> 1 - \frac{2(A_{1} - B_{1})(A_{2} - B_{2})}{(1 - B_{1})(1 - B_{2})} \quad (z \in \mathbb{U}),$$

which in view of Lemma 2.1 for

$$A = -1 + 4 \frac{(A_1 - B_1)(A_2 - B_2)}{(1 - B_1)(1 - B_2)},$$

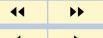
$$B = -1, n = p + m \text{ and } \kappa = \mu + p$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 25 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

yields

(3.18)
$$\Re\left\{z^{p}\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_{1})\mathfrak{h}(z)\right\}$$

$$> 1 + \frac{(A_{1} - B_{1})(A_{2} - B_{2})}{(1 - B_{1})(1 - B_{2})}\left\{{}_{2}F_{1}\left(1, 1; \frac{\mu + p}{p + m}; \frac{1}{2}\right) - 2\right\} \ (z \in \mathbb{U}).$$

From (3.18), by using Theorem 3.6 for

$$A = -1 - 4 \frac{(A_1 - B_1)(A_2 - B_2)}{(1 - B_1)(1 - B_2)} \left\{ {}_2F_1 \left(1, 1; \frac{\mu + p}{p + m}; \frac{1}{2} \right) - 2 \right\},$$

$$B = -1 \quad \text{and} \quad \lambda = 1.$$

we deduce that

$$(3.19) \quad \Re\left\{z^{p}\vartheta(z)\right\}$$

$$> 1 - 2\frac{(A_{1} - B_{1})(A_{2} - B_{2})}{(1 - B_{1})(1 - B_{2})} \left\{{}_{2}F_{1}\left(1, 1; \frac{\mu + p}{p + m}; \frac{1}{2}\right) - 2\right\}^{2} \quad (z \in \mathbb{U}),$$

where $\vartheta(z) = z^p \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) \mathfrak{h}(z)$. If we set

$$\varphi(z) = \frac{\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_1)\mathfrak{h}(z)}{\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)\mathfrak{h}(z)} \quad (z \in \mathbb{U}),$$

then φ is of the form (2.1), analytic in $\mathbb U$ and a simple calculation gives

$$(3.20) \quad z^{p}\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_{1})\mathfrak{h}(z) + \frac{z\left(z^{p}\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_{1})\mathfrak{h}\right)'(z)}{\mu+p}$$

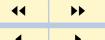
$$= \vartheta(z)\left\{ (\varphi(z))^{2} + \frac{z\varphi'(z)}{\mu+p} \right\} = \Psi\left(\varphi(z), z\varphi'(z); z\right) \ (z \in \mathbb{U}),$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 26 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where $\Psi(u, v; z) = \vartheta(z) \{u^2 + (v/(\mu + p))\}$. Thus, by applying (3.17) in (3.20), we get

$$\Re\left\{\Psi\left(\varphi(z), z\varphi'(z); z\right)\right\} > 1 - 2\frac{(A_1 - B_1)(A_2 - B_2)}{(1 - B_1)(1 - B_2)} \quad (z \in \mathbb{U}).$$

Now, for all real $x, y \leq -(p+m)(1+x^2)/2$, we have

$$\Re \left\{ \Psi(ix, y; z) \right\} = \left(\frac{y}{\mu + p} - x^2 \right) \Re \left\{ \vartheta(z) \right\}
\leq -\frac{p + m}{2(\mu + p)} \left\{ 1 + x^2 + \frac{2(\mu + p)}{p + m} x^2 \right\} \Re \left\{ \vartheta(z) \right\}
\leq -\frac{p + m}{2(\mu + p)} \Re \left\{ \vartheta(z) \right\} \leq 1 - 2 \frac{(A_1 - B_1)(A_2 - B_2)}{(1 - B_1)(1 - B_2)} \quad (z \in \mathbb{U}),$$

by (3.16) and (3.19). Thus, by Lemma 2.4, we get $\Re\{\varphi(z)\} > 0$ in $\mathbb U$. This completes the proof of Theorem 3.16.

Taking $A_j = 1 - 2\eta_j$, $B_j = -1$ (j = 1, 2), $\mu = 0$, $\lambda = 1$, $\alpha_1 = p + 1$ and $\alpha_{i+1} = \beta_i$ (i = 1, 2, ..., s) in Theorem 3.16, we have

Corollary 3.17. If each of the functions $f_j \in \sum_{p,m}$ satisfies

$$\Re\{z^p f_j(z)\} > \eta_j \quad (0 \le \eta_j < 1, \ j = 1, 2; \ z \in \mathbb{U}),$$

then

$$\Re\left\{\frac{z^{2p}(f_1 * f_2)(z)}{\int_0^z t^{2p-1}(f_1 * f_2)(t) dt}\right\} > 0 \quad (z \in \mathbb{U}),$$

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 27 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

provided

$$(1-\eta_1)(1-\eta_2) < \frac{3p+m}{2\left[\left\{(p+m)_2F_1\left(1,1;\frac{p}{p+m};\frac{1}{2}\right)-2\right\}^2+2p\right]}.$$

Theorem 3.18. If $f \in \mathcal{MC}_{p,\alpha_1}^{\mu,m}(q,s;\lambda;A,B)$ and $g \in \sum_{p,m}$ satisfies (3.5), then $f * g \in \mathcal{MC}_{p,\alpha_1}^{\mu,m}(q,s;\lambda;A,B)$.

Proof. From Corollary 3.7, it follows that $\Re\{g(z)\} > 1/2$ in \mathbb{U} . Since

$$-\frac{z^{p+1}\left\{(1-\lambda)(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)(f*g))'(z) + \lambda(\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_1)(f*g))'(z)\right\}}{p}$$

$$=\frac{z^{p+1}\left\{(1-\lambda)\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f)'(z) + \lambda(\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_1)f)'(z)\right\}}{p}*g(z) \quad (z \in \mathbb{U})$$

and the function (1 + Az)/(1 + Bz) is convex(univalent) in \mathbb{U} , the assertion of the theorem follows from (1.10) and Lemma 2.5.

Theorem 3.19. Let $0 \neq \beta \in \mathbb{C}$ and $0 < \gamma \leq p$ be such that either $|1 + 2\beta\gamma| \leq 1$ or $|1 - 2\beta\gamma| \leq 1$. If $f \in \sum_{p}$ satisfies

(3.21)
$$\Re\left\{\frac{\mathcal{H}_{p,q,s}^{\mu+1}(\alpha_1)f(z)}{\mathcal{H}_{p,q,s}^{\mu}(\alpha_1)f(z)}\right\} < 1 + \frac{\gamma}{\mu+p} \quad (z \in \mathbb{U}),$$

then

$$\left\{z^{p}\mathcal{H}^{\mu}_{p,q,s}(\alpha_{1})f(z)\right\}^{\beta} \prec q(z) = (1-z)^{2\beta\gamma} \quad (z \in \mathbb{U})$$

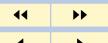
and q is the best dominant.

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 28 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. Letting

(3.22)
$$\varphi(z) = \left\{ z^p \mathcal{H}^{\mu}_{p,q,s}(\alpha_1) f(z) \right\}^{\beta} \quad (z \in \mathbb{U})$$

and choosing the principal branch in (3.22), we note that φ is analytic in $\mathbb U$ with $\varphi(0)=1$. Differentiating (3.22) logarithmically, we deduce that

$$\frac{z\varphi'(z)}{\varphi(z)} = \beta \left\{ p + \frac{z \left(\mathcal{H}^{\mu}_{p,q,s}(\alpha_1) f \right)'(z)}{\mathcal{H}^{\mu}_{p,q,s}(\alpha_1) f(z)} \right\} \quad (z \in \mathbb{U}),$$

which in view of the identities (1.7) and (3.21) give

(3.23)
$$-p + \frac{z\varphi'(z)}{\beta \varphi(z)} \prec -p \frac{1 - \left(1 - \frac{2\gamma}{p}\right)z}{1 - z} \quad (z \in \mathbb{U}).$$

If we take $q(z)=(1-z)^{2\beta\gamma},\ \theta(z)=-p,\ \Phi(z)=1/\beta z$ in Lemma 3.11, then by Lemma 2.6, q is univalent in $\mathbb U$. Further, it is easy to see that $q,\ \theta$ and Φ satisfy the hypothesis of Lemma 2.7. Since

$$Q(z) = zq'(z)\Phi(q(z)) = -\frac{2\gamma z}{1-z}$$

is starlike (univalent) in \mathbb{U} ,

$$h(z) = \frac{-p + (p-2\gamma)z}{1-z} \quad \text{and} \quad \Re\left\{\frac{zh'(z)}{Q(z)}\right\} = \Re\left\{\frac{1}{1-z}\right\} > 0 \quad (z \in \mathbb{U}),$$

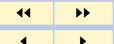
it is readily seen that the conditions (i) and (ii) of Lemma 2.7 are satisfied. Thus, the assertion of the theorem follows from (3.23) and Lemma 2.7.

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents



Page 29 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Putting $\mu=0,\ \gamma=p(1-\eta),\ \beta=-1/2\gamma,\ \alpha_1=p$ and $\alpha_{i+1}=\beta_i$ $(i=1,2,\ldots,s)$ in Theorem 3.19, we deduce that

Corollary 3.20. *If* $f \in \sum_{p}$ *satisfies*

$$-\Re\left\{\frac{zf'(z)}{f(z)}\right\} > p\eta \quad (0 \le \eta < 1; \ z \in \mathbb{U}),$$

then

$$\Re \left\{ z^p f(z) \right\}^{-\frac{1}{2p(1-\eta)}} > \frac{1}{2} \quad (z \in \mathbb{U}).$$

The result is the best possible.

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

References

- [1] M.K. AOUF, Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, *Comput. Math. Appl.*, **55** (2008), 494–509.
- [2] N.E. CHO AND I.H. KIM, Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, *Appl. Math. Comput.*, **187** (2007), 115–121
- [3] N.E. CHO AND K.I. NOOR, Inclusion properties for certain classes of meromorphic functions associated with Choi-Saigo-Srivastava operator, *J. Math. Anal. Appl.*, **320** (2006), 779–786.
- [4] N.E. CHO, O.S. KWON AND H.M. SRIVASTAVA, Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations, *Integral Transforms Spec. Funct.*, **16** (2005), 647–659.
- [5] J.H. CHOI, M. SAIGO AND H.M. SRIVASTAVA, Some inclusion properties of a certain family of integral operators, *J. Math. Anal. Appl.*, **276** (2002), 432–445.
- [6] M.R. GANIGI AND B.A. URALEGADDI, New criteria for meromorphic univalent functions, *Bull. Math. Soc. Sci. Math. Roumanie* (N.S.) **33**(81) (1989), 9–13.
- [7] J.-L. LIU AND H.M. SRIVASTAVA, A linear operator and associated families of meromorphically multivalent functions, *J. Math. Anal. Appl.*, **259** (2000), 566–581.
- [8] S.S. MILLER AND P.T. MOCANU, Differential subordinations and univalent functions, *Michigan Math. J.*, **28** (1981), 157–171.

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit

vol. 10, iss. 1, art. 13, 2009

Title Page

Contents

Page 31 of 33

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

- [9] S.S. MILLER AND P.T. MOCANU, On some classes of first-order differential subordinations, *Michigan Math. J.*, **32** (1985), 185–195.
- [10] S.S. MILLER AND P.T. MOCANU, *Differential Subordinations: Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
- [11] M. PAP, On certain subclasses of meromorphic *m*-valent close-to-convex functions, *Pure Math. Appl.*, **9** (1998), 155–163.
- [12] D.Ž. PASHKOULEVA, The starlikeness and spiral-convexity of certain subclasses of analytic functions, in: H.M. Srivastava and S. Owa(Editors), *Current Topics in Analytic Function Theory*, pp.266-273, World Scientific Publishing Company, Singapore, New Jersey, London and Hongkong, 1992.
- [13] M.S. ROBERTSON, Certain classes of starlike functions, *Michigan Math. J.*, **32** (1985), 134–140.
- [14] F. RONNING, Uniformly convex functions and a corresponding class of star-like functions, *Proc. Amer. Math. Soc.*, **118** (1993), 189–196.
- [15] S. RUSCHEWEYH, New criteria for univalent functions, *Proc. Amer. Math. Soc.*, **49** (1975), 109–115.
- [16] R. SINGH AND S. SINGH, Convolution properties of a class of starlike functions, *Proc. Amer. Math. Soc.*, **106** (1989), 145–152.
- [17] H.M. SRIVASTAVA AND P.W. KARLSSON, *Multiple Gaussian Hypergeometric Series*, Halsted Press, Ellis Horwood Limited, Chichester, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1985.

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009

Title Page

Contents

Page 32 of 33

Go Back

journal of inequalities in pure and applied mathematics

Full Screen

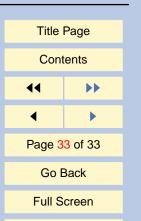
Close

issn: 1443-5756

- [18] H.M. SRIVASTAVA AND J. PATEL, Applications of differential subordinations to certain subclasses of meromorphically multivalent functions, *J. Ineq. Pure Appl. Math.*, **6**(3) (2005), Art. 88. [ONLINE http://jipam.vu.edu.au/article.php?sid=752].
- [19] H.M. SRIVASTAVA, D.-G. YANG AND N-ENG XU, Some subclasses of meromorphically multivalent functions associated with a linear operator, *Appl. Math. Comput.*, **195** (2008), 11–23.
- [20] J. STANKIEWICZ AND Z. STANKIEWICZ, Some applications of the Hadamard convolution in the theory of functions, *Ann. Univ. Mariae Curie-Skłodowska Sect.A*, **40** (1986), 251–265.
- [21] E.T. WHITTAKER AND G.N. WATSON, A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Ed.(Reprinted), Cambridge University Press, Cambridge, 1927.
- [22] D.-G. YANG, Certain convolution operators for meromorphic functions, *Southeast Asian Bull. Math.*, **25** (2001), 175–186.

Meromorphically Multivalent Functions

Jagannath Patel and Ashis Ku. Palit vol. 10, iss. 1, art. 13, 2009



journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756