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Abstract: In the present paper, we investigate several inclusion relationships and other in-

teresting properties of certain subclasses of meromorphically multivalent func-
tions which are defined here by means of a linear operator involving the gen-
eralized hypergeometric function. Some interesting applications on Hadamard

product concerning this and other classes of integral operators are also consid-

ered.
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1. Introduction

For any integern > 1 —p,lety_  be the class of functions of the form:

(1.1) f)=27+4> w (peN={12..})
k=m

which are analytic ang-valent in thepuncturedunit diskU* = {z € C : 0 <
2| <1} =U\ {0}. We alsodenotg_ , , = > . For0 = «a < p, we denote by
>os(pra), Yo k(p;ya) and . (p; ), the subclasses of ) consisting of all mero-
morphic functions which are, respectivebyyalently starlike of order, p-valently
convex of ordery andp-valently close-to-convex of order.

If f andg are analytic inU, we say thatf is subordinate tg, written f < ¢ or
(more precisely)(z) < g(z) z € U, if there exists a functiow, analytic inU with
w(0) = 0 and|w(z)| < 1 such thatf(z) = g(w(2)), z € U. In particular, ifg is
univalent inU, then we have the following equivalence:

f(z) < 9(2) (z € U) <= f(0) = g(0) and f(U) C g(U).
For a functionf € > ., given by (L.1) andg € > defined byg(z) =
2P+ 30 b2*, we define the Hadamard product (or convolutiony @ndg by

f(2)xg(z) = (fxg)(z) =277+ > apz" (pEN).

For real or complex numbers

a1, as,..., 0 and By, B, B (B¢ Zy ={0,-1,-2,...}; j=1,2,....,5),
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we consider thgeneralized hypergeometric functigh; (see, for example, 1[7])
defined as follows:

(e 9]

(1.2) Fslar, . .,ap 61,0, 05 2) = % (B (B k!

(g=s+1; ¢,s e Ng=NU{0}; z € ),

where(x), denotes thdPochhammesymbol (or theshifted factoria) defined, in
terms of the Gamma functiadn, by

(2) CT@+k)  Jz@+1)(z+2)---(z+k—-1) (keN)
YT T o (k= 0).

Corresponding to the functiop, (o, . .., ag; B, - - -, Bs; 2) given by
(13) ¢p(a17 s aaq; ﬁla o 7/88; Z) =27 qu(ab s 7aq;517 s aﬁs; 2)7

we introduce a functiom,, ,(a1, . .., a4 1, - - ., Os; 2) defined by

(1.4)  dplou, ..o g P15 B 2) * ppulan, .o ag; By Bs; 2)
1

:W (u>—p; z€U").

We now define a linear operatdfy’” (o, ..., aq; B1, .-+, Bs) me — me
by

(15) H;?é{;(ala"waq;ﬂl?“'>Bs>f(2) :¢p,,u(0517'"705q;617"'7ﬁs;2)*f(z)
<ai7ﬁj€C\Za§ =12, =125 pu>-p €D ZGU*)-

p?m
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For convenience, we write

Hya(ars o ag; Brs. -, Bs) = Hyithi(ean)  and

H;;g“@“) = Hz,q,s<041> (/’L > _p>
If fis given by (L..1), then from (..5), we deduce that

(1.6) H™H () f(2) = 2P + i (1 + P)ptu(BO)ptr - - (Bs)ptk a2

e P (a1)pk -+ (Qg)pri
(u>—p; z€U).

and it is easily verified froml(6) that

(1.7) = (M (0n) f) (2) = (1 + p) Hpss (en) £(2) — (1 + 2p) M () £(2)
and

(18) = (Mo + 1)) (2) = an Hyfi(an) f(2) = (p + an)Hpi(an) f(2).

We note that the linear operatéf:* (a,) is closely related to the Choi-Saigo-
Srivastava operator5] for analytic functions and is essentially motivated by the

operators defined and studied i8].[The linear operaton;;fs(al) was investigated

recently by Cho and Kim7], whereasH;’;f’l(c, Lia;z) = Ly(a,c) (ceR, a ¢ Zy)
is the operator studied i7]. In particular, we have the following observations:

Bz =L / () d

2% J

() Hyly s+ 1,81, Bsi B, -

(") H;rjs’%ljs(p7 617 “'768; 617 ,/Bs)f(Z) = ngs’1+175<p+17617 "'7/88; 617 7ﬁs)f(z)
= f(2);
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("I) H;ﬁ;i—l,s(p’ 517 s 765; ﬂl? s 755)]%2) = Zf (Z) _; 2pf(2)’

(V) H o (p+ 1,81,y Bsi Bry o Bo) f(2) = ) +p(3f91+ 1)f(z);

(V) H;;-%lrts(ﬁly Boy .oy Bs, 1501, ... ,ﬂs)f(z) = ; _ Dn+p_1f(2)

2P(1 — z)ntp
(n is an integer> —p), the operator studied in6], and

N il ) z _
(VI) Hp,s’}l»l,ps((s—i_17627"‘76871;67627'"768).][.(2) = 25+p/ t§+p lf(t) dt
0

(0 > 0;z € U*), the integral operator defined by.().

Let €2 be the class of all functiong which are analytic, univalent ity and for
which ¢(U) is convex withg(0) = 1 andR {¢(z)} > 0in U.

Next, by making use of the linear operafdf.(«; ), we introduce the following
subclasses of ..

Definition 1.1. A functionf € 3 is said to be in the clas81S) (¢, s;m; ¢), if
it satisfies the following subordination condition:

L[z (Hpka)f) (2)
1.9 — P + < ¢z
&9 p—1 { Hneanfz) o)
(pe 0<n<p, pu>—p; z€l).
In particular, for fixed parametersandB (—1 < B < A £ 1), we set

1+A
MSHT (q,S;n; Z)

= MSp (¢, 8:m;A,B) .

14+ Bz
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It is easy to see that
MSY, (4,505 9) = MS,i41.0, (g, 5375 ¢) and
MSYR (g, 5103 A, B) = MS 1.0, (g, 5,13 A, B)
are the function classes studied by Cho and Kzin |
Definition 1.2. For fixed parameterst and B, a functionf € vam is said to be in
the classMCL™ (¢, s; \; A, B), if it satisfies the following subordination condition:

p,o1
AL = N (H () f) (2) + MH (on) ) (2) ) PR
D 1+ Bz
(-1SB<AZS1,A20, pu>—p; z€U).

(1.10) —

To make the notation simple, we writd1C/" (q, s;O;l—%”,—) =

MCE™ (q, s;m), the class of functiong € vam satisfying the condition:

p,a1
_%{z”“ (Hg:‘éfi,(al)f)/ (z)} >n (0=Sn<p;zel).

Meromorphically multivalent functions have been extensively studied by (for ex-
ample) Liu and Srivastava/], Cho et al. B], Srivastava and Patel§], Cho and
Kim [2], Aouf [1], Srivastava et al.]9] and others.

The object of the present paper is to investigate several inclusion relationships
and other interesting properties of certain subclasses of meromorphically multiva-
lent functions which are defined here by means of the linear opefgpt (a:)
involving the generalized hypergeometric function. Some interesting applications of
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2. Preliminaries

To prove our results, we need the following lemmas.

Lemma 2.1 ([8], see also10]). Letthe functiorh be analytic and convex(univalent)

in U with 2(0) = 1. Suppose also that the functigrgiven by
(2.1) $(2) =1+ cp2" + o124+ (nEN)
is analytic inU. If
6)+ 2 L) () 20,5 £0; 2 T,
then
$(z) < q(z) =

andq is the best dominant.

SI=

2 /ztﬁlh(t) dt < h(z) (z€U)

The following identities are well-knowrRfl, Chapter 14].
Lemma 2.2. For real or complex numbers, b, ¢ (¢ ¢ Z, ), we have

(2.2) /01 71— 1) (1 — t2) %t

SO p a6 2) (R(e) > D) > 0)
[(c)
(2.3) o F1(a,b; ¢;2) = 2 F1(b, a; ¢; 2)
(2.4) oFi(a,byc;2) = (1 — 2) % F (a, c—b;c; z—il)

(2.5) (b4+1)2F1(1,b;0+ 1;2) = (b+ 1) + bz o Fi (L, 0+ 1,0+ 2; 2)
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and
1

We denote byP(v), the class of functiong of the form
(2.7) V(z) =14z +c2® +-
which are analytic ifU and satisfy the inequality:
R{y(z)t >7 (0=v<1; z€l).
It is known [20] that if f; € P(y;) (0 = v; < 1; j =1,2), then
(2.8) (fixfo)(z) €P(rs) (13=1-2(1-m)(1—")).

The result is the best possible.
We now state

Lemma 2.3 ([12]). If the functiory, given by £.7) belongs to the clasB(y), then

2(1 —9)

R(v(2)) 227~ 1+ S

0S~v<1; zel).

Lemma 2.4 (B, 10)). Let the function? : C?> x U — C satisfy the condition
RA{V(iz,y;2)} S efore > 0, allreal z andy < —n(1 + 22)/2, wheren € N. If ¢
defined byZ.1) is analytic inU and R {¥ (4(z), 2¢'(2); 2)} > €, thenR{¢(z)} > 0
inU.

We now recall the following result due to Singh and Singj6] |
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Lemma 2.5. Let the functionb be analytic inU with ®(0) = 1 and®R{®(2)} > 1/2
in U. Then for any functiod, analytic inU, (® x F)(U) is contained in the convex
hull of F/(U).

Lemma 2.6 ([L3]). The function(1 — z)% = e?l°e(1=2) " 3 £ 0 is univalent inU, if
( satisfies eithefg + 1| = 1or |5 — 1] = 1.

Lemma 2.7 (Q]). Let ¢ be univalent inU, § and ® be analytic in a domairD
containingg(U) with ®(w) # 0 whenw € ¢(U). SetQ(z) = 2¢'(2)9(q(2)), h(z) =
0(q(z)) + Q(z) and suppose that

() Q is starlike(univalent) irflU with Q(0) = 0, @'(0) # 0 and
(i) @ andh satisfy

20 - R a7

If ¢ is analytic inU with ¢(0) = ¢(0), ¢(U) Cc D and

(2.9) 0(6(2)) +2¢'(2)® (¢(2)) < 0(q(2)) + 2¢'(2)® (q(2)) = h(2) (2 € ),
thengy < ¢ andq is the best dominant of(9).
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3. Main Results

Unless otherwise mentioned, we assuimeughoutthe sequel that
o > 0, Oéi,ﬁj GR\Z(; (222,3,,(],] = 1,2,...,8),
A>0,p>—-p and —1<B<AZL1

Following the lines of proof of Cho and Kin2] (see, also4]), we can prove the
following theorem.

Theorem 3.1.Let¢ € 2 with
max R {¢(2)} < min{(u+2p —n)/(p—n), (v +p=n)/(p=m)} (0=n<p).
Then

MS™ (g, 8513 ¢) C MSK (g, 877 6) € MS 1 (g, 8515 9) -

Dyl p,a1 pa1+1

By carefully choosing the functiog in the above theorem, we obtain the follow-
ing interesting consequences.

Example3.1 The function

(z) = Gigz)a (0<a<1;zel)

is analytic and convex univalent ith. Moreover,

0 < (%)a < R{p(2)} < (11—2)&

0<as1l —-1<B<AZL1; z€l).
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Thus, by Theorend.1, we deduce that, if

then

1+ A 0‘<
1—|—B min

p+2p—mn ar+p—n

{

p—n p—n

O0<as1l —-1<B<AZLT),

MSEEE™ (q, 871, 0) € MSET

b,

Example3.2 The function

d(z) =1+ % {log(

p,o1

is in the clas$ (cf. [14]) and satisfies

R{6(2)} < 1+ % {log (1 + \/5)]2 (2 € ).

(q,s;m;50) C MS

p,a1+1

i—\/\/g)r 0<a<l,;

1-Va

Thus, by using Theore®. 1, we obtain that, if

2 1 2 2 — —

T N e
T 1 -+ p—n p—n

then
MS ™ (a,5:0:0) © MSEL (g, 5:m5.0) € MSYEL (4:51m:6) -

Example3.3. The function

) B+1
(2
2 (5

|

(q,s:m;0).

z € l)

)akzk 0<a<l, 20;2€0)
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belongs to the clad2 (cf. [15]) and satisfies

R{o(2) }<1+Z(ﬂ—l—k‘)ak OD<a<l, 320).

Thus, by Theorens.1, if

= [(B+1 C(p+20—m ar+p—n
1+Z(m o < min jpat O<a<l, §20),
k=1

p—n p—n
then
MSZZ} " (Q7 S515 ¢) C MSZZ? (q? 815 (b) C MSp a1+1 <QJ 8515 ¢> .
Theorem 3.2. If f € MCI'" (q,5;\; A, B), then
P (HI (0n) ) (2) 1+ Az

where the function) given by

A4 (1-4) (14 B2) R (L1524 1512 ) (B £0);

viz) = (utp)A

is the best dominant o8(1). Further,

(3.2) feMChT (q,s;pp),

where
AL (1-4)1-B)1,R (1, 1 s + 13 %) (B #0);

p =
(ut+p)A _

1- u+pli>\?p+m) (B =0).

Meromorphically Multivalent
Functions

Jagannath Patel and Ashis Ku. Palit
vol. 10, iss. 1, art. 13, 2009

Title Page
Contents
44 44
< >
Page 13 of 33
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

The result is the best possible.

Proof. Setting

(3.3) @@):_ﬁ’(Hﬁgaﬁﬂ(@ (zeD),

we note thatp is of the form ¢.1) and is analytic ifU. Making use of the identity

(1.7)in (3.9 and differentiating the resulting equation, we get

3.4)  o(x)+ ()

(1 +p)/A

B 2Pt {(1 —N) (H7 () ) (2) + X (HE () f), (z)}
_ ) )

= 1132 (z€0).

Now, by applying Lemma.1 (with x = (1 + p)/A) in (3.4), we deduce that

o (Hp(anf) ()
p

ity sty [t (L
L) = PP Sy [ R dt
vE) = o m)” ; 1+ Bz

A A . o optp Bz
E—f-(l—g)(l—i—Bz) 2F1(1717)\(p—|—m)+1’1—|—32) (B #0)
(n+p)A

f+p+Ap+m)
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by a change of variables followed by the use of the identitted) ((2.3), (2.4) and
(2.5), respectively. This proves the assertiGr].
To prove (3.2), we follow the lines of proof of Theorem 1 idi§]. The result is

the best possible ag is the best dominant. This completes the proof of Theorem

3.2 ]

SettingA = 1 - (2n/p), B = -1, u =0, m =1—-p, a = X =
p and «;1 = 0G; (i = 1,2,...,s) in Theorem3.2 followed by the use of the
identity (2.6), we get

Corollary 3.3. If f € > satisfies
R (p+2)f'(2) +2f'(2)} >0 (0=n<p;zel),
then
—R{PT ()} >n+2(p—n)(In2—-1) (z€U).
The result is the best possible.

PuttingA = 1 - (2n/p), B = -1, p =0, m = 2—p, af = A =
p and ;4 =0 (1 =1,2,...,s)in Theorem3.2, we obtain the following result
due to Pap11].

Corollary 3.4. If f € >, satisfies

SR+ 27 + 2@ > LT e

then
R} >0 (2 €U).

The result is the best possible.
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The proof of the following result is much akin to that of Theorem 21 [and
we choose to omit the details.

Theorem 3.5.1f f € MCE™ (q,s;m) (0 =< n < p), then

p,oa

R [ {0-0) (gslons) ()4 (g o) ()] >
(I2] < R(p, p, A, m)),

where

1
p+m

V(4 p)2+ X (p+m)2— Ap +m)

R(p, p1, A\, m) = Yy

The result is the best possible.

Upon replacingp(z) by 2P H* (1) f(z) in (3.3) and using the same techniques

p,q,s
as in the proof of Theorer.2, we get the following result.

Theorem 3.6. If f € >_  satisfies

1+ A
(1= ) My () f(2) + A M () ()} < > e,
+ Bz
then e
m, z
UL ()] (2) <) < g (€D)
and

R{ZHIA@)f()) > p (2 €U),

p’q7s
wherey andp are given as in Theore® 2. The result is the best possible.
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Letting

P 1 p N\
A=<{F (11— 41— ) —-1%%2—- R (1.1 —5% 4+ 1: 2
{21<”A(p+m)+’2) }{ 21(”A(p+m)+’2)} ’

B=-1, u=0, a0 =p and «a;41 = 0; (i =1,2,...,s)in Theorem3.6, we

obtain

Corollary 3.7. If f € >_ , satisfies

(3.5) 3%{

then

A p+1 g/
1+ 201() + 2 f(Z)}

>

3—22F1<1>1;m+15%>

R{f(2)}

The result is the best possible.

For a functionf € >

(3.6)

p7m’

Fsp(2) = Fop(f)(2)

5 z
_ t6+p_1f
~0+p 0

Z*p_‘_ -
(35

2{2 - A (1,1 558 + 1:3) }

>1
2

(1) dt

6 z
p+k

(z € 1),

(z € ).

we consider the integral operatdy, defined by

’“) x f(z) (6>0; ze€U").
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It follows from (3.6) thatF5,(f) € >_,,, and

(3.7) = (Hy(a) Fsp( ) (2) = 6 Hyii(an) f(2) = (6+p) Hytt () Fop(f)(2).

Using 3.7) and the lines of proof of Theorem P][ we obtain the following
inclusion relation.

Theorem 3.8. Let¢p € Q withmax.cyR{¢(2)} < (6 +p—n)/(p—n) (0<n<
p; 6 >0). If f € MSE™ (q,s,m;¢), thenFs,(f) € MSET (q,5,1; ).

p,aq p,o1

Theorem 3.9. If f € > and the functiorf; ,(f), defined by{.6) satisfies

(1= ) (M) Fap(D) () + A (i) ) ()} 14 4z

then
p+1 Hm,u F !
_%{Z ( p,q,s(al) 5,P(f)) <Z>} >0 (Z c U),
p
where
{g+ (1= 2) (1= B) 2R (1Lt + 1) (BA0)
Q =
0A _
L (B =0).

The result is the best possible.

Proof. If we let

38) ole) = - UEEDIIN O e
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theny is of the form ¢.1) and is analytic inU. Using the identity §.7) in (3.9)
followed by differentiation of the resulting equation, we get
29 (z) 14 Az
N i ©

e U).
The proof of the remaining part follows by employing the techniques that proved
Theorem3.2 ]

Uponsettingd =1—(2n/p), B=—-1, A=pu=1, oy =p+1 and «a;1 =
G (i=1,2,...,s)in Theorem3.9, we have

Corollary 3.10. If f € > .(p;n) (0 = n < p), then the functioifF;,(f) defined by
(3.6) belongs to the clasy_ . (p; »), where

4] 1
= - B, ——+1;= ) —1p.
x=n+p n){2 1(, Jrarpemiy ,2) }
The result is the best possible.

Remarkl. Under the hypothesis of Theoreir® and using the fact that

P (T () Fao (1)) (2) = / T (R () f) (B de (5> 0;z € T),

D9, o 208 D4,

we obtain

—%{g /OZ oFP (H;ﬁéfls(al)f)/ (t) dt} >0 (2€l),

wherep is given as in Theorerf. 9.
Following the same lines of proof as in Theorém, we obtain
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Theorem 3.11. If f € >~ and the functior;,(f) defined by ¢.€) satisfies

14+ Az

2 {(L= ) H (@) Py (1)) + A H () F ()} = T

then

(z € D),

R{Hp () Fsp()(2)} > 0 (2 € ),
wherep is given as in Theorer.9. The result is the best possible.

In the special case wheA =1 -2y, B= -1, A =1, u=1—-p, oy =
0+1, 61=9, ;=06 (1=2,3,...,s) and a4 = 1in Theorem3.11, we get

Corollary 3.12. If f € >, satisfies
R{z’f(z)} >n (0=n<1l; 2€l),

then

i Z5+p—1 _ . J 1 _
a%{za/ot ft)dte >n+(1—n)q2F 1,1,p+m+1,2 1
(0 >0; z€ ).

The result is the best possible.

Theorem 3.13. Let—1 = B; < A; =1 (j = 1,2). If f; € > satisfies the
following subordination condition:
1 + AjZ

B9 {1 M) + AL ) )} < TR

p7q78 p7q78

(=12 2€),
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then

(3.10) R[22 {(1 = NHE (on)a(z) + XHEH (an)g(z)}] > 7 (2 € 1),

where
(3.11) 8(z) = Hy , () (fix f2)(2) (2 €U
and

=1- 1—=9F (1,1;—+1; = .
’ (1— B1)(1— By) R S W

The result is the best possible whBn= By = —1.
Proof. Setting
(312)  pi(x) = {(1 = NHp, () fi(2) + XML (on) f(2) }
(j=1,2; z€ 1),
we note thatp; is of the form ¢.7) for each;j = 1,2 and using §.9), we obtain
v; € P(75) (%‘ = 1:1;], j= 1,2>

J

so that by £.9),

(3.13) 1k €P(y3) (3=1=-2(1—m)(1—)).
Using the identity {.7) in (3.12), we conclude that

ptp e [F e
= —72

Hﬁ,q,s(%)fj(z) \ A t A 71S0j<t)dt
0
(j=1,2; z€ U

Meromorphically Multivalent
Functions

Jagannath Patel and Ashis Ku. Palit
vol. 10, iss. 1, art. 13, 2009

Title Page
Contents
44 44
< >
Page 21 of 33
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

which, in view of (3.11) yields

+p 7 ot
Hyp g )9(@2#52’_%/0 1 Loo(t)dt (2 € UY),

where, for convenience

(3.14) po(2) = 27 {(1 = NHy, (an)a(z) + MHL L (an)a(2) }

P,4q,s

+p [ pt
:“—”z¥/ S (o 0o) (1) dE (2 € ).
0

>

Now, by using 8.13 in (3.14) and by appealing to Lemna3and Lemma’.5 we
get

+p Vot
Riao(2)} =52 [ R ) (52) ds
0
1
i+ p ptp 2(1 —~3)
> AP [T (o0 d
=) /OS (73 +1+s\z\ s
1
Hw+p ptp I —7s
S HEP R (g0 d
A /OS (73 e 1—|—s ) g

|
—_

e (- / S )

S R R Gl e

=7 (2€D).

This proves the assertiofi.(L0).
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WhenB, = B, = —1, we consider the functiong < Zp defined by

tp ot (7w (14 Ajt
ngqu(al)fj(z):“_/\pzp X Otx 1< 1_;)dt

(j=1,2; z € UY).

Then it follows from (3.14) that and Lemma.2 that

vo(z)
Lyt
_ MDA (1—(1+A1)(1+A2)+(1+A1)(1+A2))ds
A Jo 1—s2
—1—(14+ A1+ A) + 1+ AN+ A)(1 = 2)7 2R (1,1; ”;rp +1; Zil)

2 A 2

which evidently completes the proof of Theorém 3 O

1 1
1= (14 AN+ Ay) + =(1+ A1+ Ay) (1, AR Y —) asz — 1,

By takingAj =1- 277j7 Bj =—1 (] = 1,2), n = 0, oy =0p and Qjp =
G (i =1,2,...,s)in Theorem3.13 we get the following result which refines the
corresponding work of Yand@p, Theorem 4].

Corollary 3.14. If each of the functiong; € > satisfies

R {zp{(l PN+ ng;<z>}] -
(0<nm<1,j=1,2 2cU),
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then
R {040 (e )G 425 D)} >0 e )

where

1 P 1
=1—-4(1—- 1-— 1l—=0F 1L, 1;=+1;= .
o ( 771)( 7]2){ 22 1(7 7)\+ ’2)}
The result is the best possible.

FOI‘AJ = 1—2773, B] = —1 (] = 1,2),# = O,)\ = 1,0{1 :p—i—land
a1 =0 (1=1,2,...,s)in Theorem3.13 we obtain

Corollary 3.15. If each of the functiong; € > satisfies
R{fi(z)} >n; (0=m; <1, j=122€0),
then

R{(F o+ f2)()} > 1=4(1—)(1=1) {1 S (1, Lp 1 ;)} (- € ).

The result is the best possible.

Theorem 3.16.Let -1 < B; < A; = 1 (j = 1,2). If each of the functions
fi €%, satisfies

. 1+A;z .
(3.15) PHP (o) f(2) < T B;z (j=1,2; z € 1),
then the functioty =+, (a1 )(f1 * f2) satisfies
Hyul (an)b(2)
R s } >0 (z€0),
it Fel)
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provided

(A1 — B1)(As — By)

(18 B0 - B

2 3
< w4 op+m

2{“p+mhﬂ<L;ﬁ%é>_zr+2w+pﬂ.

Proof. From (3.15, we have

1—A;,
PH (00) 5 (2) € P(y) (%- s 2) |

Thus, it follows from ¢.9) that

p7q78

ptp
= R{PHy L (on) fu(2) * P (00) fa(2) }

2(A1 — Bl)(AQ — BQ)
 (1-B)(1-By)

(3.17) R {ZpHm’”H(Oq)b(z) n z (ZPH;?&/fjl(al)h) (2) }

> 1 (z € U),

which in view of Lemma2.1 for

(Ay — B1)(A2 — By)
(1—B1)(1—By) ’

B=—-1,n=p+m and k=pu+p

A=—-1+4
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yields
(3.18) R {zPH (ar)b(2)}

p,q,5

(1= B1)(1 = By) p+m’2

From (3.19), by using Theorens.6 for

B 11 27.) )

B=-1 and A=1,

14 WL By = By) {2F1 (1,1; /th-l) —2} (z € U).

we deduce that
(3.19) R{zPV(2)}

(Al—Bl)(AQ—BQ) ) ﬂ+p1 2
>1-2 (1—B1)(1—B2) {2F1 (1,1,m,§) —2} (ZGU),
whered(z) = 2PHH (aq1)h(2). If we set

p,q,S
Hmoptl
90<Z> _ pﬁii (al)h(z)

Hp,[],s(al)h(z)
theny is of the form ¢.1), analytic inU and a simple calculation gives

(Z S U)a

(3.20) M7 (n)h(z) + (Z”Hz?%/fis +<;1>b> ()
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where ¥ (u,v;z) = 9(z) {v*+ (v/(r+p))}. Thus, by applying%.17) in (3.20),
we get

(A1 — B1)(Ay — By)

R{V (p(2),2¢'(2); 2)} > 1 -2 (1= B)(1-B) (z€T).
Now, for all realz,y < —(p +m)(1 + 2?)/2, we have
R0} = (= ROE)
p+m o, 2(u+p) ,
= 50t ) {1-1—90 + mx }?]%{19(2)}
< PEM gy <1 oW T B = By)

2+ p) 0B By €U

by (3.16 and @3.19. Thus, by Lemm&.4, we getR{y(z)} > 0in U. This com-
pletes the proof of TheorefM 16 O

TakingA; =1—-2n;, B, = -1 (j=12),p=0,A=1a =p+1and
a1 =G (1=1,2,...,s) in Theorem3.16 we have

Corollary 3.17. If each of the functiong; € > satisfies
R{Pf3(2)} > (0=m; <1, j=1,2; z€ ),
then

2(fi % f2)(2)
%{kt%lﬁ « fo)(t) dt }>O el
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provided
3p+m

2 {{(p +m)oF (L1508 - 2}2 + QP] .

Theorem 3.18. If f € MCI (¢,s;0A,B) andg € »_ . satisfies §.5), then

p,x1

fxge MCET (q,s; N A, B).

YZ1e0

(T=m)(1—m) <

Proof. From Corollary3.7, it follows thatR{g(z)} > 1/2 in U. Since

(L = V(MG (0a) (f % 9))'(2) + AMHpe (0n)(f * 9))'(2)
p

optl _ ok (o) f) (2 mek (an) ) (2
_ {(1 )\)Hp,q,s( )f); ) + A(Hp,fbs ( )f) ( )} * g(z) (Z € U)

and the functior{1 + Az)/(1 + Bz) is convex(univalent) ifJ, the assertion of the
theorem follows from .10 and Lemma2.5. O]

Theorem 3.19. Let0 # 3 € C and0 < v = p be such that eithefl +28~| < 1 or
1 =28y = 1. If f € 3, satisfies

1 (00) () S
(3:21) " {Hz,q,sml)f(z)} <+ el

then
{18, () f(2)} < g(2) = (1= 2)*" (2 € D)

p7q78
andq is the best dominant.
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Proof. Letting

(3.22) p(z) = {2HE (o) f(2)}" (2 €)

and choosing the principal branch ia.22), we note thaty is analytic inU with
©(0) = 1. Differentiating (.22 logarithmically, we deduce that

SR AT NEVIE) R

(2) Hpas(a1) f(2)

which in view of the identities1(.7) and (3.21) give

2y
, 1 (1-21)
(3.23) L2 ( p) (z € D).

Boz) ~ F 1—=z

If we takeq(z) = (1 —2)?*, 0(z) = —p, ®(2) = 1/Bzin Lemma3.1], then by
LemmaZ2.6, ¢ is univalent inU. Further, it is easy to see that 8 and® satisfy the
hypothesis of Lemma.7. Since

2v 2
1—-=z

Q(2) = 2q'(2)®(q(2)) =

is starlike (univalent) iU,

h(z):_er(p_?V)Z and %{Zh/<z)}:§}ﬁ{ ! }>O (z € 1),

1—2z Q(2) 1—=z
it is readily seen that the conditions (i) and (ii) of Lemgha are satisfied. Thus, the
assertion of the theorem follows fror.£3 and Lemma2.7. O
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Putingy = 0, v = p(1—-17), 8 = —1/2y, ey = panda;;, = B (i =

1,2,...,s)in Theorem3.19 we deduce that
Corollary 3.20. If f € }_ satisfies

{75

}>p77 (0=n<1; z€l),

then
1

R{f)) 2211 52 (zev).

N | —

The result is the best possible.
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